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Simple Summary: Pancreatic cancer is a highly malignant disease with treatment resistance to
standardized chemotherapies. In addition, only a small fraction of patients with pancreatic cancer
has, to date, actionable genetic aberrations, leading to a narrow therapeutic window for molecularly
targeted therapies or immunotherapies. A lot of preclinical and translational studies are ongoing to
discover potential vulnerabilities to treat pancreatic cancer. Histologically, human pancreatic cancer
is characterized by abundant cancer-associated fibrotic stroma, called “desmoplastic stroma”. Recent
technological advances have revealed that desmoplastic stroma in pancreatic cancer is much more
complicated than previously thought, playing pleiotropic roles in manipulating tumor cell fate and
anti-tumor immunity. Moreover, real-world specimen-based analyses of pancreatic cancer stroma
have also uncovered spatial heterogeneity and an intertumoral variety associated with molecular
alterations, clinicopathological factors, and patient outcomes. This review describes an overview
of the current efforts in the field of pancreatic cancer stromal biology and discusses treatment
opportunities of stroma-modifying therapies against this hard-to-treat cancer.

Abstract: Pancreatic cancer remains one of the most lethal malignancies and is becoming a dra-
matically increasing cause of cancer-related mortality worldwide. Abundant desmoplastic stroma
is a histological hallmark of pancreatic ductal adenocarcinoma. Emerging evidence suggests a
promising therapeutic effect of several stroma-modifying therapies that target desmoplastic stromal
elements in the pancreatic cancer microenvironment. The evidence also unveils multifaceted roles
of cancer-associated fibroblasts (CAFs) in manipulating pancreatic cancer progression, immunity,
and chemotherapeutic response. Current state-of-the-art technologies, including single-cell transcrip-
tomics and multiplexed tissue imaging techniques, have provided a more profound knowledge of
CAF heterogeneity in real-world specimens from pancreatic cancer patients, as well as in genetically
engineered mouse models. In this review, we describe recent advances in the understanding of
the molecular pathology bases of pancreatic cancer desmoplastic stroma at multilayered levels of
heterogeneity, namely, (1) variations in cellular and non-cellular members, including CAF subtypes
and extracellular matrix (ECM) proteins; (2) geographical heterogeneity in relation to cell–cell inter-
actions and signaling pathways at niche levels and spatial heterogeneity at locoregional levels or
organ levels; and (3) intertumoral stromal heterogeneity at individual levels. This review further
discusses the clinicopathological significance of desmoplastic stroma and the potential opportunities
for stroma-targeted therapies against this lethal malignancy.

Keywords: pancreatic ductal adenocarcinoma; desmoplasia; fibroblast; collagen; immunotherapy

1. Introduction

Pancreatic cancer remains the most lethal malignancy, with a 5-year survival rate
of approximately 10%, even in developed countries [1]. As the worldwide incidence
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rapidly increases, pancreatic cancer is becoming a dramatically increasing cause of cancer
mortality [2,3]. In the United States, pancreatic cancer is projected to become the second
most common cause of cancer death by approximately 2026 [4]. At the time of diagnosis,
most pancreatic cancer patients have no symptoms but have metastatic and/or locally
advanced disease, making it difficult to undergo curative surgery. Even after successful
pancreatectomy and undergoing adjuvant therapies, many patients with PDAC experience
tumor recurrence due to treatment resistance to standard chemotherapies.

Since more than 90% of adult pancreatic malignancies are pancreatic ductal adenocar-
cinoma (PDAC), ‘pancreatic cancer’ is colloquially used as a synonym for PDAC. PDAC is
an invasive pancreatic epithelial tumor with tubule-like structures resembling pancreatic
ducts. PDAC develops through the accumulation of genetic and epigenetic aberrations,
including four common driver genes: KRAS, TP53, CDKN2A, and SMAD4 [5–13]. Re-
cently, cancer genome sequencing efforts have uncovered a number of genomic alterations
involved in pancreatic carcinogenesis [14–20]. However, to date, a limited fraction of
individuals with pancreatic cancer appear to have actionable genetic alterations, including
BRCA1 and BRCA2 mutations, neurotrophic receptor tyrosine kinase (NTRK) gene fusions,
and microsatellite instability (MSI)-high [11,17,21–26]. In addition, the single use of im-
mune checkpoint inhibitors (ICIs) targeting programmed cell death 1 (PDCD1), CD274
(also known as programmed cell death 1 ligand 1, PD-L1, or B7-H1), and cytotoxic T
lymphocyte-associated protein 4 (CTLA4) has shown no effectiveness in metastatic pan-
creatic cancers [27]. Therefore, many preclinical and translational studies are ongoing to
discover potential vulnerabilities and therapeutic opportunities to treat PDAC [28–30].

The histology of human PDAC has been unique. Compared to adenocarcinomas
in other organs, PDAC generally has a prominent fibrotic stroma, called “desmoplastic
stroma”. The fraction of carcinoma cells within the tumor bed is often less than 20% in
patients with PDAC [31], which likely hinders biological and molecular investigations of
pancreatic cancer pathogenesis. The desmoplastic stroma is comprised of heterogeneous
cellular and non-cellular members, such as fibroblasts, immune cells, blood vessels, lym-
phatic vessels, and extracellular matrix (ECM) proteins [32]. Numerous previous studies
have revealed that these stromal elements can regulate the tumor molecular mechanisms
underlying various cellular functions, including proliferation, survival, senescence, apopto-
sis, cell motility, invasion, and metastasis [32–37]. Furthermore, emerging evidence derived
from single-cell transcriptome analyses has underscored the importance of fibroblastic
subpopulations with different functional and phenotypic characteristics [38,39]. Addi-
tionally, tumor cell fate (and, eventually, tumor aggressiveness) is primarily dictated by
the dynamic interactions between carcinoma cells and the surrounding stromal factors
and/or architectures, attesting to the need for a deeper understanding of geographical
heterogeneity in desmoplastic stroma within PDAC tissues [40–43]. Recent analyses of
human real-world data on PDAC have revealed the clinical significance of intertumoral
stromal heterogeneity [44], likely providing new insights into treatment opportunities and
harnessing stromal therapies to target potential vulnerabilities of this deadly cancer.

