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Abstract: Compound eyes, also known as insect eyes, have a unique structure. They have a
hemispheric surface, and a lot of single eyes are deployed regularly on the surface. Thanks to this
unique form, using the compound images has several advantages, such as a large field of view (FOV)
with low aberrations. We can exploit these benefits in high-level vision applications, such as object
recognition, or semantic segmentation for a moving robot, by emulating the compound images that
describe the captured scenes from compound eye cameras. In this paper, to the best of our knowledge,
we propose the first convolutional neural network (CNN)-based ego-motion classification algorithm
designed for the compound eye structure. To achieve this, we introduce a voting-based approach
that fully utilizes one of the unique features of compound images, specifically, the compound images
consist of a lot of single eye images. The proposed method classifies a number of local motions
by CNN, and these local classifications which represent the motions of each single eye image,
are aggregated to the final classification by a voting procedure. For the experiments, we collected a
new dataset for compound eye camera ego-motion classification which contains scenes of the inside
and outside of a certain building. The samples of the proposed dataset consist of two consequent
emulated compound images and the corresponding ego-motion class. The experimental results show
that the proposed method has achieved the classification accuracy of 85.0%, which is superior
compared to the baselines on the proposed dataset. Also, the proposed model is light-weight
compared to the conventional CNN-based image recognition algorithms such as AlexNet, ResNet50,
and MobileNetV2.

Keywords: Bio-inspired structure; compound eye camera; compound image; ego-motion classification

1. Introduction

A compound eye, which is commonly known as an insect eye, has a remarkably sophisticated
structure. It has a hemispherical surface and a large number of single eyes are deployed regularly on
the hemispherical surface. Here, each single eye observes a low resolution scene in different angles
of small field of views (FOV). The compound eye is a union of the single eyes so that it can observe
high-resolution scenes with a large FOV. Thanks to its unique structure, the compound eye has various
benefits such as a large FOV, low aberrations, and a large depth of field [1–4].

Having been inspired by these interesting characters of the compound eye structure, many
researchers have tried to develop artificial compound eye cameras [4–7]. Most of these researches
mainly aimed to develop a micro-sized camera hardware which mimics the structure and
function of the real compound eyes of insects. Meanwhile, there also have been researches that
focused on developing computer vision algorithms for compound images, such as high-resolution
image reconstruction [8], objectness estimation [9], semantic segmentation [10], and ego-motion
estimation [11]. Specifically, [9,10] emulate compound images from RGB image sources rather than
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directly capture scenes using the hardware such as [4–7]. The emulated compound image consists of
a large number of small single eye images, similar to the case of real compound eyes. A single eye
image in the emulation is a low resolution RGB image with a small FOV, and a set of different angled
single eye images constitute a high resolution compound image of a large FOV. Since a large-scale
dataset can be collected easily by the emulation, these emulated compound images can be utilized in
CNN-based high-level computer vision applications, such as objectness estimation [9] and semantic
segmentation [10].

In this paper, to the best of our knowledge, we tackle the problem of ego-motion classification for
compound eye cameras using convolutional neural network (CNN) for the first time, of which the goal
is to classify the motion of compound eye camera given two consecutive emulated high resolution
compound images. The ego-motion classification is the problem that focuses on the movement of
the camera itself, which is different from the previous camera motion estimating algorithms that
aim to estimate the transition between two scenes [12–17]. Here, the ego-motion classification of the
compound eye camera gives an important contribution to the robot community, since knowing the
moving direction of a robot is critical for problems such as localization and navigation.

For the input of the proposed algorithm, we first emulate the high resolution compound images
based on the compound image mapping method proposed in [10]. Different from the previous
emulated compound-image-based works [9,10], we focus on the characteristic that the compound
image consists of a lot of single eye images. The two sequentially consecutive compound images are
fed into the proposed CNN-based ego-motion classification network, and the network outputs local
motion classes for each single eye image. The final ego-motion classification is obtained by voting of
these local classifications. A thing to note here is that the advantage from the voting-based strategy
enables us to design the local classification algorithm focusing more on the computational efficiency
rather than the accuracy.

To evaluate the proposed method, we propose a new ego-motion classification dataset for
compound eye cameras, which are based on videos collected in the inside and outside of a certain
building. The proposed dataset consists of consecutive compound images which capture scenes such
as classroom, aisle, stairs, and terrace, and the corresponding ground truth ego-motion. More details
of the proposed dataset are described in Section 4.2. In the experiments, we have tested the proposed
framework with various pixel sizes of single eye images and receptive field of local classification,
to find an appropriate configuration of compound eye camera for the ego-motion classification.

