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Abstract
Climate change is expected to affect temperature and precipitation means and extremes,

which can affect population vital rates. With the added complexity of accounting for both

means and extremes, it is important to understand whether one aspect is sufficient to predict

a particular vital rate or if both are necessary. To compare the predictive ability of climate

means and extremes with geographic, individual, and habitat variables, we performed a

quantitative synthesis on the vital rates of lesser prairie-chickens (Tympanuchus pallidictinus)

across their geographic range. We used an information theoretic approach to rank models

predicting vital rates. We were able to rank climate models for three vital rates: clutch size,

nest success, and subadult/adult seasonal survival. Of these three vital rates, a climate

model was never the best predictor even when accounting for potentially different relation-

ships between climate variables and vital rates between different ecoregions. Clutch size and

nest success were both influenced by nesting attempt with larger clutches and greater suc-

cess for first nesting attempts than second nesting attempts. Clutch size also increased with

latitude for first nesting attempts but decreased with latitude for second nesting attempts.

This resulted in similar clutch sizes for first and second nest attempts at southern latitudes

but larger clutches for first nest attempts than second nest attempts at northern latitudes. Sur-

vival was greater for subadults than adults, but there were few estimates of subadult survival

for comparison. Our results show that individual characteristics and geographic variables are

better for predicting vital rates than climate variables. This may due to low samples sizes,

which restricted our statistical power, or lack of precision in climate estimates relative to

microclimates actually experienced by individuals. Alternatively, relationships between cli-

mate variables and vital rates may be constrained by time lags or local adaptation.

Introduction

Climate change is having large effects on populations, communities, and ecosystems [1, 2].
These effects are expected to continue into the future and increase in magnitude, involving
both direct and indirect mechanisms [3, 4]. Populations, particularly, are expected to be
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affected by climate change through the alteration of vital rates [5], leading to changes in popu-
lation cycles (e.g., [6]), declines (e.g., [7]), and even extinction [8]. These changes are of great
concern for biodiversity conservation [1] and the maintenance of the current level of ecosys-
tems services [9].

Climate change is expected to alter temperature and precipitation averages and variability
and the frequency and magnitude of extreme events [10, 11]. Extreme events are characterized
as events that are outside the 90th percentile of current climatic events [12]. Events include
large storms like tornadoes and hurricanes but also heat waves, extremely cold periods, dry
spells, and heavy rain. Extreme events can have large effects on populations [13] and can even
drive geographic range shifts [14, 15]. For example, heat waves can cause catastrophic mortality
in desert birds [16], whereas extreme ice events can have similar effects on reindeer [17].

Predictions for climate change are complicated by influences on the mean, variability, and
extremes of both temperature and precipitation, so it is critical that population ecologists have
a better understanding of the relative importance of these factors to species. Understanding the
dominant factors driving population vital rates will be critical for understanding population
dynamics and developing efficient conservation frameworks. Several recent empirical and the-
oretical studies have examined the relative importance of climate means and variability to vital
rates and population dynamics (e.g., [18, 19, 20]). However, similar evaluations involving cli-
mate extremes are still lacking.With an increasing recognition of the likely increase in climate
extremes [12], population biologists need to assess the importance of climate extremes to vital
rates [21, 22].

Lesser prairie-chickens (Tympanuchus pallidicinctus) are a lekking species of conservation
concern found in the southern plains of NewMexico, Texas, Oklahoma, Kansas, and Colorado.
Lesser prairie-chickens are one species thought to be vulnerable to changes in climate due
to their sensitivity to drought [23], their already vulnerable population status [24], and the
predicted future climate change across their geographic distribution [10]. In the Southern
High Plains of Texas and NewMexico, higher temperatures are expected to reduce lesser prai-
rie-chicken nest survival through relationships with drought and temperatures exceeding the
temperature threshold for egg viability [23]. Climate variables are also likely to affect lesser
prairie-chicken vital rates through changes in vegetation, and prey and surface water availabil-
ity with implications for bird physiology, behavior, and stress, which are all relevant to survival
and potentially clutch size and nest initiation probability. These changes in nesting females
may also alter nest attendance and nesting habitat selectionwith repercussions for eggs and
chicks.

