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Combining modularity, conservation, and
interactions of proteins significantly increases
precision and coverage of protein function
prediction
Samira Jaeger1*, Christine T Sers2, Ulf Leser1

Abstract

Background: While the number of newly sequenced genomes and genes is constantly increasing, elucidation of
their function still is a laborious and time-consuming task. This has led to the development of a wide range of
methods for predicting protein functions in silico. We report on a new method that predicts function based on a
combination of information about protein interactions, orthology, and the conservation of protein networks in
different species.

Results: We show that aggregation of these independent sources of evidence leads to a drastic increase in
number and quality of predictions when compared to baselines and other methods reported in the literature. For
instance, our method generates more than 12,000 novel protein functions for human with an estimated precision
of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or
only one function annotated. We also verified our predictions on a set of genes that play an important role in
colorectal cancer (MLH1, PMS2, EPHB4 ) and could confirm more than 73% of them based on evidence in the
literature.

Conclusions: The combination of different methods into a single, comprehensive prediction method infers
thousands of protein functions for every species included in the analysis at varying, yet always high levels of
precision and very good coverage.

Background
Elucidating protein function is still one of the major
challenges in the post-genomic era [1,2]. Even for the
best-studied model organisms, such as yeast and fly, a
substantial fraction of proteins is still uncharacterized
[3]. As high-throughput techniques increase the avail-
ability of completely sequenced organisms, annotation
of protein function becomes more and more a bottle-
neck in the progress of biomolecular sciences and the
gap between available sequence data and functionally
characterized proteins is still widening [2]. Manual
annotation, using, for instance, the scientific literature,
and experimental identification of protein function

remains a difficult, time- and cost-intensive task [4].
Reliable methods for assigning functions to uncharacter-
ized proteins are required to support and supplement
these methods. There are various automatic approaches
for the prediction of protein function. These use, for
instance, protein sequences and 3D-structures [5-9],
evolutionary relationships [10,11], phylogenetic profiles
[12,13], domain structures [14], or functional linkages
[15]. Another important class of information for func-
tion prediction are protein-protein interactions (PPIs).
PPIs are a type of data that is close to the biological
role of a protein within cells and therefore ideally suited
to form the basis for function prediction methods
[16,17]. Furthermore, more and more such data sets are
becoming available (e.g. [18,19]). These data sets may be
used to identify functional modules within protein net-
works [20], to find protein complexes [21], or to
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determine evolutionary conserved processes [22-25], all
of which provide valuable clues to the function of a
protein [3].
The approaches that use PPI for function prediction

can be classified into two main classes:

1. Link-based methods predict novel functions for a
protein by transferring known functions from
directly or indirectly interacting proteins. This may
be achieved by studying the set of neighbors
[16,19,26,27], by considering the position of the pro-
tein within its neighborhood [28], or by looking at
the position of the protein in the entire interaction
network [29,30].
2. Module-based methods assign functions to pro-
teins by first computing clusters (or modules) within
the protein network [31]. Based on the hypothesis
that cellular functions are organized in a highly
modular manner [32,33], all members of a cluster
are assigned annotations that are enriched within
the module [23].

Both approaches have their benefits and their draw-
backs. PPI-based prediction methods provide a better cov-
erage but are sensitive to the high level of false-positives
[34,35] and false negatives [36] in current PPI data sets.
Module-based methods are more robust to missing or
wrong interactions, but are able to predict function only
within dense regions of a species network disregarding, for
instance, chain-like pathways. This largely reduces their
coverage [21,31]. Module-based methods have been
shown to be less accurate than for example simple guilt-
by-association approaches but their performance improves
in networks with less functional coverage [37]. Further-
more, both methods in first place only work within a spe-
cies, which disregards the wealth of information that
might be available in evolutionary related other species
(this is particularly true for humans). This limitation can
be removed by using annotations of homologous proteins.
However, purely homology-driven prediction strategies are
rather imprecise [38]. Although prediction precision may
be improved by using only orthology, the overall precision
remains below that of most PPI-based methods [7].
In this paper, we describe a novel algorithm for protein

function prediction that combines link-based and mod-
ule-based prediction with orthology, thus overcoming the
respective limitations of each individual approach. The
key to our method is to analyze proteins within modules
that are defined by evolutionary conserved processes. To
this end, we first compute PPIs that are highly conserved
within a given set of species. These so-called interologs
[39] are assembled to highly conserved protein sub-
networks. For a given protein, we then predict functions

of other proteins in the same CCS using both directly
interacting proteins as well as orthology relationships.
We apply our function prediction strategy to different

sets of species, ranging from species pairs to groups of
up to four species. We show that our approach reaches
very high prediction precision, especially for three and
four species. Especially due to the combination of differ-
ent sources of evidence for functional similarity between
proteins, our method is able to predict many functions
even for uncharacterized or only weakly characterized
proteins. These functions are not reflected in the recall
since these functions are novel, i.e., counted as FP in the
comparison against a gold standard. For instance, when
combining the novel predictions from different species
combinations, we suggest 7,500 new functional annota-
tions for 1,973 human proteins that previously had only
zero or one function annotated. Overall, our method
produces 12,300 novel annotations for human with an
estimated precision of ~76% and 5,246 for mouse with
~81% precision. These numbers by far outreach that of
comparable methods. It is also remarkable that our pre-
dictions are rather specific, which is reflected in a mean
GO-depth of 8 for humans and 7 for mice. To confirm
our estimated precision values, we manually verified a
number of predictions in the context of colon cancer.
Specifically, we studied the gene products MLH1, PMS2
and EPHB4, which received 14, 16, and 15 novel annota-
tions through our method. Detailed literature analysis
indicates that at least 73% of the novel functions actually
are true predictions.
Finally, we compare our approach against three other

approaches, Neighbor Counting [19], c2 [16], and FS-
Weighted Averaging [27]. We show that our CCS-based
method performs significantly better than those meth-
ods in almost all settings we studied, especially in terms
of precision.

Methods
We devise an algorithm for predicting functional anno-
tations of proteins using Gene Ontology (GO) [40]
terms. Our approach is based on comparison of interac-
tion networks from various species and utilizes orthol-
ogy relationships, conserved modules and local PPI
neighborhoods. It is divided into the (a) integration of
PPI data from various databases, (b) detection of maxi-
mal conserved and connected subgraphs (CCS) using
approximate cross-species network comparisons and (c)
prediction of new annotations for proteins within func-
tionally coherent CCS (see Figure 1).