An increasing number of papers have emphasized “heterogeneity” to describe the
complexity of the tumor microenvironment (TME) in various types of tumors, including
PDAC. However, there is no consensus over a definition of the “heterogeneity” concept,
despite widespread use of this term. For example, when referring to stromal heterogeneity,
some have in mind only variations in stromal elements, while others may include spatial
distributions and population-level differences. Numerous scientific findings stemming
from distinct research fields are obviously essential for establishing the “stromal heterogene-
ity” field, but different studies often use the term “heterogeneity” differently. Moreover,
we should acknowledge that different levels of “stromal heterogeneity” have differing
clinical relevance. For instance, identification of a specific cell subtype within intratumoral
elements would promote drug development against the specific target, while the notion
of intertumoral heterogeneity would attest to the importance of patient stratification and
biomarker discovery for precision medicine approaches. Hence, this review summarizes
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the current knowledge of PDAC stromal heterogeneity, distinguishing three distinct layers:
(1) non-cellular and cellular variations, (2) geographical heterogeneity and cell–cell interac-
tions, and (3) intertumoral heterogeneity (Figure 1). We also discuss the clinicopathological
significance of the stromal heterogeneity of PDAC and further introduce several clinical
trials evaluating agents targeting stromal elements to discuss therapeutic opportunities for
stroma-modifying therapies.

Cancers 2022, 14, 3293 3 of 20 
 

 

intratumoral elements would promote drug development against the specific target, 
while the notion of intertumoral heterogeneity would attest to the importance of patient 
stratification and biomarker discovery for precision medicine approaches. Hence, this re-
view summarizes the current knowledge of PDAC stromal heterogeneity, distinguishing 
three distinct layers: (1) non-cellular and cellular variations, (2) geographical heterogene-
ity and cell–cell interactions, and (3) intertumoral heterogeneity (Figure 1). We also dis-
cuss the clinicopathological significance of the stromal heterogeneity of PDAC and further 
introduce several clinical trials evaluating agents targeting stromal elements to discuss 
therapeutic opportunities for stroma-modifying therapies. 

 
Figure 1. Multilayered levels of pancreatic ductal adenocarcinoma (PDAC) stromal heterogeneity. 
PDAC desmoplastic stroma is highly heterogenous between patients and even in a tumor at multi-
layered levels. Abbreviations: CAF, cancer-associated fibroblast; CTL, cytotoxic T cell; ECM, extra-
cellular matrix; iCAF, inflammatory cancer-associated fibroblast; MDSC, myeloid-derived suppres-
sor cell; myCAF, myofibroblast cancer-associated fibroblast; TME, tumor microenvironment; Treg, 
regulatory T cell. 

2. Extracellular Matrix 
The ECM is an extracellular meshwork containing structural proteins, proteoglycans, 

adaptor proteins, and tissue remodeling enzymes. A variety of ECM proteins and macro-
molecules, derived either from stromal cells or tumor cells, are deposited in the desmo-
plastic stroma of PDAC [45]. Compared to the healthy pancreas, the ECM in the tumor is 
characterized by markedly increased stiffness and density [46]. Tumor ECM not only 
serves as a simple structural support but also plays a pivotal role in modifying tumor cell 
behavior. For example, aberrant ECM accumulation attributes to increased interstitial 
pressure and the collapse of capillary vessels, leading to the decreased delivery of blood 
flow and therapeutic agents, which results in a hypoxic microenvironment and altered 
drug response [47–49]. Signaling pathways, such as the integrin signaling pathway, also 
contribute to the regulation of cellular machinery in pancreatic cancer cells [50]. In addi-
tion, many growth factors stored in the ECM can enhance tumor cell proliferation, sur-
vival, and cell motility [51]. Matrix stiffness itself has promoted the epithelial−mesenchy-
mal transition (EMT) [52]. On the other hand, like different types of neoplasms, rigid fi-
brous tissues may function as physical barriers to restrain tumor growth by capsulizing 
pancreatic cancer nests under certain circumstances. 

Figure 1. Multilayered levels of pancreatic ductal adenocarcinoma (PDAC) stromal heterogeneity.
PDAC desmoplastic stroma is highly heterogenous between patients and even in a tumor at multilay-
ered levels. Abbreviations: CAF, cancer-associated fibroblast; CTL, cytotoxic T cell; ECM, extracellular
matrix; iCAF, inflammatory cancer-associated fibroblast; MDSC, myeloid-derived suppressor cell;
myCAF, myofibroblast cancer-associated fibroblast; TME, tumor microenvironment; Treg, regulatory
T cell.