The contributions of the paper are summarized as:

• We propose a compound eye ego-motion classification algorithm using CNN for the first time.
• We introduce a new dataset for the compound eye ego-motion classification.
• We analyze the effect of the size of a single eye image and receptive field size of local classification

to the performance of the algorithm.

The remainder of this paper is organized as follows. In Section 2, related work is introduced.
The proposed low complexity compound eye ego-motion classification network is introduced in
Section 3. The proposed dataset and baseline methods are described in Section 4. The experimental
results are described in Section 5, and we conclude the paper in Section 6.

2. Related Work

2.1. Compound-Image-Based Application

There have been some compound-image-based applications that utilize the unique structure
of compound images [8–11]. A high-resolution image reconstruction method from low-resolution
single-eye-images was developed in [8]. They rearranged pixels in all single-eye images in a virtual
image plane consisting of fine pixels. Neumann et al. [11] proposed a compound-image-based 3D
ego-motion estimation method. They showed that the geometry of the compound eye is optimal for
3D ego-motion estimation, and a linear camera motion estimation algorithm was proposed. However,
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these works focused on low-level applications such as super-resolution [18] and depth estimation [19],
that are difficult to use for general recognition problems. Some high-level vision applications which
use deep neural network, have been proposed in [9,10]. Yoo et al. [9] proposed an objectness estimation
framework based on compound images. Cha et al. [10] proposed a semantic segmentation method for
compound images.

2.2. Camera Motion Estimation

There have been several studies for estimating camera motion between two images [12–15].
Especially, block-based matching algorithms are standard techniques for motion estimation in video
sequences [12]. Such block-based matching methods divide an image frame into non-overlapping
blocks, and search for the best matching block in the next frame for each block. The motion vector
is defined as the relative displacement between a reference block and the matching block in the
comparing frame. The camera motion is estimated based on these motion vectors of the blocks.

Moreover to the RGB or RGB-D image space, there also have been some researches about
motion estimation for unique image space such as fisheye video sequence [16], and omnidirectional
image space [17]. Eichenseer et al. [16] proposed a hybrid block-based motion estimation method
for real-world fisheye videos by combining perspective projection with considerations about the
fisheye image structure. Simone et al. [17] presented an extension of block-based motion estimation for
panoramic omnidirectional image sequences by considering spherical geometry of the imaging system.
These researches focus on unique domains such as fisheye video and panoramic omnidirectional image
sequences, so they are not applicable to the compound image domain which we are target for.

In recent days, deep-neural-network-based camera motion estimation algorithms have been
studied [20–22]. Costante et al. [20] adopted convolutional neural network (CNN) to solve visual
odometry. They used CNN to extract visual features for achieving frame to frame ego-motion
estimation. Ummenhofer et al. [21] proposed algorithm called DeMoN, which estimated depth and
camera motion from two successive RGB images. The DeMoN architecture used multiple stacked
CNN-based-encoder-decoder networks for the estimation. Du et al. [22] proposed an end-to-end deep
model to solve ego-motion classification of the driving vehicle with video sequences. They used CNNs
for extracting visual features from the video frames and used Long Short Term Memory (LSTM) to
model the temporal correlation of the video sequences. Also, there have been several studies that
combine the CNN-based learning method and the block-based, or patch-based attention strategy to
solve computer vision problems other than the camera motion estimation, such as abnormal event
detection [23], disease recognition [24], video restoration [25], and facial expression recognition [26].

In spite of their great performances due to the power of deep neural networks, these previous
works were studied only in RGB, or RGB-D image space. The compound image, which is the unique
image domain that we tackle in this paper, has a spherical surface for visual perception. Therefore, plane
RGB or RGB-D image based algorithms are not appropirate to deal with our problem.

Moreover, these previous works for estimating camera motion aim to estimate the transition
between two scenes. On the other hand, the ego-motion classification that we aim to, focuses
on the movement of the camera itself, so the previous works is not directly compatible to the
ego-motion classification.

3. Compound Eye Ego-Motion Classification Network

In this section, we introduce the proposed compound eye ego-motion classification network.
We use the compound image mapping method proposed in [10] to construct compound image
I ∈ R3S2×ns from RGB image, where S and ns are the size and the total number of single eye images,
respectively. An unfortunate fact is that the raw compound images are hard to be applied to the
powerful conventional CNNs designed for RGB images due to its unique structures. To resolve
this issue, we preprocess the raw compound images based on the method explained in Section 3.1.
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The preprocessed compound images are utilized in the proposed network which is introduced in
Sections 3.2 and 3.3.