Data
We use interaction data of the model organisms S. cerevi-
siae, D. melanogaster and C. elegans, and the mammals
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R. norvegicus, M. musculus and H. sapiens. Correspond-
ing PPI data were obtained from the major public PPI
databases DIP [41], IntAct [42], BIND [43], MIPS-MPPI
[44], HPRD [45], MINT [46] and BioGRID [47]. Since
the individual coverage and overlap between the data of
these resources is comparably low [34,48], we integrate
PPI data from the different sources to generate compre-
hensive data sets for our study. For data integration we
map the interacting proteins from external or database
specific identifiers to unique protein identifiers from Uni-
Prot and EntrezGene [49] to enable the combination of
the different data sets to one comprehensive set of inter-
action data for each species. From the combined data
sets we generated comprehensive species-specific protein
interaction networks.
Besides the interaction data we utilize protein

sequences and protein domain information [50] from
UniProtKb/Swiss-Prot [51]. All proteins in the protein
interaction network are associated with the respective
information. Additionally, proteins are annotated with
GO annotations retrieved from UniProtKb/Swiss-Prot,
EntrezGene and species-specific databases, such as Fly-
Base [52], MGD [53], RGD [54], SGD [55] and Worm-
Base [56] (see Additional File 1, Table S1 for a detailed
resource listing). Note, when annotating proteins we
consider all available GO annotations except for annota-
tions that are assigned without curatorial judgment (GO
evidence code: IEA - Inferred from Electronic Annota-
tion). Moreover, we filter for GO subontology root
terms to exclude molecular function, biological process
and cellular component. The annotated species-specific
protein interaction networks (see Table 1) provide the
basis of our protein function prediction method.

Network Comparison
We compare protein interaction networks across differ-
ent species to detect subgraphs that are evolutionary

conserved and likely represent functional modules.
Figure 2 depicts the strategy of our network comparison
approach which involves (1) the identification of ortho-
logous proteins and (2) the detection and assembly of
interologs into CCS.
(1) Orthology is a strong indicator for functional con-

servation. However, the presence of large protein
families, typical for mammals and higher eukaryotes in
general, makes it hard to distinguish between true
orthologs, in-paralogs and paralogs [57]. We determine
orthology relationships among multiple species by
applying OrthoMCL [58] using default parameters. Pre-
vious work showed that OrthoMCL is able to discrimi-
nate between orthologs, in-paralogs and functionally
unrelated (out-)paralogs at a balanced trade-off between
specificity and sensitivity [59].
(2) For comparing protein networks across species, we

consider all ortholog groups that comprise at least one
protein of each species under consideration. We then use

Figure 1 Flowchart summarizing the main steps of our function method. (a) We collect PPI data from several sources and integrate them
with additional protein data to generate species-specific PPI networks. (b) PPI network comparisons are performed to identify CCS which (c) are
analyzed afterwards for function prediction by exploiting orthology relationships and interacting neighbors.

Table 1 Characteristics of the generated species-specific
PPI networks.

species #proteins #PPIs GO terms/
protein

median PPI/
protein

R. norvegicus
(rno)

973 1221 8 1

M. musculus
(mmu)

3892 4670 4 1

H. sapiens (hsa) 13494 43637 2 2

D. melanogaster
(dme)

10646 38723 3 3

C. elegans (cel) 3499 5858 1 1

S. cerevisiae (sce) 6578 67059 4 7

PPI networks for each species are created by integrating PPI data from DIP,
BIND, IntAct, BioGrid, MIPS-MPPI, MINT and HPRD. Proteins within the
networks are additionally associated with sequences, protein domains and GO
annotations. For each species the number of proteins and protein interactions
as well as the median number of GO terms per protein is specified.
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an adaption of an algorithm for frequent subgraph dis-
covery [60] to assemble interologs into CCS. Our
approach first identifies all interactions (interologs) that
are conserved across the different species. For identifying
interologs we use two different definitions for interologs
depending on the number of species that are involved.
When comparing only two species, we use the classical,
strict definition considering each interaction as interolog
that is present in both species. When comparing more
than two species, we consider each interaction as intero-
log that is present in more than 50% of the species net-
works (see Discussion). Out of the set of interologs, one
interolog is chosen as subgraph seed and all interologs
adjacent to this subgraph are added recursively. If a sub-
graph can not be further extended we store this maximal
and connected subgraph as CCS (see Figure 2).

Prediction of Functional Annotation
CCS are conserved subgraphs of interacting proteins
and therefore a strong indicator for functional similarity
of proteins within a CCS even across species. However,
not all detected CCS are good candidates for function
prediction due to the noise and incompleteness within
the existing PPI and annotation data sets. Therefore, we
first filter for CCS that are too heterogeneous or simply
too small to be used for function prediction. We then
use different methods for predicting functional annota-
tions for all proteins in a CCS, namely transfer of anno-
tations from other species along orthology relationships
and transfer within species from all PPI neighbors. In

both cases, only proteins within the same CCS are con-
sidered. Finally, special care has to be taken for the pro-
cessing of large CCS which, due to their sheer size,
usually are functionally heterogeneous. In the following,
we give details for each of these steps.
Filtering coherent CCS
We first test all detected CCS for functional coherence
using a functional similarity measure proposed by Couto
et al. [61] that is based on semantic similarity. We com-
pute, for each CCS, its average functional similarity
within a species (Simneigh - similarity between neighbors)
and across the species (Simortho - similarity between
orthologs). The formal definitions of both similarity
measures are provided in the Additional File 1 (see
Eq. S7 and S8 in Section S1.1).
We further only consider CCS which have (a) more

than two proteins and (b) whose similarity score, either
Simortho or Simneigh, exceeds a given threshold. We
applied three different thresholds (low: 0.3, medium: 0.5,
high: 0.7) to study the performance of our method for
different levels of functional coherence. This scheme is
applied separately for each subontology of GO (molecu-
lar function (MF), biological process (BP), cellular com-
ponent (CC)).
Prediction using orthology relationships
For inferring protein function from orthology relation-
ships within a CCS, we determine orthologous groups
that differ significantly in their individual functional
similarity from the similarity score of the CCS by com-
puting the standardized z-score (see Eq. S9). In groups