2. Extracellular Matrix

The ECM is an extracellular meshwork containing structural proteins, proteogly-
cans, adaptor proteins, and tissue remodeling enzymes. A variety of ECM proteins and
macromolecules, derived either from stromal cells or tumor cells, are deposited in the
desmoplastic stroma of PDAC [45]. Compared to the healthy pancreas, the ECM in the
tumor is characterized by markedly increased stiffness and density [46]. Tumor ECM not
only serves as a simple structural support but also plays a pivotal role in modifying tumor
cell behavior. For example, aberrant ECM accumulation attributes to increased interstitial
pressure and the collapse of capillary vessels, leading to the decreased delivery of blood
flow and therapeutic agents, which results in a hypoxic microenvironment and altered
drug response [47–49]. Signaling pathways, such as the integrin signaling pathway, also
contribute to the regulation of cellular machinery in pancreatic cancer cells [50]. In addition,
many growth factors stored in the ECM can enhance tumor cell proliferation, survival,
and cell motility [51]. Matrix stiffness itself has promoted the epithelial−mesenchymal
transition (EMT) [52]. On the other hand, like different types of neoplasms, rigid fibrous
tissues may function as physical barriers to restrain tumor growth by capsulizing pancreatic
cancer nests under certain circumstances.

In this section, we reviewed the heterogeneous roles of major non-cellular stromal
constituents of the pancreatic cancer microenvironment and discussed the potential oppor-
tunities of ECM-targeting therapies.
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2.1. Collagens

More than 90% of ECM proteins are produced by stromal cells such as fibroblasts [45].
Among the stromal cell-derived ECM molecules, collagens are the predominant compo-
nents, accounting for more than 90% of ECM proteins in pancreatic cancer stroma and
chronic pancreatitis [45]. Collagens include 29 known superfamily members in verte-
brates [49]. Proteomic analyses have revealed that approximately 90% of the total collagens
in PDAC tissues are type I and type III fibrillar-type collagens [45], which are predominantly
produced by stromal cells, especially ACTA2, the HUGO (Human Genome Organization)-
approved official symbol for actin alpha 2, smooth muscle; HGNC ID: 130; it is also known
as alpha smooth muscle actin or αSMA-expressing fibroblasts [53].

Several anti-fibrotic approaches are ongoing in the treatment of PDACs (Table 1). One
such strategy includes the inhibition of the lysyl oxidase (LOX) family proteins, which
are essential enzymes that facilitate the cross-linking of collagen molecules, leading to the
stabilization and integrity of collagen fibrils [54]. Many reports have suggested that the
upregulation of LOX and lysyl oxidase like 2 (LOXL2) is associated with reduced survival
in many malignancies, although there are conflicting data on the clinical significance of
LOX family enzymes [55,56]. A recent study has shown that LOXL2 promotes EMT and
stemness and increases the metastatic capacity of murine PDACs [57]. However, a phase II
clinical trial has demonstrated that an anti-LOXL2 antibody simtuzumab, in combination
with gemcitabine, failed to show any benefit in treating patients with metastatic PDAC [58].
Another approach involves the use of renin−angiotensin-inhibiting hypotensive agents,
anticipating their anti-fibrotic effect. Indeed, an angiotensin receptor antagonist, losartan,
has shown encouraging results when combined with FOLFIRINOX (which is made up of
5-Fluorouracil, Oxaliplatin, Irinotecan, and Leucovorin) as a neoadjuvant therapy against
locally advanced PDACs in a phase II study [59].

Table 1. Selected therapeutic stromal targets and clinical trials.

Target Candidate Drug and
Combination Regimen Drug Type Mechanism Outcomes

LOXL2 Simtuzumab plus gemcitabine Blocking antibody Destabilizes
collagen networks

Negative outcome
(phase II [58])

Renin−angiotensin
system

Losartan plus FOLFIRINOX
followed by

chemoradiotherapy (as
neoadjuvant therapy)

Small molecule
inhibitor

Reduces collagen
and hyaluronan

Downstaging
(phase II [59])

Focal adhesion kinases
Defactinib plus
pembrolizumab
and gemcitabine

Small molecule
inhibitor

Prevents integrin
signaling

Clinical trials in phase I
completed

([60], NCT02546531)

Hyaluronan

PEGPH20 plus nab-paclitaxel
and gemcitabine

Enzyme Degrades hyaluronan

Improved PFS
(phase II [61])

PEGPH20 plus modified
FOLFIRINOX

Detrimental effects
(phase Ib/II [62])

PEGPH20 plus nab-paclitaxel
and gemcitabine

Negative outcome
(phase III [63])

Hedgehog Saridegib plus gemcitabine Small molecule
inhibitor

Prevents/reduces
CAF activation

Worse clinical outcome
(phase Ib/II, NCT01130142)

CXCR4-CXCL12
Motixafortide plus

pembrolizumab and
chemotherapy

Small molecule
inhibitor

Interferes with
CAF signaling

Improved objective
response rate

(phase II [64,65])

FAP RO6874281 Small molecule
inhibitor

Interferes with
CAF function

Clinical trials in phase I
ongoing (NCT02627274)

Collagens are major integrin ligands that mediate intercellular signaling, including fo-
cal adhesion kinases (FAKs) [50]. The FAK is a non-receptor-type tyrosine kinase which has
been hyperactivated in many tumor types to regulate multiple cellular functions of tumor
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cells, including cell−matrix adhesion, proliferation, apoptosis, migration, and invasion.
A previous study has shown that FAK inhibition in murine PDAC models has enhanced
the anti-tumor effect of checkpoint immunotherapies [66]. In addition, FAK inhibition has
increased CD8+ T cell infiltrates and reduced the number of fibroblast activation protein
α (FAP)-expressing fibroblasts, myeloid-derived suppressor cells (MDSCs), macrophages,
and regulatory T cells (Tregs) within mice tumor tissues, suggesting the promising role
of FAK pathway inhibition in reprogramming PDAC stroma to abrogate immunotherapy
resistance [66]. A phase I/IIa clinical trial is ongoing to test the effect of a FAK inhibitor,
defactinib, in combination with gemcitabine and pembrolizumab in pancreatic cancers.
Preliminary data from this trial have reported decreased FAK activity, as well as reduced
intratumoral T cell infiltration, in paired biopsy specimens from the patients [60].