3.1. Vectorized Compound Images

Conventional CNNs are not suitable for processing compound images since they assume
spatially-continuous inputs, which is not the case for compound images. To alleviate this issue,
we transform the input compound images to tensor representations of multi-dimensional 2D images,
so that we can utilize CNN structure by changing the channel size of input filter. For the transformation,
we put few constraints to the compound image configuration. We assume that there are discrete levels
on the hemisphere surface and each level has uniformly increasing polar angle. The number of single
eye images at the lth level is (8l − 8) except the first level, which has only one single eye image at the
center. In this configuration, we can transform compound images in a square-form tensor of which
each pixel represents a vectorized single eye image. As a result, the compound image data can be
transformed to a tensor representation of Rnl×nl×3S2

, where nl is the size of the transformed tensor.
We call this tensor representation of compoun image as a vectorized compound image. An example
of the vectorization process is visualized in Figure 1. Note that the vectorized compound image not
only facilitates the use of the power of CNN, but also preserves the neighboring structures of the
original compound images. In particular, neighboring-structure-preserving property is crucial for
compound-image-based applications as it is one of the unique features of compound images.

(a) (b)
Figure 1. An illustration of the compound image vectorization. Constrained compound images can
be transformed to tensor representations of multi-dimensional 2D images. (a) Each single eye image
has the size of S× S, and reshaped into a vector of dimension R3S2

. (b) The whole compound image is
reshaped into a tensor of dimension Rnl×nl×3S2

. Here, nl is the size of the transformed tensor.

3.2. Local Motion Classification

The proposed framework utilizes one of the unique features of compound images that they
consist of numerous single eye images. Specifically, we aggregate local motion classes, which are
obtained from single eye images, for the final ego-motion classification. In this section, we introduce
the proposed local motion classification scheme.

Inputs of the local motion classifier are two temporally-consecutive vectorized compound images.
The two inputs are propagated through the proposed network which consists of three steps: the encoding
step, the fusing step, and the gathering step (see Figure 2). First, in the encoding step, we incorporate
a 1× 1 convolution to both of the two inputs. Here, we adopt the Siamese network structure [27],
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which encodes two inputs in the same manner for estimating whether two inputs represent the
same object or not. We use this encoding strategy of the Siamese network to encode each single eye
image in the same manner. Then in the fusing step, the encoded features from the two compound
image inputs are concatenated, and encoded again with a 1× 1 convolution to fuse information of
the two inputs. After that, r number of 3× 3 convolutional layers are stacked at the gathering step
to gather spatial information of the neighboring single eye images. With this neighbor information,
the last layer of the gathering step outputs local motion class for each single eye image with a 1× 1
convolution. Here, the receptive field size of the local classification becomes (2r + 1)× (2r + 1), since
all 3× 3 convolutional layers in the gathering step have stride of 1 and zero padding of 1. For example,
the receptive field of the local classification is 7× 7 if r = 3. Figure 3a,b show an example of the
receptive field of a single eye image on an input pair. The detailed architecture of the proposed network
is described in Table 1.

To reduce the computational complexity of the proposed framework, we discretize the camera
movement space in nd classes. We split two dimensional camera motion in eight directions; up, down,
left, right, up-left, up-right, down-left, and down-right, which makes nd = 8. The discretized directions
are illustrated in Figure 4. Finally, the probability distribution of each direction is obtained by a softmax
operation over the output of the gathering step. Figure 3c shows an example of local motion classification
of a single eye image position. Detailed structure of the proposed network is represented in Table 1.

Figure 2. Overview of the proposed compound eye ego-motion classification network. The whole
structure consists of four steps: the encoding step, the fusing step, the gathering step, and the voting step.
The encoding step consists of a 1× 1 convolutional layer with Siamese network structure to encode two
inputs in the same manner. In the fusing step, encoded features from two inputs are concatenated and
fused by a 1× 1 convolutional layer. In the gathering step, 3× 3 convolutional layers are applied to
widen the receptive field of a local classification. r is the number of stacked 3× 3 convolutional layers
which determines the range of the receptive field of varying configurations. At the end of the gathering
step, local motion class of each single eye is obtained by a 1× 1 convolution. The voting step determines
the final classification by finding the mode class among the local motion classifications.
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(a) Source image (b) Target image (c) Local motion classification
Figure 3. (a,b) : A visualization of the receptive field of a single-eye-wise local motion classification
with r = 3. (c) : A single-eye-wise local motion classification from compound images.

Table 1. Detailed structure of the proposed ego-motion classification network. Each layer in the row has
output dimension of c, stride of s, zero padding of p, and is repeated n times. Since all the convolutional
layers in the proposed network have stride of 1, and all the 3× 3 convolutional layers have zero
padding of 1, the size of the compound eye image (n2

l ) is preserved until the output. We also note
that since all the layers with training parameters are convolutional layers, the proposed ego-motion
classification network can be applied to any size of nl .