Figure 2 Illustration of the detection of CCS. Protein interaction networks are compared across different species to identify evolutionary and
conserved subgraphs. First, orthology relationships across multiple species are determined by using OrthoMCL. Second, all pairs of conserved
interactions (interologs) are identified between the orthologs within the species. Adjacent interologs are then assembled to CCS.
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with significant differences (p-value <0.01) we transfer
all known protein annotations to poorly annotated or
uncharacterized orthologs. Note that an orthologous
protein group might consist of more than one protein
per species (orthologs and in-paralogs). Although all
proteins within such a group in theory should be func-
tionally highly similar, this is, probably due to missing
or wrong annotations, not always reflected in the data
(see Results). We define the consensus annotation of all
proteins of one species in an orthologous group to be
the set of all GO terms that are associated to more than
half of the annotated proteins of that species in that
group. When considering more than two species we
combine the species-specific sets of consensus annota-
tions and transfer them to the other proteins in the
same group.
Prediction using neighboring proteins
Given a protein in a CCS, we decide for each GO term
annotated to any of its direct neighbors whether it also
should be annotated to the protein itself. Let G be the
set of terms annotated to at least one neighbor of a pro-
tein p, and let Ng be the set of neighbors of p annotated
with a term g Î G. We transfer g to p if there are more
than f proteins in Ng whose functional similarity to p is
higher than a given threshold t. For functional similarity
between proteins, we again use the method from Couto
et al. [61] (see Additional File 1, Eq. S5 in Section
S1.1.2).
Because this approach cannot predict functions for

proteins without any annotation (their computed simi-
larity to other proteins is always zero), we also consider
the pairwise functional relation between interaction
partners, assuming that a high functional similarity
between indirectly linked partners should also hold for
the protein itself. Again, if the pairwise similarity scores
exceed the threshold t we predict common GO annota-
tions to the candidate protein.
Combined prediction method
We combine the two different methods to predict pro-
tein functions within a CCS (see Figure 1c). Proteins
that are only weakly and incompletely characterized or
not annotated at all are candidates for our prediction
approach. For each candidate protein we infer novel
protein function (a) within functionally coherent CCS
by exploiting its (b) orthology relationship across other
species as well as (c) the information shared by its
neighboring proteins.
Processing large CCS
Comparing evolutionary close species (such as human
and mouse) often results in very large CCS with up to
several hundreds of proteins. However, biological pro-
cesses typically involve only between 5 and 25 proteins
[21]. Consequently, large CCS often encompass various
functions (see Figure 3) which is reflected in a minor

functional homogeneity. Our results confirm this fact, as
large CCS always get low coherence scores (see Results).
To adequately treat such CCS, we split CCS with more
than 25 proteins into smaller, overlapping sub-sub-
graphs. Sub-subgraphs are built by considering each
protein of the CCS as seed of a new, smaller CCS. Sub-
sequently, we add all direct neighbors of this seed to the
new CCS (see Additional File 1, Figure S1 for an exam-
ple). Subgraphs with less than three proteins are
removed. We then consider each of these subgraphs as
an independent CCS.

Performance evaluation
We use a leave-one-out cross-validation to estimate the
expected precision and recall of function prediction
using (a) only orthology within CCS, (b) only neighbors
within CCS, and (c) the combination of both methods.
Precision P and recall R are defined as:

P =
+

TP
TP FP

(1)

R =
+
TP

TP FN
(2)

where TP and FP denote true and false positives,
respectively, and FN denotes false negatives.
For cross-validation we ‘hide’ selected annotations

before applying our algorithm. Predicted terms are then
compared to the held out annotations. We count a GO
term as correctly predicted if the proposed term was an
ancestor of the original term on the path to the root or
the term itself (see Additional File 1, Section S3.2 and
Figure S2 for an evaluation of this criterion). For all
methods involving CCS, we give recall values on the
basis of all annotations of proteins within qualifying
CCS. We call this measure per-protein recall. It must be
distinguished from the traditional per-species recall
(Eq. 2) which is also used frequently, but which pun-
ishes all methods that first filter proteins. When deter-
mining the per-protein recall (Rpp) we consider only
proteins p that are part of a CCS:

Rpp

p

p

p p

p

=
+( )

∈

∈

∑
∑

TP

TP FN

CCS

CCS

, (3)

where TPp denotes the number of correctly predicted
functions for a protein p in a CCS and (TPp + FNp) cor-
responds to the number of annotations that are origin-
ally associated with the protein p. To also give an idea
of the per-species performance, we always complement
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precision and recall values with the coverage measure,
which simply counts the total number of predictions.
Keep in mind that, as always when comparing to an

incomplete gold standard, cross-validation inherently
considers any new annotations as false, although new
annotations are the primary target of function predic-
tion. Therefore, we also performed an extensive litera-
ture evaluation to judge the correctness of selected new
annotations.
Comparison to other methods
We compare our approach against a number of different
techniques.
First, we use two baseline methods: The orthology

baseline purely considers orthology ignoring structural
network conservation. We randomly select one third of
the orthologous protein groups, remove annotations
from one protein in the group and predict their func-
tions using only its orthologs. The link-based baseline
takes only direct interaction partners into account,
again independently of conservation of interactions.
For each species we randomly choose one third of the
proteins from the corresponding interaction network
and exploit their direct neighbors for deriving new
functions. We repeat this procedure 100 times for each
baseline and compute average and standard deviation
across all runs.

We also compare our results with three popular PPI-
based function prediction methods. The Neighbor Count-
ing Approach from Schwikowski et al. is a local prediction
approach that derives new annotations for a protein based
on the frequency of annotations within its direct interac-
tion partners [19]. The c2 algorithm from Hishigaki et al.
extended this idea by also considering the background fre-
quency of a functional term [16]. Finally, the Functional
Similarity Weighted Averaging method from Chua et al., a
weighted averaging method to predict the function of a
protein based on its direct and indirect interaction partner
[27,62]. Chua et al. demonstrate in [27] that the FS-
Weighted Averaging significantly outperforms local and
global network approaches, e.g. methods that are based on
markov random field or functional flow [26,29]. For com-
parisons, we adapted a script provided by Chua et al. that
implements these three methods (see Additional File 1,
Section S1.4 for details). To enable a valid direct compari-
son, we evaluate the three related predictions methods
only on proteins that are involved in CCS. The individual
performance of each method on the entire data set is
shown for completeness in the Additional File 1.

Results
We integrated PPI data for rat (rno), mouse (mmu),
human (hsa), fly (dme), worm (cel) and yeast (sce) from

Figure 3 Different biological subprocesses within the largest CCS from human, fly, worm and yeast. This CCS consists of 61 proteins and
108 interologs and encompasses different biochemical activities, such as protein degradation, translational elongation and signal transduction.
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several public databases to generate species-specific PPI
networks (see Table 1). We computed CCS for 15 com-
binations of two species, 20 comparison with three, and
11 with four species, and subjected them to our function
prediction method. The number of detected CCS for
combinations of five and six species is too low for a sys-
tematic and detailed analysis (see Additional File 1,
Table S2).
In the following, we focus on four selected species

combinations that cover different interactome sizes and
evolutionary distances to discuss properties and results
of our function prediction strategy. Complete results are
given as Additional File 2, Table S2 and Additional
File 3, Table S3.