2.2. Hyaluronan

The hyaluronan (hyaluronic acid) is a large glycosaminoglycan, distributed across
the whole body [67]. Half of the total hyaluronan in the body are present in the cutaneous
tissue, holding water to plump and moisturize the skin [68]. Indeed, 1 g of hyaluronan
can absorb nearly 6 kg of water molecules [69]. Hyaluronan is abundantly accumulated in
the tumor stroma of various malignancies, including PDAC. Tumor stromal hyaluronan is
primarily produced by activated fibroblasts in the TME [49]. Hyaluronan is the primary
ligand of the cell surface receptor CD44, which can regulate cell proliferation, stemness,
motility, and metastasis during tumor evolution and progression [67,70]. The aberrant
intratumoral deposition of hyaluronan leads to a remarkable increase in interstitial fluid
pressure, hindering microcirculation and immune cell infiltrates via the collapse of small
vessels [71,72]. In the KPC genetically engineered mouse model (GEMM), the interstitial
fluid pressure in the tumor is approximately ten times greater than that in a healthy
pancreas [73]. After a single intravenous dose of a chemically modified hyaluronidase
pegylated recombinant human hyaluronidase 20 (PEGPH20), intratumoral interstitial fluid
pressure in mice PDAC models was decreased within 2 h to approach the range for a normal
pancreas 24 h after treatment [73]. Moreover, KPC GEMMs treated with gemcitabine with
or without PEGPH20 have shown the benefit of PEGPH20 in terms of a reduced vascular
collapse and enhanced intratumoral delivery of gemcitabine agents, leading to lower
metastatic incidence and prolonged PDAC survival [73,74].

In accordance with the promising effects of hyaluronan degradation in enhancing
therapeutic response in preclinical models of PDAC, PEGPH20 has undergone several
clinical trials. A randomized phase II trial investigating the potential benefit of PEGPH20
in combination with the standard gemcitabine plus nab-paclitaxel chemotherapy has
shown a better progression-free survival in the investigation arm in metastatic pancreatic
cancer patients (HR, 0.51; 95% CI, 0.26–1.00) [61]. However, another phase Ib/II clinical
trial in 138 treatment naive PDACs with metastatic disease demonstrated a detrimental
effect of PEGPH20 when combined with modified FOLFIRINOX (median overall survival,
7.7 months for the modified FOLFIRINOX (mFOLFIRINOX) plus PEGPH20 group vs.
14.4 months for the mFOLFIRINOX alone group) [62]. It is noteworthy that this unexpected
result was likely explained by increased toxicity, which led to a significantly shortened
treatment duration in nearly half of the patients treated with the PEGPH20-containing
regimen [62]. Intriguingly, four out of 55 metastatic PDAC patients in the mFOLFIRINOX
plus PEGPH20 group showed a complete response [62]. A recent phase III randomized
controlled trial comparing gemcitabine plus nab-paclitaxel with or without PEGPH20 in
the treatment of metastatic PDACs was unfortunately terminated, with adverse study
outcomes (i.e., median overall survival, 11.2 months for the chemotherapy plus PEGPH20
group vs. 11.5 months for the chemotherapy alone group) [63]. The trials’ failure has
discouraged the attempt to harness a hyaluronan-degrading PEGPH20 agent to sensitize
the conventional chemotherapies against PDACs.
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2.3. Laminins

Specific laminins within the PDAC stroma have been derived from cancer cells [45].
The laminin α3β3γ2 (known as laminin 5), a triplex protein made of laminin subunit alpha 3
(LAMA3), laminin subunit beta 3 (LAMB3), and laminin subunit gamma 2 (LAMC2), are the
significant laminins accumulated in PDAC stroma [75]. These laminin molecules and the
type IV collagens, other upregulated non-fibrillar collagens in PDAC stroma, independently
self-assemble to form the basement membrane in the soft stromal matrix [49]. The laminin
α3β3γ2 is a primary ligand of integrin α6β4, a heterodimer of integrin subunits, integrin
subunit alpha 6 (ITGA6) and integrin subunit beta 4 (ITGB4), to activate intratumoral
integrin-dependent signaling. ITGB4 overexpression has been associated with shortened
survival in various cancers, including PDACs [76]. Co-overexpressed ITGB4 and LAMC2
proteins likely contribute to the formation of hemidesmosomes to provide matrix anchorage
at the invasive front of human PDAC tissues [76,77]. Moreover, upregulations of ITGB4
and LAMC2 in tumor cells induces EMT properties that promote cancer invasiveness,
therapeutic resistance, and metastatic capacity [76,78–80]. Tumor ITGB4 appears to play
a role in the regulation of stem cell properties and immunosuppression [81,82]. Future
translational and clinical studies are warranted to investigate therapeutic opportunities to
target the α6β4 integrin–laminin α3β3γ2 axis in the treatment of pancreatic cancer [83,84].

3. Fibroblast Heterogeneity

Fibroblasts are mesenchymal lineage cells that exist in the stroma of nearly all organs.
Fibroblasts are the primary source of ECM proteins, including collagens and hyaluronans,
to support and maintain tissue architectures [49]. Fibroblasts in the tumor tissues are
often called cancer-associated fibroblasts (CAFs). There are considerable differences in
the phenotypes and cellular functions of CAFs in tumor tissues and fibroblasts in healthy
organs [85]. CAFs play a key role in producing matrix-reconstructing enzymes and se-
creting various growth factors, cytokines, and exosomes in the tumor microenvironment,
thereby regulating tumor growth, invasion, metastasis, and therapeutic resistance [86–88].
Recent technologies have shown that fibroblasts in PDAC tissues are, phenotypically and
functionally, much more heterogeneous than previously thought. This section reviews
the cellular heterogeneity of fibroblasts and discusses the significance of different CAF
subpopulations in the tumor biology of PDAC.