Input Operator c s n p

n2
l × 3 S2 conv2d 1 × 1 16 1 1 0

(n2
l × 16)× 2 concat 32 - 1 -
n2

l × 32 conv2d 1 × 1 128 1 1 0
n2

l × 128 conv2d 3 × 3 128 1 r 1
n2

l × 128 conv2d 1 × 1 8 1 1 0

Figure 4. Discretized camera motion in eight directions. The discretized camera motion space is a subset
of 2D plane which is tangent to the center of the camera. The right image illustrates the discretized
camera motion with the compound eye camera.

3.3. Aggregation of Local Classifications

So far, we have obtained local motion classes based on each of the single eye position. Since single
eyes are rigidly located on the compound eye camera hemisphere surface, all single eyes should have
the identical motion when the camera moves. However, a single eye motion classification only relies
on its neighboring single eye features, so the result can be different from the true movement of the
entire compound eye camera. In this paper, we assume that although each single eye only gets local
information from its neighbors, the majority of the local motion classes can follow the global moving
direction. With this assumption, the proposed model aggregates the voting of each single-eye-wise
motion class to determine the class of the whole camera motion. Here, each individual local motion has
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identical weights, so the mode class of the local motion classifications becomes the final classification
result. We call this process as the voting step, and the formulation of the voting step is as below,

Class f = argmax
∑

i,j

M(Ik)i,j (1)

where Class f is the result of the final classification, Ik is the k-th compound image pair, and M(Ik)i,j is
a local classification result in one-hot vector form in dimension nd.

3.4. Network Training

Until now, we have introduced the proposed ego-motion classification network for the compound
eye camera. The proposed network is trained by reducing the cross entropy loss between the local
classification distributions and the single-eye-wise ground truths. The cross entropy loss is defined as,

Loss(Ik) = −
∑

i,j

Gs(Ii,j
k ) log M(Ik)i,j, (2)

where Ik is the k-th compound image pair, Ii,j
k is a single eye image in the i-th row and j-th column on

Ik, Gs is the single-eye-wise ground truth, and M(Ik)i,j is a local classification result of a single eye on
the input Ik’s i-th row and j-th column. Note that only single-eye-wise motion classifications affect to
the network training.

For training the proposed model, we use TensorFlow [28] which is a framework specialized
in training deep neural network. The proposed network is optimized with Adam [29] with 0.0001
learning rate and 0.00001 weight decay coefficient for 50 epochs with the batch size of 256. These neural
network training parameters are the only hyper-parameters for the proposed model. We basically
followed the values of the ResNet training parameters [30] for ImageNet [31] dataset (initial learning
rate = 0.1, weight decay coefficient = 0.0001, batch size = 256). We found out that the proposed model
underfits with the learning rate of 0.1, so we empirically reduced the learning rate into 0.0001 to avoid
the underfitting. We used a NVIDIA TITAN Xp GPU with 12GB memory for the training.

4. Experiments

We show the experimental details in this section. First, we introduce the compound image
mapping method [10] which is used to transform the RGB images into compound images.
Unfortunately, to the best of our knowledge, there is no publicly available dataset for compound
eye ego-motion classification. Hence, we collected a new dataset, of which the details are described in
Section 4.2. In the experiments, we have studied various configurations of the compound eye camera
to understand the properties of the compound eye camera and to find an appropriate setting for
ego-motion classification. Here, each configuration is determined by varying S and r values.

4.1. Compound Image Mapping

In this section, we introduce the compound image mapping method [10], of which the goal is to
transform RGB images into the emulated compound images. We assume that the single eye images
are uniformly deployed on a hemisphere surface, which is the typical compound eye configuration,
and the RGB camera captured the far enough object so as we can consider the RGB image as a plane.
We can consider a spherical coordinate system of which the origin is the same as the center of the
hemisphere surface. Without loss of generality, we assume that the RGB image is captured with the
camera that facing the direction of the z axis. The key of the compound image mapping procedure is
to transform the image at view a (the RGB image) to a single eye image at view b = (r, θb, φb), where
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r is the radius of the hemisphere, θ is the polar angle, and φ is the azimuthal angle. To handle this,
the homography Hba between the images at a and b is needed. Hba can be obtained as [32]

Hba = Rba −
tbanT

d
, (3)

where n is the normal vector of the image plane at view a, d is the distance between the camera and
the image plane at view a, tba is the translation vector from a to b, and Rba is the rotation matrix by
which b is rotated in relation to a. Here, Rba can be obtained as follows:

Rba =

1 0 0
0 cos(θb) −sin(θb)