Network Comparisons
We compared protein interaction networks across dif-
ferent species to identify evolutionary and functionally
conserved subgraphs that are used as basis for function
prediction. Conserved sub-networks are assembled by
combining conserved interactions, called interologs,
using different definitions of interologs depending on
the number of species being compared. For species
pairs, we use the classical, strict definition: An interolog
is an interaction present in both species. We relax this
demand when comparing more than two species to
cater for evolutionary variation [63] and for the incom-
pleteness [36] and noise within present PPI data sets
[34]: An interolog then is defined as an interaction
which is present in more than 50% of the species being
compared.
We present a brief overview on the respective network

comparison of rno-dme, rno-hsa-sce, hsa-dme-sce, hsa-
dme-cel-sce and mmu-hsa-dme-cel (see Additional File
2, Table S2 for complete results). Table 2 summarizes
the outcomes for the selected species combinations in
terms of orthologous protein groups, identified intero-
logs and assembled CCS. As expected, the number of

orthologous protein groups, interologs and identified
CCS differs depending on the number of compared spe-
cies, their evolutionary distance as well as their current
interactome coverage. Comparison of fly and yeast
results in 17 CCS (out of 73) with at least three pro-
teins. For more than two species we use the relaxed
interolog definition which generally results in a consid-
erable higher number of CCS. For instance, we identify
163 CCS for hsa-dme-sce of which 23 comprise more
than two proteins. These CCS are shown in Additional
File 1, Figure S3. Even combinations with four species
result in a reasonable number of CCS, such as mmu-
hsa-dme-cel producing 16 CCS with more than two
proteins.

Function Prediction
We use orthology relationships, functionally conserved
modules, and direct and indirect protein interactions for
predicting functional annotations for proteins in a CCS
by transferring annotations from other species along
orthology relationships and within species from interac-
tion partners. We evaluated our approach in three ways.
First, we compared our combined strategy to baseline
methods which disregard conservation in networks. Sec-
ond, we compared it to the results obtained from using
orthology and PPI neighborhood within CCS in isola-
tion. Third, we performed a comparison to three recent
function prediction methods from the literature.
We first show the performance of our two baseline

methods, orthology and link-based, for function predic-
tion. Precision for predictions based solely on orthology
relationships varies between 3% and 11% (see Additional
File 1, Table S4). Recall is higher (3% to 40%), but
decreases steeply with the number of species being com-
pared. Precision of the link-based baseline ranges from 3%
to 17%. Contrary to the orthology baseline, recall is rather
high, varying between 51% and 75% (see Additional File 1,
Table S5). Thus, the link-based baseline reaches a similar
precision but higher recall than the orthology baseline.
Both baselines yield very low precisions. The orthology
baseline indicates the challenges transferring function
from ortholog templates. Although function tends to be
conserved in orthologs, orthology does not guarantee con-
servation of function [38]. When transferring function
solely based on protein sequences, more sophisticated
approaches, e.g. using advanced statistical frameworks [9],
are needed to ensure high prediction quality. The preci-
sion of the link-based baseline is lower than expected
most likely through the strong impact of the quality of the
interaction data. However, precision and recall are similar
to the results of the two local prediction approaches of
Schwikowski et al. and Hishigaki et al. that are applied to
our data (see Discussion).

Table 2 Overview on the outcomes of the selected
network comparisons.

# OrthoMCL
groups

#
Interologs

# CCS
(≥3)

largest
CCS

dme-sce 1514 137 73(17) 17

rno-hsa-sce 151 88 31(9) 22

hsa-dme-sce 542 692 163 (23) 187

hsa-dme-cel-sce 519 300 94 (4) 61

mmu-hsa-dme-
sce

325 238 73 (16) 20

For each species combination the number of orthologous groups, interologs,
CCS are presented as well as the size of the largest CCS. Note, we use the
strict interolog definition for two species and the relaxed criterion for multiple
species (see Methods).

Jaeger et al. BMC Genomics 2010, 11:717
http://www.biomedcentral.com/1471-2164/11/717

Page 7 of 18



Across Orthology Relationships within CCS
We use orthology relationships underpinned by interologs
to infer novel functions from multiple species. Considering
only orthology relationships for transferring functions to
proteins within CCS results in predictions with medium to
high precision. Additional File 1, Table S6 shows precision
and recall estimated using cross-validation for the selected
examples. Precision reaches 88% to 97% for yeast proteins
when comparing hsa-dme-sce and 67% to 85% for mouse
proteins when comparing mmu-hsa-dme-sce. Precision
values increase considerably with a higher coherence
threshold for CCS, but this improvement comes at the
cost of lower coverage. Particularly low numbers of predic-
tions are obtained for comparisons involving species with
low PPI coverage. This is especially prominent for rno,
where comparison of rno-hsa-sce result in only 8 predic-
tions - but with a precision of 100%.
Besides the coherence threshold, also the number of

species being compared has a strong impact on perfor-
mance. Higher average precisions are achieved when
analyzing multiple species compared to species pairs.
For instance, the average precision for mmu-hsa-dme-
sce is 79% at 0.3 in comparison to dme-sce with 54% at
0.3 and 69.5% at 0.7. This shows that using more species
implicitly selects functions that are conserved more
strongly, which underlines the impact of evolutionary
functional conservation for protein function prediction.
This fact also shows up when comparing to the orthol-
ogy baseline (see Additional File 1, Table S4): Precision
and per-protein recall using orthology within CCS are
much higher, but the overall coverage is much lower.
This means that CCS strongly restrict the number of
proteins for which predictions are made, but this restric-
tion is done in a very sensible way removing mostly
false positive predictions.

Across Neighborhood within CCS
Additional File 1, Table S7 shows precision and recall for
inferring functions only from interaction partners within
CCS. Compared to predicting function based on orthology
within CCS, precision is higher, while per-protein recall
roughly stays the same. At the same time, neighbor-based
prediction has a considerable better coverage. However,
there are also species combinations in which this method
performs worse. Precision again correlates with the func-
tional coherence of CCS and with the number of compared
species, but the impact is less pronounced. Especially the
step from coherence threshold 0.3 to 0.5 mostly makes
only a small difference. Compared to the link-based base-
line (see Additional File 1, Table S5), precision is much
higher and coverage and per-protein recall decreases.
Combining module, orthology and link-based PPI evidences
We hypothesized that the integration of orthology rela-
tionships, evolutionary conserved functional modules,

and direct and indirect protein-protein interactions into
a single prediction strategy will combine the strengths
of the three individual methods. Selected results from
this combined strategy are shown in Table 3 (see Addi-
tional File 3, Table S3 for complete results). As before,
precision varies (from 46% to 91%) depending on the
species combination and the threshold for functional
coherence of CCS. Best results are obtained for rno-hsa-
sce at a threshold of 0.7, with precision of 85%, 89% and
86%, respectively.
As mentioned before, one of the major drawbacks of

using only CCS orthology relationships is the low num-
ber of predictions due to the restriction to orthologous
proteins with at least one known function (see Addi-
tional File 1, Table S6). In contrast to orthology-only,
the combined approach creates many more predictions
(2- to 50-times more). It generates hundreds or even
thousands of predictions also for those cases where the
orthology-only method could not predict any function.
Comparing the combined method and CCS link-based

only (see Additional File 1, Table S7) shows an increase
within the amount of predictions (e.g. about 2-times for
dme from dme-sce), although it is less steep than
observed for orthology-only. This increase has mostly
only minor influence on precision and recall. Precision
reaches similar levels and the recall increases slightly.
Note, for few combinations the combined method yields

Table 3 Prediction results when combining module-based
CCS, orthology relationships, and neighboring proteins.