3.1. CAF Origins

Tissue-resident fibroblasts in the normal pancreas are pancreatic stellate cells (PSCs).
PSCs primarily localize just around the pancreatic acini and ducts [89]. PSCs produce
collagens, laminins, fibronectins, and ECM-remodeling enzymes (i.e., MMPs and tis-
sue inhibitors of MMPs (TIMPs)) at a physiological state to support normal pancreatic
parenchyma and maintain homeostasis of exocrine and endocrine functions [86]. More
importantly, PSCs play a primary role in monitoring the leakage of pancreatic juice that
contains potent autolytic enzymes secreted by acinar cells, quickly responding to vari-
ous types of injuries in pathologic states, such as acute pancreatitis. Quiescent PSCs are
characterized by the presence of vitamin A-storing cytoplasmic lipid droplets [90]. Once
activated, PSCs reduce intracellular lipid droplets and simultaneously express activation
markers (i.e., ACTA2 and FAP) and upregulate ECM-related molecules, exhibiting similar
phenotypes to CAFs. A similarity can be observed between the CAFs in PDAC tissues
and the activated PSCs in PDAC precursors, including pancreatic intraepithelial neoplasia
(PanIN) and intraductal papillary mucinous neoplasia (IPMN) [91–98]. Studies suggest
that this preinvasive lesion-associated PSC activation results from complex stimuli: (1) the
latent obstruction of pancreatic ducts and (2) paracrine factors secreted from neighboring
neoplastic cells [77]. A recent study using a lineage-tracing platform has revealed differen-
tial contributions between two differentially located resident fibroblasts (GLI family zinc
finger 1 (GLI1)+ fibroblasts and homeobox B6 (HOXB6)+ fibroblasts) to CAF generation
during murine PDAC carcinogenesis [99].



Cancers 2022, 14, 3293 7 of 19

PSCs have long been considered a principal source of CAFs in PDACs. However,
previous studies in various tumor types have indicated multiple cell origins for CAFs,
including resident fibroblasts, bone marrow-derived mesenchymal stem cells, adipose-
derived stem cells, mesothelial cells, endothelial cells, and epithelial cells [90,100–104]. A
recent study has suggested a pro-tumorigenic contribution of PSC-derived CAFs, although
PSC-derived CAFs are a minor subset of the total CAFs present in PDAC tissues [105].
Taken together, fibroblasts from multiple origins may contribute to a wide range of hetero-
geneity in CAF subtypes within pancreatic cancer tissues. Future studies may clarify how
CAFs from different cellular origins influence tumor biology in patients with pancreatic
ductal adenocarcinomas.

3.2. CAF Markers

The lack of sensitive and specific protein markers for fibroblast lineage cells has long
been a limitation to the comprehensive understanding of the CAFs’ biology. For example,
desmin (DES) or glial fibrillary acidic proteins (GFAP) are PSC markers, but they are not
specific to fibroblasts; DES and GFAP are more abundantly expressed in muscle lineage
cells and glial cells, respectively. Much effort has been devoted to exploring CAF-specific
markers. ACTA2 is a famous histological marker of smooth muscle cells and myofibroblasts
in the clinical practice of diagnostic pathology. Due to the similarities between CAFs and
activated PSCs, ACTA2 has long been a gold standard marker for detecting CAFs. Although
a large proportion of fibroblasts in pancreatic cancer tissues appear to express ACTA2, not
all fibroblasts are detectable by an anti-ACTA2 antibody. Reports suggest that ACTA2
and FAP may characterize somewhat overlapping but distinct CAF subpopulations in
several tumor types [44,91,106]. Other fibroblast markers, including S100A4 (also known
as fibroblast-specific protein-1 or FSP1), platelet-derived growth factor receptor (PDGFR),
and podoplanin (PDPN), appear to define different CAF subsets [77,107,108]. Considering
the broad spectrum of CAFs, the use of a multiplex panel of fibroblast markers, not a single
marker, likely plays a major role in describing the total CAF populations and multiple
distinct CAF subtypes [44].

3.3. CAF Subtypes

The myofibroblast, an activated form of fibroblast, is a fibroblast subpopulation tradi-
tionally defined using morphological methods. Myofibroblasts were distinguished from
standard fibroblasts by the presence of actin filaments under electron microscopy. Then,
the biochemical and immunohistochemical characteristics of myofibroblasts were further
clarified. Myofibroblasts may play a key role in tension development in many pathological
states, such as wound healing [109]. Myofibroblasts are additionally characterized by
ACTA2 expression at a light microscopic level. Studies suggest that CAFs and myofibrob-
lasts share many phenotypic and functional traits [28].