0 sin(θb) cos(θb)


 cos(φb) sin(φb) 0
−sin(φb) cos(φb) 0

0 0 1

 , (4)

and tba is calculated as

tba = (rsin(θb)cos(φb), rsin(θb)sin(φb), rcos(θb)) . (5)

Finally, a pixel pa on the RGB image at view a is transformed to a pixel pb on the image at
view b with

pb = Kb HbaK−1
a pa, (6)

where Ka and Kb are intrinsic camera parameter matrices, and both pa and pb are in the homogeneous
coordinates. For the single eye images, we assume that the intrinsic parameters are the same as the
ones of the RGB camera. Note here that only valid pixels within the size of the single image are selected.
An example of the proposed compound mapping is shown in Figure 5. In this way, we can simulate
various configurations of compound eye structures.

Figure 5. An example of RGB image and corresponding compound image constructed by the compound
image mapping method from [10].

4.2. Proposed Dataset

The newly proposed dataset was collected at inside and outside of a building in an university
campus that includes scenes such as classroom, aisle, stairs, and terrace. We collected 80 videos which
are captured by a moving RGB camera with a resolution of 1920× 1080 pixels. In each video, the camera
moves in one direction among the eight directions described in Section 3.2. The average number of
frames in the 80 videos is 223. We applied the compound image mapping method [10] to these frames
to emulate compound images. In this step, we can determine the single eye image size (S) of the
emulated compound images. We have emulated compound images with various S (5, 10, 15, 20, 25,
and 30) from a single RGB image source for analyzing the effect of various configurations. Analysis of
the various configuration of the compound images will be described in Section 5.1.

Each sample of the dataset consists of two compound images as source and target, and the
corresponding ground truth camera motion class. The time interval between the source image and
target image is 20 frames. In this manner, we have generated a total 13, 348 number of training
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samples, and 2929 number of test samples for each single eye size from S = 5 to S = 30. Figure 6
shows some examples of compound image pairs and their corresponding ground truth motions in the
proposed dataset.

Figure 6. Some examples of the proposed dataset.Each sample consists of two consecutive compound
images and their corresponding ground truth camera motion. The proposed dataset contains scenes of
inside and outside of a certain building such as classroom, aisle, stairs, and terrace.

In the proposed dataset, there are eight discrete directions of ground truth ego-motion; up, down,
left, right, up-left, up-right, down-left, and down-right (see Figure 4). These ground truths are based
on the movement of the entire compound eye camera. In the experiments, we expand these ground
truth ego-motions to the ground truth of individual single eye motions (see Figure 7). The proposed
ego-motion classification network is trained based on these single-eye-wise ground truth.

Figure 7. Single-eye-wise ground truth generation method for training the proposed ego-motion
classification network. We assign the same motion as the ground truth camera motion in the proposed
dataset to each of the nl × nl single eyes. With the assumption that the majority of single eyes capture
the same motion as the ego-motion of the compound eye camera, the single-eye-wise ground truth data
generated in this manner can be useful which considers the individual spatial information of single
eyes, such as the proposed model.

4.3. Baseline Algorithms

To verify that the proposed voting-based classification network is effective structure for compound
images, we have compared the proposed scheme to two baseline algorithms. The first baseline is
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a classical block-based matching method [12] for ego-motion estimation, and the other one is a
CNN-based algorithm which does not use the proposed voting-based classification.

1. Block-based matching algorithm. In this algorithm, the source and target images are segmented into
non-overlapping square blocks. With this setting, the algorithm finds the most matched target
block for each source block. Here, mean square error (MSE) between two blocks is the criteria
for the matching. We use exhaustive search to find the matching block, since it guarantees the
optimal solution. The displacement of the matching pairs becomes the motion vector of the source
block, and we discretize it into eight directions for the ego-motion classification described in
Figure 4.

2. CNN without voting. The other baseline algorithm is a CNN-based algorithm which is similar
to the proposed algorithm but compute the ego-motion of the whole compound eye camera
directly instead of classifying individual single eye motions. The baseline network structure is
same with the proposed network up to the encoding step and the fusing step, but after that, it has
the classifying step instead of the gathering step and the voting step (see Figure 8). The encoding
step consists of 3× 3 convolutional layers, some of which have stride of 2, and fully connected
layers. Therefore, the encoding step integrates the features of all single eyes into a vector form
rather than maintaining individual features and spatial relationships of the single eye images.
The output of the encoding step is a distribution of the discretized motion classes over the entire
FOV of the compound image. Note that all convolutional layers in the gathering step have stride
of 1, which keeps the shape of feature map in each layers same. The detailed architecture of the
baseline network is summarized in Table 2.