0.3 0.5 0.7

#
terms

P Rpp #
terms

P Rpp #
terms

P Rpp

dme 6242 0.50 0.29 5072 0.52 0.25 1522 0.73 0.32

sce 3567 0.61 0.27 2581 0.71 0.28 1303 0.83 0.40

rno 1125 0.63 0.20 485 0.67 0.27 1185 0.85 0.30

hsa 1489 0.56 0.29 368 0.85 0.34 223 0.89 0.34

sce 1870 0.60 0.25 1206 0.61 0.17 229 0.86 0.24

hsa 13975 0.46 0.35 4418 0.57 0.36 723 0.73 0.33

dme 18638 0.62 0.41 16225 0.61 0.38 3462 0.71 0.48

sce 16544 0.72 0.44 15524 0.72 0.43 4135 0.84 0.55

hsa 3314 0.47 0.25 439 0.75 0.28 160 0.91 0.41

dme 5190 0.58 0.22 4586 0.59 0.23 866 0.81 0.29

cel 2464 0.47 0.27 1796 0.56 0.27 256 0.65 0.31

sce 5361 0.70 0.31 5126 0.71 0.32 1212 0.80 0.37

mmu 1212 0.66 0.17 459 0.81 0.32 53 0.81 0.34

hsa 3301 0.48 0.28 1658 0.57 0.33 436 0.65 0.81

dme 5561 0.56 0.29 4642 0.57 0.29 1400 0.59 0.55

sce 5159 0.63 0.31 4906 0.63 0.31 2140 0.73 0.72

average 5870 0.58 0.29 4343 0.65 0.30 1160 0.77 0.42

Precision (P) and per-protein recall (Rpp) are estimated for low (0.3), medium
(0.5) and high (0.7) functional similarity/conservation thresholds.
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the same results as link-based-only because no predic-
tions could be inferred through orthology relationships.
Overall, the impact of our combined approach is

dominant, especially in terms of the number of predic-
tions. Precision drops for some combinations compared
to the single methods. However, the decrease of preci-
sion does not indicate a lower prediction quality. It
rather indicates that the combined method derives many
more novel predictions that can not be validated during
cross-validation rather than successfully reproducing
known function for well-characterized proteins (see Dis-
cussion of predictions). Precision is affected the least for
the highest similarity threshold (0.7) fostering the most
reliable precisions.
Overlap between orthology- and link-based predictions
within CCS
We combined orthology- and link-based function pre-
diction within CCS to benefit from the strengths of both
methods. To study whether the predictions of the indivi-
dual methods result in the same or complementary sets
of predictions we determined the overlap of GO terms
predicted by either strategy. For hsa-dme-sce, the
respective numbers are shown as Venn diagrams in
Additional File 1, Figure S4. In general, the major frac-
tion of unique predictions is derived from neighboring
proteins. The overlap between predictions is comparably
small and decreases when increasing the similarity
threshold. This shows that both methods complement
each other very well as they predict rather different sets
of functions. For hsa-dme-sce, the respective numbers
are shown as Venn diagrams in Additional File 1, Figure
S4. In general, the major fraction of unique predictions
is derived from neighboring proteins. The overlap
between predictions is comparably small and decreases
when increasing the similarity threshold. This shows
that both methods complement each other very well as
they predict rather different sets of functions.
This behavior is also observable when predictions are

analyzed separately per species (see Additional File 1, Fig-
ure S5). However, contrary to fly and yeast proteins (see
Additional File 1 Figure S5(b) and S5(c)), the amount of
orthology and link-based predictions is quite similar for
human proteins (see Additional File 1, Figure S5(a)),
which can be explained by the much denser PPI data
available for the two model organisms (see Table 1). This
observation clarifies that different species pro t differently
from our method. Especially less characterized species,
such as human, benefit strongly from the functional
knowledge of model organisms.
Overlap between predictions derived from different species
combinations
Not only does the neighbor-based method complement
the orthology-based method, but also predictions
derived from different species combinations are rather

complementary. Table 4 shows the overlap between pre-
dictions for human proteins inferred from different spe-
cies pairs. The overlap is determined by dividing the
number of overlapping predictions through the total
number of predictions of a combination (expressed as
percentage). The overlap mostly is far below 50% and
strongly depends on evolutionary distance between the
species. For example, the overlap between predictions
derived from CCS with mouse and those derived from
rat is much larger than that of the sets derived from
mouse and, say, fly. The same holds for combinations of
three and four species (data not shown). Moreover, the
more species we combine the more we focus our predic-
tion on evolutionary conserved functions, which
becomes clear when studying predictions for highly con-
served housekeeping functions (see Discussion).
Large CCS
Large CCS naturally encompass various biological func-
tions. In consequence, their functional homogeneity is
often too low which excludes the entire CCS from func-
tion prediction. However, large CCS actually are strong
indicators for conserved functions. For instance, Figure 3
shows the largest CCS from hsa-dme-cel-sce consisting of
61 proteins and 108 interologs with its different biological
subprocesses. It clearly contains several functionally highly
conserved clusters, probably forming discrete protein
complexes. Considering such a large CCS as a whole is
insufficient. Therefore, we modify our approach for large
CCS by breaking them up into sub-subgraphs (see Meth-
ods). The impact on precision and recall is shown in Addi-
tional File 1, Table S8 (large CCS are split), which should
be compared with entries of Table 3 (large CCS are
ignored). As can be seen, processing large CCS creates
many more predictions with mostly better precision. For
example, the number of predictions almost triples for hsa-
dme-sce at a similar or even better precision. When com-
paring split and non-split results from hsa-dme-cel-sce the
precision decreases for human along a five-fold increase of
the number of predictions, but increases for all the other
species (at 0.7).