Recently, findings in co-cultures of PSCs and PDAC organoids from murine models
have identified a novel CAF subpopulation with different transcriptome profiles from
myofibroblasts [40]. When directly co-cultured with tumor organoids, PSCs showed
an elevated level of ACTA2 and myofibroblast-like phenotypes [40]. In contrast, when
indirectly co-cultured using trans-wells, PSCs did not exhibit ACTA2 upregulation but
expressed various inflammatory cytokines, including interleukin 6 (IL6), C-X-C motif
chemokine ligand 12 (CXCL12), and LIF interleukin 6 family cytokine (LIF); these were
termed inflammatory CAFs (iCAFs) [40]. Consistent with these experiments, ACTA2-
expression was more frequent in juxta-tumoral fibroblasts within human and murine
PDAC tissues, while IL6- or FAP-expressing fibroblasts were noted in fibroblasts that
were more distal from carcinoma ducts (Figure 2) [40,44]. These lines of evidence indicate
that the fibroblast’s fate decision can be dictated in a context-dependent manner (further
discussed in Section 4.1). Thereafter, single-cell transcriptome analyses confirmed the
presence of myofibroblast CAFs (myCAFs) and iCAFs as distinct CAF subtypes in human
PDACs [38]. In addition, many study groups proposed other CAF subtypes with distinct
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transcriptome profiles and presumably differing functions, for example, antigen-presenting
CAFs (apCAFs), desmoplastic CAFs (dCAFs), proliferating CAFs, complement-secreting
CAFs (csCAFs) etc. [38,110–112].
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Figure 2. Visualization of fibroblast subpopulations in human pancreatic cancer tissues using fluores-
cent immunohistochemistry for ACTA2 and FAP.

4. Geographical Heterogeneity

During pancreatic carcinogenesis, tumor cells interact with fibroblasts to shape a unique
stroma favor, supporting tumor growth, invasion, and immunosuppression [53,113–120].
Research is underway to understand the complicated signaling networks between tumor
cells, fibroblast subtypes, and immune cells to develop stroma-modifying therapies against
PDACs [121–125]. Moreover, spatial analyses have revealed significant differences in
the tumor−immune microenvironment using different intratumoral locations and organ
sites [126,127]. This section discusses the geographical/spatial heterogeneity of PDAC
stroma at niche, locoregional, and organ levels.

4.1. Cell–Cell Interactions and Signaling at Niche Levels

Since the direction of CAF phenotypes appears to largely depend on the passive
diffusion of paracrine and/or autocrine factors [41,123,128,129], spatial arrangement and
cell–cell distances within a localized “niche” (presumably 100 µm) could be substantial.
For example, indirect co-culture with KPC mice-derived PDAC cells or treatment with
tumor-conditioned media promoted iCAF differentiation from PSCs with the rapid phos-
phorylation of the RELA proto-oncogene, NF-kB subunit (RELA), whereas the treatment
of an NF-κB inhibitor attenuated the iCAF-associated gene expression phenotypes [41].
In addition, tumor-derived interleukin 1 alpha (IL1A) induces LIF upregulation in PSCs,
leading to the activation of JAK-STAT signaling pathways to promote iCAF induction [41].
Evidence also suggests a crucial role of the LIF-mediated phosphorylation of the signal
transducer and activator of transcription 3 (STAT3) in maintaining the iCAF phenotype [41].
These findings attest to the importance of tumor-derived humoral factors in initiating
and maintaining iCAFs in the PDAC tumor microenvironment. Moreover, studies have
suggested that several CAF-derived cytokines, including IL6 and LIF, can induce an EMT
phenotype in tumor cells and an immune evasion in the tumor microenvironment to
promote tumor progression in murine PDAC models [123,128,130].

A histological investigation into human PDAC tissues has demonstrated that fibrob-
lasts tightly surrounding well-differentiated cancer ducts frequently show ACTA2 over-
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expression within the collagen-rich stroma [44], suggesting that spatial cues likely direct
myofibroblast phenotypes as well as tumor cell morphology. Transforming growth factor
beta 1 (TGFB1) has been a major driver of the morphological and functional phenotypes of
myofibroblasts [131,132]. Previous reports have revealed that ACTA2-expressing peritu-
moral fibroblasts show increased phosphorylation of SMAD family member 2 (SMAD2)
and SMAD family member 3 (SMAD3) [41], suggesting the primary role of TGFβ-SMAD
signaling in the induction of myCAF phenotypes. Intriguingly, recombinant TGFB1 also
downregulated interleukin 1 receptor in PSCs, leading to a decreased induction of iCAF
features [41]. These lines of evidence suggest the key role of TGFβ signaling in regulating
myCAF and iCAF phenotypes.

The activation of hedgehog signaling by the tumor cell-derived Sonic Hedgehog
and Indian Hedgehog also plays a key role in balancing fibroblast subpopulations and
collagen in various diseases, including PDACs [133]. The pharmacological inhibition of
the Hedgehog cellular signaling pathway in murine PDACs reduced collagen I deposition
with a reduced proliferation in ACTA2-positive myofibroblasts, as well as an increased
proliferation of ACTA2-negative cells [134]. In this GEMM model, short-term inhibition of
the Hedgehog signaling pathway increased the delivery and effect of gemcitabine, resulting
in the transient stabilization of pancreatic cancers [134]. However, a phase II clinical trial
testing the benefit of the Hedgehog pathway blockade in PDACs paradoxically showed
a poorer outcome in patients with PDAC when combined with gemcitabine compared
to gemcitabine alone [135]. This result is consistent with previous findings showing that
the genetic or long-term pharmacologic inhibition of Hedgehog signaling pathways in
murine PDAC models suppressed desmoplastic stroma but accelerated tumor progression
and pancreatic tumorigenesis [136–138]. Therefore, the Hedgehog signaling pathway
generally expands myofibroblast-associated, collagen-rich stroma, contributing to the latent
suppression of PDAC progression.