Figure 8. An overview of the baseline network. The baseline structure consists of three steps:
the encoding step, the fusing step, and the classifying step. The encoding step and the fusing step are
same as the proposed motion estimation network described in Figure 2. The classifying step consists
of five 3× 3 convolutional networks and two fully connected layers where three of the convolutional
layers have stride of 2. The classifying step outputs one motion classification for the whole compound
image rather than providing local classes for each single eye locations like the proposed network.
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Table 2. Detailed structure of the CNN based baseline network without voting. Each layer in the row
has output dimension of c, zero padding of p, and stride of s. In contrast to the proposed network
described in Table 1, the baseline network contains some convolutional layers with stride 2, which
reduce the output feature map size.

Input Operator c s p

212 × 3 S2 conv2d 1 × 1 16 1 0
(212 × 16)× 2 concat 32 1 -

212 × 32 conv2d 1 × 1 64 1 0
212 × 64 conv2d 3 × 3 64 2 1
112 × 64 conv2d 3 × 3 64 2 1
62 × 64 conv2d 3 × 3 64 1 1
62 × 64 conv2d 3 × 3 128 2 1
32 × 128 conv2d 1 × 1 128 1 0
32 × 128 fc 512 - -

512 fc 8 - -

4.4. Evaluation Metrics

For the evaluation metrics, we use the accuracy of classification and the confidence value.
The classification accuracy of the model is measured by comparing the results of the final classification,
i.e., the results of the voting step in case of the proposed model, and the ground truth of the whole
image motion. The confidence value is a value that represents the average percentage of the vote of the
most frequently chosen direction in the local motion classification of a sample. The definition of the
confidence is as below,

confidence(Ik) =
max

∑
i,j M(Ik)i,j

n2
l

(7)

where Ik is the k-th compound image pair, M(Ik)i,j is a local classification result in one-hot vector form
in dimension nd, and nl is the size of the vectorized compound image. The confidence represents how
many single-eye-wise local classifications agree the final classification. It also can be understood as the
accuracy of the local classifications itself.

5. Results

In this section, we report the performance of the proposed scheme on the proposed dataset with
various configurations of S and r. These two values are the main factors of determining the trade-off
between the accuracy and the computational cost. The configurations we have explored are the
combinations of S from 5 to 30, and r from 1 to 5. Note that the S value is determined in the compound
image mapping step and fixed after that, so S and r values can be changed independently. Table 3 and 4
represent the classification accuracy and confidence of the proposed model with various configurations.
Note that all components in Tables 3 and 4 are the performances of the proposed model with different
settings of parameter S and r. From the results of Tables 3 and 4, we can find that the accuracies of
the final classifications are higher than the confidence values in the same configuration. These gaps
demonstrate the validity of our strategy for designing local classification network, which focuses on
the efficiency rather than the accuracy, with the expectation that the accuracy of the classification
would be improved by the voting step.
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Table 3. Compound eye ego-motion classification accuracy (%).

r
S 5 10 15 20 25 30

1 45.1 70.2 66.4 70.6 64.1 63.6

2 69.8 77.5 73.5 73.0 71.1 72.6

3 78.6 78.0 77.7 71.5 74.0 69.2

4 78.1 84.4 68.2 64.1 65.0 54.3

5 66.9 85.0 67.7 60.5 63.6 56.1

Table 4. Average percentage of the vote of the most frequently chosen direction in the voting step
(=confidence, %).

r
S 5 10 15 20 25 30

1 37.0 40.7 38.1 35.7 36.6 33.5

2 42.6 48.5 43.5 39.4 43.0 37.3

3 48.3 52.5 50.6 47.3 42.7 42.3

4 52.1 52.7 44.4 43.3 41.9 36.5

5 48.3 53.1 43.2 43.6 40.4 40.6

5.1. Analysis of the Various Configurations

In this section, we analyze the effect of the S and r value to the model performance. The size of
a single eye image, S, is related to the details of a specific direction view. A bigger single eye image
contains more details, but it also requires more memory and computational cost for the encoding step.
The receptive field size of the local classification, r, also has similar trade-off between more features
and the computational cost. The local classification network with bigger receptive field gathers more
visual features from wider area, but also its memory requirement and computational cost are increased
due to the additional convolutional layers.