Table 4 Fraction of overlapping function predictions (in
%) for human proteins derived from different species
pairs.

mmu-hsa hsa-dme hsa-cel hsa-sce

rno-hsa 44.6/48.7 40.4/14.1 22.0/28.0 33.3/19.4

mmu-hsa - 47.7/16.1 21.5/94.4 52.4/25.1

hsa-dme - - 4.2/17.5 39.4/42.9

hsa-cel - - - 89.0/74.2

The overlap is defined as the number of overlapping predictions divided by
the total number of predictions (expressed as percentage). Each cell contains
two different values - i/j - that specify the overlap based on the total number
of predictions of the two combinations. i presents the overlap between the
non-human species from row i and column j and value j presents the overlap
between non-human species from column j and row.
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Comparing with other methods
We compare the performance of our CCS-based predic-
tion approach against Neighbor Counting (NC) [19], c2

statistics [16] and FS-Weighted Averaging (FS-WA) [27]
considering only proteins that are involved in CCS. The
performance of the individual methods on the complete
data is shown in Additional File 1, Figure S6. Figure 4
presents precision - recall graphs (based on varying
thresholds) for predictions for human proteins separated
by the three GO subontologies. CCS-based function pre-
diction significantly outperforms NC and c2 statistics.
Precision and recall obtained from the latter two are very
low and even below our baselines. This also holds for
yeast and fly (see Additional File 1, Figure S7 and S8).
When comparing FS-WA results with our approach,

CCS-based function prediction performs consistently as
well or better. Depending on species and subontology we
achieve either higher precision at a similar recall or an
improved precision and recall. Especially, when consider-
ing molecular function and biological process in human
(see Figure 4) our method clearly outperforms FS-WA.

Discussion
We presented a novel approach to predict protein func-
tions that uses data from multiple species and combines
three different sources of evidences for functional simi-
larity: Orthology relationships, evolutionary conservation
of functional modules in protein networks, and direct
and indirect protein-protein interactions. Integrating
these evidences into a single prediction algorithm

overcomes the individual weaknesses of the base meth-
ods: (1) Orthology restricts prediction to proteins that
have at least one orthologous protein with known func-
tion and exhibits a very low precision. (2) Considering
only protein-protein interactions disregards the power of
comparative genomics, leading to low coverage in organ-
isms where PPI data is not available in abundance. (3)
Using only functional modules within protein networks
yields high precision, but strongly affects recall on a spe-
cies basis, as only highly conserved functions performed
by dense protein clusters can be predicted. We showed
that combining these methods leads to high precision
predictions with very good coverage. Essentially, we
achieve high precision by looking only at subgraphs con-
served in multiple species without restricting them to
dense modules. Furthermore, we achieve high coverage
when considering multiple species, by using a relaxed
definition of interologs, and by transferring function
from PPI neighbors and from orthologous proteins. Alto-
gether, our method predicts thousands of protein func-
tions for every species included in the analysis at varying,
yet always high levels of precision (see Table 5).

Network Comparison
For comparing protein interaction networks we used
two definitions for determining interologs: the strict and
the relaxed definition when studying either two or more
than two species, respectively. We also experimented
with using the strict interolog definition for multiple
species, but this often results in zero or only very few

Figure 4 Direct performance comparison for human. Comparing precision and recall of function predictions for proteins involved in CCS
from weighted average (WA), neighbor counting (NC), c2 statistics and CCS-based approach for (a) molecular function, (b) biological process
and (c) cellular component. CCS-based results are retrieved from different similarity thresholds and species combinations.
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and small CCS within species groups (see Additional
File 1, Table S2 for strict vs. relaxed results). This leads
to a small but highly precise set of function predictions.
Being less strict leads to a significant improvement in
the coverage of our prediction method at comparable
precision (see Additional File 1, Section S2.1 and Table
S9). In turn, we also tested the effect of applying a
relaxed definition of interologs to species pairs. This
leads to very few (often only one) yet very large net-
works, as it only creates the union of interactions
between orthologous proteins of the two species. How-
ever, this does not reflect evolutionary conservation of
PPIs and therefore misses the important signals of func-
tional conservation.

Function Prediction
We evaluated or method in several ways using precision
and recall, two baselines and three other function pre-
diction methods. However, besides pure precision and
recall values, an important property of any function pre-
diction method is the specificity of its predicted terms.
Clearly, predicting only very general terms is much sim-
pler but much less useful than predicting terms close to
the leaves of GO. Our methods predicts terms at a med-
ian level of 10 for cellular component, 8 for biological
process, and 6 for molecular function. Thus, our method
is capable of predicting quite specific functions (also see
discussion of novel functions below).
Compared to other methods presented in the litera-

ture, our method has also the important property that it
is not limited to so-called “informative” GO terms [64].
Many prediction methods use only GO terms that are
associated to more than ten or 30 genes [26,27,62].
Such an approach implicitly disregards more specific
annotations, although those are the most valuable ones.
For example, in 2007 82.5% of GO annotations in
human were associated to less than ten genes [65] leav-
ing only 17.5% as annotation basis. GO-based methods
have been shown to result in higher precisions when

applied on a small number of frequently annotated GO
terms. In contrast, we are able to generate accurate pre-
dictions also for rarely used GO terms.
Comparison to Baselines
Compared to the orthology baseline, including CCS
yields precisions up to 10-times higher, confirming that
information on conserved interactions is a very effective
filter for avoiding false positive predictions across
orthology relationships. Compared to the neighbor base-
line, considering CCS also leads to a clear and signifi-
cant increase in precision. This effect can be explained
by the fact that using interologs (strict or relaxed)
instead of single interactions largely improves reliability
of PPI data [66], since false positive PPIs are unlikely to
be reproduced across multiple species.
Our results show that combining various evidences

into a single and comprehensive method leads to
improved results. Evidently, the predictions made by dif-
ferent methods using information from different species
complement each other quite well instead of only pre-
dicting the same functions again and again. However,
the concrete approach has to be chosen with care. We
showed that good results can only be achieved when
using a proper definition of interaction conservation and
when treating large CCS in an adequate manner. Failing
to do so either restricts coverage of the method or leads
to a higher false positive rates.
Comparison to other Function Prediction Methods
We compared precision and recall of our approach to
Neighbor Counting, c2 statistics and FS-Weighted Aver-
aging (see Methods). Our combined CCS-based
approach significantly outperforms Neighbor Counting
and c2 statistics, especially in terms of precision. More-
over, we perform comparably well or better against
FS-Weighted Averaging, mostly achieving much higher
precision at higher recall. Notably, our method achieves
better results especially for species without comprehen-
sive PPI coverage, such as human. However, precision
for Neighbor Counting and c2 is significantly lower (on
the entire data sets, see Additional File 1, Figure S6, and
the filtered protein sets) than reported in the respective
original publications [16,19]. There are three explana-
tions for this drop (from ~70% to 15% precision). First,
both methods originally were evaluated only on the
functional classification scheme from YPD. This scheme
covers, similar to GO, three categories of yeast protein
function: biochemical function, cellular role and subcel-
lular localization. However, categories have only 57, 41
and 22 members, respectively. Compared to our evalua-
tion using GO, in which methods have to chose between
up-to 17398 functional categories, this increases the
chances to predict correct terms purely by chance.
Furthermore, yeast is a particularly well-studied organ-
ism, while we applied the method also to less-well

Table 5 Overall function prediction statistics across all
species combinations.