Desmoplastic stroma likely plays an important role in regulating anti-tumor immu-
nity in the pancreatic cancer microenvironment. Various aforementioned stroma-reducing
approaches have resulted in increased tumor-infiltrating immune cells in PDAC tissues,
highlighting the importance of desmoplastic stroma as a physical and biological barrier
to immune surveillance. To date, most PDACs have been refractory to immunotherapies.
One of the major reasons for this is the immunosuppressive milieu of the desmoplastic
stroma [139–141]. Indeed, human sample-based evidence indicates that the mean density
of CD8+ T cells in the tumor center is less than half in the tumor margin [126]. Anti-tumor
immune indicators, including neoantigens, T cell densities, and tertiary lymphoid struc-
tures, have been associated with prolonged survival in patients with PDACs [44,126,142].
Therefore, stroma-reducing approaches may contribute to unleashing the power of the
latent anti-tumor immunity of PDAC and, theoretically, may enhance T cell-mediated
immunotherapies. One such approach is targeting FAP-expressing CAFs, which have been
associated with local immunosuppression in solid tumors [91,143–145]. A recent single-cell
analysis has identified specific CAF subpopulations within FAP-expressing CAFs that are
associated with immunotherapy resistance [146]. Previous studies have also suggested that
FAP-dominant fibroblasts likely contribute to the spatial exclusion of CD8 T cells within
PDAC tumor beds, regardless of baseline levels of CD8+ cell infiltration [44]. Therefore,
FAP-expressing CAFs could be an attractive target for stromal therapies in solid organs and
several FAP-targeting agents have been appreciated in clinical trials [135]. In pancreatic
cancer, the CXCL12 chemokine derived from FAP-expressing CAFs has gained recogni-
tion as an attractive therapeutic target [147]. In the pancreatic cancer microenvironment,
FAP-expressing CAFs have been a major source of CXCL12, which can bind to KRT19
(cytokeratin 19) at the surface of pancreatic cancer cells [148,149]. In murine PDAC models,
CXCL12 inhibition has promoted intratumoral T cell aggregation and synergized with the
PDCD1 pathway blockade [148]. Moreover, dual blockade of the C-X-C motif chemokine
receptor 4 (CXCR4)–CXCL12 axis and the PDCD1 immune checkpoint, with or without
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chemotherapy, has shown encouraging results in the treatment of metastatic PDACs in
phase II clinical trials [64,65].

4.2. Locoregional Levels

Tissue-based image analyses of human PDACs have visualized a wide range of locore-
gional heterogeneity in the proportions of fibroblast subpopulations and collagen, even
in a patient (Figure 1) [44]. In addition, stroma types defined by these fibroblast subpopu-
lations and collagen correlated with tumor morphologies and immune phenotypes [44].
For example, tumor cells form well-defined glands within the collagen-rich, fibroblast-
poor stroma [44]. In contrast, cancer cells have a poorly differentiated morphology in the
fibroblast-rich stroma, especially when enriched by FAP dominant fibroblasts [44]. A recent
study has also indicated that the human PDAC microenvironment is composed of “sub-
TMEs”, histologically definable regional TME states characterized by fibroblast plasticity,
which shapes regional immunity and epithelial phenotypes and influences the clinical
metrics of tumor aggressiveness [150]. Moreover, the tumor–normal interface appears to
provide an additional complexity to the intratumoral PDAC heterogeneity by serving as a
considerably different tumor−immune microenvironment from the tumor center [44,126].

4.3. Organ Levels

Pancreatic cancers frequently metastasize to distant organs, including the liver and
lung. Unlike primary tumors, most metastatic PDACs in the liver and lung have not
developed a dense desmoplastic stroma. Histological analyses have shown that metastatic
tumors from PDACs often show a replacement growth pattern without a significant desmo-
plastic reaction [151]. Pulmonary metastatic tumors from PDACs frequently show a lepidic
growth-like proliferation with a paucity of desmoplastic stroma [152] and can mimic pri-
mary lung adenocarcinomas. However, several studies have attested to the importance of
stromal factors in regulating metastatic diseases. For example, Lenk et al., have demon-
strated that the hepatic stromal microenvironment is essential for dictating tumor cell
dormancy in liver metastases of PDACs [153]. In addition, immune-regulatory pathways
in the tumor microenvironment of metastatic PDACs appear to differ in the liver and
lung [127]. On the other hand, pancreatic cancers can easily disseminate into the abdomi-
nal cavity to develop peritoneal implants with a similar desmoplastic stroma to primary
tumors. Importantly, metastatic tumors in the liver and lung have been monoclonal, while
peritoneal implants have frequently been polyclonal [154]. These lines of evidence suggest
the presence of organ-specific stromal characteristics in metastatic PDACs. Since metastasis
has been a major cause of cancer-specific death in many PDAC patients, a deeper under-
standing of organ-level heterogeneity is needed to help develop meaningful interventions
in the future.

5. Intertumoral Stromal Heterogeneity and Clinical Implications

Different CAF subpopulations appear to exert tumor-promoting and tumor-restricting
functions in PDACs [106,155–159], indicating the presence of so-called “tumor-promoting
CAFs” and “tumor-restricting CAFs”. Indeed, preclinical and population-based studies
focusing on simple CAF markers, including ACTA2, have obtained conflicting results in
the prognostic significance of CAFs in PDACs, although many studies suggested inverse
associations between CAF amounts and patient survival time [159–168]. In murine PDAC
models, ACTA2 deletion has developed an undifferentiated tumor and promoted tumor
progression [169]. Depleting FAP-expressing CAFs results in the prolonged survival of
murine PDAC models, whereas the depletion of ACTA2-expressing CAFs leads to short-
ened survival [170]. Moreover, this study has shown improved gemcitabine efficacy as well
as synergy with the PDCD1 pathway blockade when IL6 is selectively ablated in ACTA2-
expressing CAFs [170]. Tumor-promoting CAFs and tumor-restricting CAFs are likely
mixed, even in a single clinical tumor, and this balance within a PDAC could be modified
by several CAF-targeted approaches (i.e., Hedgehog inhibitors and anti-FAP agents), which
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may lead to altered clinical outcomes. Indeed, while the ablation of ACTA2-expressing
CAFs likely does not influence the number of FAP-expressing stromal cells [169], the deple-
tion of FAP-expressing CAFs has concurrently decreased the number of ACTA2-expressing
CAFs [106]. Therefore, a deeper understanding of the landscape of intertumoral hetero-
geneity in tumor-promoting and tumor-restricting CAFs is needed to develop precision
stromal therapies against human PDACs.