From the results of Tables 3 and 4, we find a tendency that increasing accuracy by increasing
S and r affect reversely at some points. That is, to achieve a reasonable accuracy, S and r should be
neither too small nor too big. It is clear that the small S lacks the information of each single eye image,
and the small r lacks information of the neighboring single eye images. The reason of the low accuracy
with big S can be understood by comparing visualized compound images with different S. As seen
in Figure 9, the bigger S makes the single eye images more overlap to each other. Since a single eye
image is encoded into a vector form, the spatial features inside the single eye images are lost in the
encoding step. Therefore, overly overlapped neighboring single eye images are encoded into similar
vectors, which make it hard to distinguish them. This similarity due to the big S eventually disturbs
the ego-motion classification since the local camera motion is classified by comparing differences of
neighboring features. Through the experiments, we find that the model with S = 10 achieves the best
performance (see Figure 10).

In case of the big r, the local classification is obtained based on the features inside the wide FOV.
This can be an issue when there exist multiple features which are clues of the different camera motions
in the same local FOV, since these features cancel each other’s influence to the classification. In other
words, the distribution of the single-eye-wise classification becomes ambiguous, so it cannot represent
clear tendency of the camera motion of the given single eye image position. Therefore, the r value
should also be selected carefully, not too small or big. Through the experiments, we find that r = 3
is the most proper point, except for the case of S = 10 where the configuration of r = 5 achieves the
highest accuracy and the confidence value (see Figure 10). As a result, in our experiments, the model
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with S = 10, r = 5 shows the highest accuracy of 85.0% and the confidence value of 53.1%. Figure 11
shows some successful examples of the proposed algorithm.

Figure 9. Examples of pairs of compound images with various S. (1) and (2) represent two sequential
scenes in the dataset. (a–f) show the compound images of different S from 5 to 30 at the same scene.
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Figure 10. Results of the proposed compound eye ego-motion classification network in varying S and
r. S = 10 achieves the highest accuracy and confidence value when r is fixed. Similarly, r = 3 achieves
the highest accuracy and confidence value when S is fixed, except for the case S = 10 which has best
performance at r = 5.

5.2. Computational Cost and Memory Storage

In this section, we report the computational cost and memory storage requirement of the proposed
algorithm. Table 5 shows the number of training parameters of the proposed model in various
configurations. Table 6 shows the required floating point operations per second (FLOPs) to infer
a sample with nl = 21. Since the network with bigger r has more convolutional layers, r has more
influence than S in determining the complexity of the model including both number of parameters
and FLOPs. In the case of the model with S = 10, r = 5, the number of parameters in the network is
about 0.9M and 1.8M FLOPs are required for an inference.
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Figure 11. Some successful results of the proposed ego-motion classification network.The first, and the
second columns are two consecutive compound images. The third column visualizes local classifications
on each single eye position. The last column shows the ground truth and classified result of camera
motion and confidence value.



Sensors 2019, 19, 5275 15 of 19

Table 5. Number of parameters of various configurations of the proposed model.

r
S 5 10 15 20 25 30

1 303 K 306 K 312 K 321 K 332 K 345 K

2 450 K 454 K 460 K 468 K 479 K 492 K

3 598 K 601 K 607 K 616 K 627 K 640 K

4 745 K 749 K 755 K 763 K 774 K 787 K

5 893 K 897 K 903 K 911 K 922 K 935 K

Table 6. FLOPs of various configurations of the proposed model.

r
S 5 10 15 20 25 30

1 0.605 M 0.612 M 0.623 M 0.640 M 0.662 M 0.688 M

2 0.899 M 0.907 M 0.918 M 0.935 M 0.957 M 0.983 M

3 1.19 M 1.20 M 1.21 M 1.23 M 1.25 M 1.29 M

4 1.49 M 1.50 M 1.51 M 1.53 M 1.55 M 1.57 M

5 1.78 M 1.79 M 1.80 M 1.82 M 1.84 M 1.87 M

Table 7 ilustrates the number of parameters and FLOPs of the popularly using CNN-based image
recognition networks. Our proposed model with S = 10, r = 5 is much lighter compared to the
other conventional CNNs, where MobileNetV2 [33] and ShuffleNetV2 [34], which are designed to
be light-weight are included. Note that the networks in Table 7 takes 224× 224 size RGB image as
an input ( R224×224×3), which is the similar scale to the compound image with nl = 21, and S = 10
(R3S2×n2

l ). Although the data types and tasks of these networks are not identical to the proposed
network, this comparison gives us an intuition that our model can be claimed as light-weight among
the CNN-based models.

Table 7. Comparison with some popular CNN-based image recognition algorithms. Note that
MobileNetV2 [33] and ShuffleNetV2 (×1) [34] are the networks which are designed to be light-weight.