species #
terms

P Rpp #
terms

P Rpp #
terms

P Rpp

rno 17430 0.50 0.12 9110 0.57 0.14 5738 0.75 0.20

mmu 26089 0.47 0.13 11441 0.59 0.16 5246 0.81 0.23

hsa 62833 0.44 0.14 22911 0.59 0.17 12317 0.76 0.39

dme 26155 0.56 0.19 19463 0.60 0.20 10455 0.75 0.30

cel 4098 0.52 0.14 1983 0.60 0.18 1332 0.71 0.24

sce 10666 0.66 0.23 9013 0.69 0.25 6335 0.81 0.35

Total number of newly derived GO annotations and their estimated average
precision (P) and per-protein recall (Rpp) for each species using low, medium
and high similarity thresholds.
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covered species. A similar performance drop was
observed by Chua et al. [62], which also applied both
methods to GO term prediction, with precision decreas-
ing to 60% (NC) and 20% (c2) for yeast and 20% (NC)
and 16% (c2) for fly. The second point concerns the
amount of interaction data. For example, results from
[19] are based on only 2,709 interactions among 2,039
proteins. In contrast, we integrated six different data-
bases, leading to, for instance, almost 70,000 interactions
for 6,500 proteins in yeast. Thus, we cover many more
proteins and interactions which also increases the prob-
ability of false positives. Third, many prediction meth-
ods, including the two studies compared to here,
consider only annotated proteins with at least one anno-
tated interaction partner for their studies
[16,19,26,27,62]. We did not exclude those proteins
because we believe that especially weakly or un-anno-
tated proteins must be a primary target for function pre-
diction. In our combined approach, such proteins often
receive functions from orthologous proteins in other
species, an option missing in Neighbor Counting and c2.
However, functions predicted for non-annotated pro-
teins are necessarily counted as false positives although
these are truly novel findings. Thus, disregarding such
proteins results in higher precisions.
We did not compare to purely module-based predic-

tion methods, as link-based techniques have been shown
to outperform those [3,37]. However, we evaluated the
effect of requiring CCS to be “module-like”, i.e., to exhi-
bit a certain density of interactions between its mem-

bers. CCS-density is defined as
2

1
*| |

| | | |
E

V V −( ) where E
presents the edges and V denotes the nodes within a
CCS. As expected, filtering CCS according to their den-
sity considerably improves precision (see Additional
File 1, Figure S9), e.g. in fly from 80% without filtering
to 90% for a density of 0.7 and 95% for a density of 1,
but this increase is at the cost of much fewer predic-
tions (see Additional File 1, Section S2.2 for a detailed
discussion).
Effects of Size of Data Sets
Results of our prediction method vary depending on the
level of available annotations and PPIs for the species
that are compared (see Additional File 1, Section S3.1
for a discussion of the data). They are better when well-
studied species, such as yeast or fly, are involved. This is
an inherent property of methods that transfer annota-
tions, since better annotated species provide more
source functions. This property underpins the impor-
tance of comparative genomics for elucidating the func-
tion of human proteins. It is also clearly visible that
prediction precision is correlated to the threshold for
functional conservation (see Figure 5a) and increases
with the degree of evolutionary conservation of a CCS -

from pairwise to multiple network comparisons (Figure
5b). Obviously, the functional conservation threshold is
an important possibility to tune or method to the speci-
fic needs of an application. The higher the functional
conservation, the higher is the precision of the
predictions.
Note that in any gold standard evaluation as ours, new

findings are always counted as false positives, inde-
pendently of their real, biological truthfulness. Con-
sequently, prediction methods perform better on
well-studied organisms than on species that are func-
tionally less well characterized. The precision values we
report therefore should be considered as lower bounds
on the true precision.
Performance on Weakly and Non-Annotated Proteins
An important goal of protein function prediction is to
derive novel functions for proteins without any or with
only very little functional information. Thus, we analyzed
how our method performs on such proteins. We define
as a weakly annotated protein (WAP) any protein which
has at most two terms assigned a-priori in our data. For
WAP, we count annotations as new if they are more spe-
cific than the existing ones or if they belong to another
sub-branch in the subontology. Note that such annota-
tions are counted as false positives in our evaluation as
they cannot be validated from our gold standard data.
Results from comparing hsa-dme-sce are shown in

Figure 6 and Additional File 1, Figure S10. As expected,
the highest number of proteins without any annotation
can be found in human. Annotation coverage of fly is
not as good as for yeast but still much better than in
human. For example, CCS at threshold 0.3 contain ~300
human proteins without any functional annotation in
biological process. By means of our method, we predict
156 annotation for 52 of those proteins. Similarly, 20 fly
proteins out of 72 are annotated with 67 GO annotation
in biological process. But also well-studied species still
contain many WAPs and benefit from our approach.
For instance, about 380 yeast proteins are only weakly
characterized for cellular component and for more than
a quarter of them we predict about 200 functions. Note
that the fraction of WAPs receiving new annotations
decreases with the increase of the similarity threshold
for each species.

Predictions for Selected Human Proteins
In the following, we discuss specific predictions for pro-
teins that are relevant for colorectal cancer. Note that
these predictions were counted as false positives in our
evaluation because they are not contained in the Gene
Ontology annotations at all or only marked as putative
(mostly “inferred from electronic annotation”, IEA).
However, we show that many predictions already have
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strong experimental support in the literature. Thus, the
group of novel predictions falls into two classes - those
that, given the current literature, can be considered as
true but have not yet made it into the annotation data-
bases and those for which we could not find conclusive
evidence in the literature. We argue that, given the large
amount of predictions that fall in the first class, predic-
tions from the second class should be considered as
promising candidates for further studies.
We discuss predicted functions for the gene products

of MLH1, PMS2 and EPHB4, all of which have an estab-
lished importance for colorectal cancer [67,68]. Overall,
literature curation largely confirms the predictions for
these three genes by different experimental studies.
MLH1 and PMS2
The DNA mismatch repair protein MLH1 and the mis-
match repair endonuclease PMS2 belong to the main
components of the post-replicative DNA mismatch
repair (MMR) system (see Figure 7) [69]. The MMR sys-
tem is required for correcting base mismatches and

insertion or deletion loops resulting from DNA replica-
tion, DNA damage, or from recombination events
between non-identical sequences during meiosis [70].
Curated annotation for MLH1 and PMS2 from UniProt
and EntrezGene and newly inferred functions are listed
in Additional File 1, Table S10 and S11.
The majority of our predictions (terms are set italics

in the following) is directly related to the functionality
of the MutLa complex which is formed by MLH1 and
PMS2. Rich supporting evidence can be found from the
respective orthologs in yeast and mouse. For instance,
PMS1, the PMS2 ortholog in yeast, contributes to dinu-
cleotide insertion or deletion binding, loop DNA binding
[71]. Mlh1, the mouse ortholog of MLH1, is annotated
to guanine/thymine mispair binding [72] and likely plays
a role in the formation, stabilization and/or the resolu-
tion of Holliday junction intermediates (four-way junc-
tion DNA binding) [73]. High and low affinity ATP
binding sites have been observed for MLH1 and PMS1
in yeast [74] which supports the ATP binding and