There is accumulating evidence of a wide range of intertumoral heterogeneity in
stromal activity among PDAC populations. On-tissue quantitative analyses of 215 surgically
resected PDACs have shown that the mean occupancy rate of collagen in tumor tissues
was 38.4%, while that of fibroblastic cell populations expressing ACTA2 and/or FAP was
33.3% (unpublished data related to our previous analyses [44]). However, the compositions
of these desmoplastic stromal elements have considerably differed between tumors and
show distinct prognostic significance in patients with PDACs (Figure 1). In accordance
with this finding, the ratios of ACTA2-expressing areas to collagen areas in whole-tissue
sections of PDAC are linked to shortened survival [171]. Similarly, Mahajan et al., have
shown that fibrolytic PDAC stroma (high ACTA2/low collagen expression) showed the
shortest progression-free survival, while ACTA2 or collagen expression alone did not show
any correlation with PDAC outcomes [168].

On the other hand, the virtual microdissection of stroma-derived gene expressions
in human PDAC specimens has defined two transcriptome stroma subtypes, “activated
stroma” and “normal stroma”, as associated with clinical outcomes [172]. The “normal
stroma” transcriptome subtype has been associated with better PDAC outcomes [172] and
is tightly linked to the tissue-based, collagen-rich, fibroblast-poor stroma (Figure 1) [44].
Chen et al., also demonstrated that the selective deletion of type I collagen in ACTA2-
expressing myofibroblasts in murine PDAC augmented immunosuppression and promoted
tumor progression [173]. Bhattacharjee et al. have shown that mechanical restriction by
collagen opposes the tumor-promoting effects of hepatic stellate cell-derived CAFs in
metastatic liver models [174]. These lines of evidence attest to the importance of the
imbalance between the amounts of collagen and CAFs in the direction of the overall clinical
behavior of human PDACs.

6. Future Direction of Targeting Desmoplastic Stroma of Pancreatic Cancer

The desmoplastic stroma is an essential part of pancreatic carcinogenesis and could be
one of the modifiable vulnerabilities when treating PDAC. Multiple clinical trials focusing
on the depletion of PDAC-associated desmoplastic stroma have been undertaken, but
most have failed. This review introduced several successful and unsuccessful examples
of stroma-modifying approaches against PDACs. These prior studies have highlighted
caveats to keep in mind in the clinical application of stroma-targeting agents against
PDAC. Firstly, the use of any stromal therapy alone appears to be ineffective for PDACs,
but several anti-stromal agents can be significantly beneficial when used with several
cytotoxic drugs, including standardized chemotherapy regimens and immunotherapies.
Anti-stromal therapies likely break down stroma-dependent machinery (i.e., tumor cell
transdifferentiation), which may lead to a reduction in intratumoral heterogeneity and
reinitiation of tumor-cell-intrinsic treatment sensitivity. Therefore, it would be warranted
to determine an optimal set of stroma-modifying agents and anti-tumor cell drugs to
develop a novel, combined stromal therapy against PDACs. Secondly, caution should
be taken regarding the detrimental effects of stroma-modifying drugs. For example, a
high dose of stroma-modifying treatment (i.e., hyaluronan-degrading PEGPH20) may
have an anti-tumor effect but can frequently be harmful in PDAC patients and even in
healthy individuals. As stroma-modifying agents may not be a hub player, but rather
an enhancer in combined stromal therapies, we should find a minimum required dose
for each combined stromal therapy. Lastly, because recent findings have attested to the
importance of intertumoral stromal heterogeneity associated with clinical impact in patients
with PADC [44,150,168,172], appropriate patient selection may be crucial for the success of
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stroma-targeted therapies, as with many clinically established targeted treatments. To that
end, future studies are needed to develop biomarkers that could predict the clinical benefit
of each combined stromal therapy against PDACs.

7. Conclusions

Studies on the multilayered levels of stromal heterogeneity have likely identified
promising stromal targets in pancreatic cancers and have shown evidence that several com-
bined stromal therapies could become “game-changers” in fighting this hard-to-treat cancer.

Use of Standardized Official Symbols

We use HUGO (Human Genome Organization)-approved official symbols for genes
and gene products, including ACTA2, BRCA1, BRCA2, CDKN2A, CD274, CD44, CD8,
CTLA4, CXCL12, CXCR4, DES, FAP, GFAP, GLI1, HOXB6, IL1A, IL6, ITGA6, ITGB4, KRAS,
KRT19, LAMA3, LAMB3, LAMC2, LIF, LOX, LOXL2, NTRK, PDCD1, PDGFR, PDPN,
RELA, SMAD2, SMAD3, SMAD4, STAT3, S100A4, TGFB1, and TP53, all of which are
described at www.genenames.org. Gene names are italicized and all upper-case when
referring to human genes and gene names are italicized with the first letter upper-case
and the remaining lower-case for mouse genes. Protein names are not italicized with all
upper-case letters, regardless of the organism.
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