Number of Parameters FLOPs

AlexNet [35] 60 M 720 M

VGG16 [36] 138 M 153 G

ResNet50 [30] 25 M 4 G

MobileNetV2 [33] 3.4 M 300 M

ShuffleNetV2 (×1) [34] 2.3 M 146 M

Ours (S = 10, R = 5) 0.9 M 1.8 M

5.3. Comparison with Baseline Algorithms

In this section, we compare the proposed algorithm with the two baseline algorithms described in
Section 4.3. We make comparisons of these algorithms on two cases: compound image version and 2D
RGB image version of the proposed dataset. Table 8 illustrates the results of each algorithm on the two
cases. Note that the block-based algorithm can be easily extended to the compound image domain
by using single eye images as blocks. We use this modified version of the block-based algorithm in
the experiments on the compound images. We also note that the CNN-based baseline network is
designed to have 0.9M number of parameters for the fair comparison to the best configuration of our
proposed model (S = 10, r = 5). The performances of these baseline algorithms are evaluated by the



Sensors 2019, 19, 5275 16 of 19

same measures as the proposed algorithm; discretized ego-motion classification accuracy and the
confidence score.

Table 8. Comparison with baseline algorithms.

2D RGB Image Compound Image

Accuracy (%) Confidence (%) Accuracy (%) Confidence (%)

Block-based matching 46.5 28.6 19.3 22.3

CNN w/o vote 46.7 - 64.1 -

CNN w/ vote (ours) 88.0 49.3 85.0 53.1

In case of the block-based matching algorithm, the ego-motion classification accuracy in 2D RGB
image domain is 46.5% and the confidence is 28.6%, which are inferior to the proposed algorithm
(see Table 8). In compound image domain, compound images are projected to the 2D plane to construct
structured square image form to apply the block-based algorithm (Figure 12b). On the 2D projected
compound image, each single eye image role as a small block of the block-based algorithm. With these
data, the algorithm shows low accuracy of 19.3% and confidence of 22.3%, which is only slightly better
than the expected performance of the random choice. This collapse of the performance is due to the
geometric distortion of single eye locations when mapping hemisphere compound eye surface on 2D
plane. Figure 12 shows an example of how the mapping geometric distortion disturbs the block-based
matching algorithm, which is designed for 2D image domain. For example, two single eye images with
the same ego-motion on the compound eye hemisphere surface (Figure 12a) can be turned in different
directions on the 2D plane (Figure 12b). Since the block-based matching algorithm uses pixel values
of blocks for the matching, it does not able to consider this geometric distortion. Therefore, many
motion vectors of single eye images obtained by block-based matching algorithm are deviated from
the true ego-motion even if it finds the most matching pairs, which leads to the poor classification
accuracy. On the other hand, CNN-based algorithms can avoid this mis-alignment problem since they
exploit trained feature space encoding for classifying single eye image motion (Figure 12c). That is,
through the training process, the neural networks learn how to encode data to the feature space which
can represent the true ego-motion of a single eye image by gathering the neighboring features.

Figure 12. An example of the geometric distortion when mapping a compound image to 2D plain
surface. (a) True local motion of the single eye images on the compound image hemisphere surface.
(b) Local classification via the block-based matching algorithm. Since the upper single eye image is
rotated when projected to the 2D plane, the direction of its matching block is also moved. (c) Local
classification via the CNN-based algorithm. The CNN learns how to classify true motion of each single
eye from the distorted compound image on the 2D plane.
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In the case of the CNN-based baseline algorithm without voting, the classification accuracy in 2D
RGB image domain and compound image domain are 46.7% and 64.1%, respectively, which are lower
than the proposed algorithm. Note that the confidence score is not applicable to this baseline network
since the CNN without voting does not output individual motion class of each single eye images.
In addition, we find that the CNN without voting is more likely to overfit to the training dataset than
the proposed network, so we adopts the early stopping technique to avoid the overfitting problem.

6. Conclusions

In this paper, we have proposed a CNN-based light-weight compound eye ego-motion
classification framework for the first time, to the best of our knowledge. To fully utilize the unique
structure of the compound eye that perceive scenes by gathering small images from a number of single
eyes, the proposed algorithm makes the final classification by aggregating the local classifications from
each single eye image. We have explored various configurations by changing single eye size (S) and
receptive field size of local classification (r) to find an appropriate compound eye camera configuration
for the future hardware development. We have demonstrated that the proposed model shows superior
performance than the baseline algorithms, which verifies the effectiveness of the proposed model.
The proposed network have much fewer number of training parameters and FLOPs compared to
the popularly used CNN architectures for image recognition in RGB image domain. A limitation of
the proposed scheme is that it is designed for classifying only 2D directions. Knowing the forward
and backward movement is also important for robot localization and 3D environment recognition.
We leave the research on the 3D ego-motion classification which can aware the forward-backward
ego-motion as well as 2D motions, for the compound images as future work.
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