Figure 5 Correlation of the prediction precision with (a) functional and (b) evolutionary conservation, respectively. (a) Species-specific
precision values for predictions derived from CCS among rno-hsa-sce (solid lines) and hsa-dme-sce (dashed lines). For each species we plot the
estimated precision against the applied similarity threshold (low: 0.3, medium: 0.5, high: 0.7) that indicates the level of functional conservation.
(b) Species-specific precision grouped by evolutionary conservation that is given by the increasing number of species involved in a CCS.
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ATPase activity predictions for their human orthologs
[75]. Moreover, PMS2 contains a conserved metal-
binding motif that constitutes part of the active site for
the endonuclease activity of the protein and might
enable magnesium ion binding [76]. Considering protein
homodimerization activity, the dysregulated gene expres-
sion of PMS2, either as a monomer or homodimer, can
disrupt MMR function in mammalian cells [77]. Note
that, although we support our predictions by literature
evidences that are mostly based on orthologs, our algo-
rithm actually inferred them from conserved interaction
partners as the orthologs in most cases do not carry the
annotation we found in the literature.
Our algorithm also generates a number of predictions

that are not as clearly supported by the existing litera-
ture, such as guanine/thymine mispair binding, single
guanine and thymine insertion binding or oxidized DNA
binding. Moreover, we associate both proteins to base-
excision repair as well as postreplication repair and

Figure 6 Number of predicted functions for proteins without annotations within CCS from hsa-dme-sce. For each subontology and
similarity threshold the number of proteins without any annotation (olive), the number of proteins that receive new annotations (orange) and
the total number of novel annotations are shown (yellow). Recall that a higher coherence threshold for CCS leads to less proteins being
included in function predictions; thus, numbers generally decrease with higher thresholds.

Figure 7 Components of the post-replicative DNA mismatch
repair system (MMR). CCS derived from PPI network comparison
between human and yeast. Subgraph clusters proteins that are
involved in mismatch repair (protein names correspond to human
proteins). Proteins associated to colorectal cancer are indicated in red.
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MLH1 to maintenance of DNA repeat elements. These
are interesting hypotheses supported by recent findings
from Erdeniz et al. who suggested that the endonuclease
activity of PMS2 in MutLa is not only important in
MMR-dependent mutation avoidance but also for sup-
pression of homologous recombination, DNA damage
signaling, and damage response functions [78]. Associa-
tion of yeast PMS1 with meiotic mismatch repair and
DNA recombination [79] further support these predic-
tions. Regarding their cellular components both proteins
are associated to the MutLa complex [67], an annotation
predicted jointly from orthology and the CCS neighbor-
hood. MutLa complex is a clearly sensible refinement of
the existing annotation nucleus and only seven others
genes are annotated to this term, which emphasizes the
specificity of our method.
EPHB4
Ephrin type-B receptor 4 is a transmembrane receptor for
the ephrin-B family. It belongs to the family of receptor
tyrosine kinase (RTK) and is usually expressed in endothe-
lial and neuronal cells. Known and predicted functional
annotations are displayed in Additional File 1, Table S12.
Several predicted functions, such as protein, enzyme

and ATP binding, SH3/SH2 adaptor and enzyme regula-
tor activity and protein amino acid phosphorylation,
derived both from conserved interactions and orthology,
are evidently consistent with the characteristics of recep-
tor tyrosine kinases.
Two functions inferred by orthology are transmem-

brane-ephrin receptor activity and transmembrane recep-
tor protein tyrosine kinase signaling pathways. Both are
supported by annotations from highly related receptors,
such as Ephb1 in mouse and EPHB2 in human [80,81].
Less evident predictions are, for instance, cell-cell signal-
ing [82], cell migration [83], angiogenesis and behavior
[84]. These functions were not predicted by orthology
alone but only in combination with the conserved inter-
action neighborhood of EPHB4. EPHB4 participates in
the axon guidance pathway and in this context predic-
tions like axon guidance or axon guidance receptor
activity can be integrated [85-87].

Conclusion
Elucidating protein function is a major challenge in the
post-genomic era. We developed a method for predict-
ing protein function based on the structural and func-
tional conservation of PPI subnetworks in multiple
species. Our approach integrates three different sources
of evidences for inferring functional similarity. Alto-
gether, we employ orthology relationships, evolutionary
conservation of functional modules in protein networks,
and direct and indirect protein-protein interactions for
deriving novel functions for uncharacterized proteins.
Using our method we derive thousands of protein

functions for every species in our study at varying, yet
high levels of precision. Thus, combining orthology rela-
tionships, functional modules and PPI neighborhood
into a single, comprehensive prediction method yields
high-quality predictions with very good coverage. In
comparison against three other function prediction
approaches, Neighbor Counting, 2 statistics, and FS-
Weighted Averaging, our CCS-based prediction strategy
performs comparably well or significantly better, espe-
cially in terms of precision.
Additionally, we predict a large amount of novel func-

tions for a number of poorly or non-annotated proteins
that can not be validated directly. However, this shows
that our method also generates novel functional knowl-
edge rather than only reproducing known functions for
well-characterized proteins. The manual curation of pre-
dictions for three selected proteins confirms their high
quality and precision as many predictions already have
strong experimental support in the literature.
Apart from the promising results of our prediction

approach, our method currently only provides lists of
yes/no predictions. This binary behavior is implicit in
the way we compute CCS and how we determine pre-
dicted terms and targets of prediction. For further
improvement and applicability we plan to derive confi-
dence scores for each prediction based on the multiple
biological evidences. Predictions ranked by reliability
will provide a method of selection for focusing experi-
mental resources on hypotheses (predictions) that are
more likely to be true. This is essential for experimental
biologists to decide which proteins and predictions
should be investigated further, e.g. in follow-up
experiments.

Additional material

Additional file 1: Supplementary Material. The Supplementary Material
includes supplementary figures and tables as well as additional analysis.

Additional file 2: Complete results of the strict and relaxed network
comparisons. This files contains the complete results of the strict and
relaxed network comparisons for pairs of species and three, four, five and
six species combinations. The number of OrthoMCL groups, interologs
from strict and relaxed definition as well as the total number of CCS and
the size of the largest CCS are given.

Additional file 3: Complete results of the CCS-based function
prediction approach. This file contains the complete results of the
combined CCS-based function prediction approach for pairs of species
and three, four, five and six species combinations. CCS from strict and
relaxed network comparison are used depending on the species
combinations.
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