To compare the relative importance of climate means and extremes, we performed a quanti-
tative synthesis of the vital rates of lesser prairie-chickens using an information-theoretic
approach [25] that weighted vital rate estimates by their sample size. For vital rates with larger
numbers of samples (N> 20; clutch size, nest success, subadult/adult survival), we took a two-
step approach in which we first assessed the relative impact of factors known to affect vital
rates, such as habitat, latitude, and individual characteristics by rankingmodels with AIC. We
then used the best-fit model as a null model for comparison with climate models.We com-
pared eleven climate models: null, average temperature, average precipitation, extreme temper-
ature, extreme precipitation, drought, and the interactions between each climate variable and
ecoregion (a group of five additional models). Models containing interactions between ecore-
gion and climate variables allowed us to assess the possibility that the effect of climate variables
on vital rates may be different in different portions of the lesser prairie-chicken geographic
range. We additionally report summarized estimates for all vital rates with lower sample sizes,
including egg hatchability, chick survival, and probabilities of nest initiation, nest re-initiation,
and brood success.
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Materials and Methods

We located articles by searching Google Scholar, Web of Science, Biological Abstracts, BioOne
Abstracts, and EbscoWildlife and Ecology Studies Worldwide using the search terms “lesser
prairie-chicken” and “nest success,” “survival,” or “clutch.” We completed the final search on
10 December 2014 and included 25 papers in the analysis (Table 1). We included all published
journal articles, book chapters, and theses found in this search that met our eligibility criteria,
described as follows. Papers included in the quantitative synthesis needed to report a lesser
prairie-chicken vital rate and the associated sample size, study site location, year(s) of data col-
lection, and the method for data collection. Studies were excluded (listed in S1 File) if the data
was repeated in multiple studies (e.g., [23, 26, 27–31]), the information available was insuffi-
cient for a quantitative synthesis [32], the estimates combined data for both lesser and greater
prairie-chickens [33], or information was combined for non-adjacent sites (e.g., NewMexico
and Oklahoma [34]). We examined all studies that included data from the same study site dur-
ing the same time period and eliminated any estimates that could include the same individuals
or the same nests. For these cases, we chose to use the data that was most specific, such as using
vital rate estimates separated for each year rather than summarized for multiple years. For each
study, we extracted data on the following demographic rates: nest initiation probability, nest
re-initiation probability (given failure of first nest), nest success (the probability that at least
one egg hatches in a nest), egg hatchability (the probability that an egg hatches), clutch size,
brood success (the probability that at least one chick in a brood survives a given time period),
and seasonal survival for both sexes. For clutch size and nest success, we recorded whether esti-
mates were for first nest attempts, second nest attempts, or a combination of first and second
nest attempts. We additionally recorded the study site location, the year(s) of data collection,
the time of year data was collected, the sex and age of the individuals, the sample size, the habi-
tat type (sand sagebrush, sand shinnery oak, or a combination), and the estimation method for
the vital rate. For almost all vital rates, estimates were made by monitoring individuals with
radiotransmitters attached. Survival estimates using radiotransmitters appear relatively unbi-
ased [30]. However, radiotransmitter estimates could bias estimates of nest initiation, nest rein-
itiation, or nest success if some nests failed before they were detected by researchers. During
data extraction, two people assessed and recorded data from each paper independently. Where
discrepancies occurred, discussion and rereading of text was used to generate consensus.

We obtainedmonthly climate data from the National Oceanic and Atmospheric Adminis-
tration (NOAA) for each year and site that we had vital rate estimates. Most site-level data
were reported by county or a group of counties, so we obtained climate data spanning the
appropriate years from a weather station closest to the geographic center of the county or coun-
ties. Data was checked for completeness and summarized for each demographic rate. We
excluded any data from any month with more than 5 days of missing data. For clutch size, we
examined the weather during the previous six months (October to March). For nest success,
we examined weather during the nesting period (April, May, June). We analyzed chick survival
separately from subadults and adults. We examined the daily survival rate for chicks and sea-
sonal survival (i.e., all survival estimates converted to that for a three-month period) for sub-
adults and adults and used weather data for the period survival was estimated. Subadult/adult
survival was categorized by season into warm seasons for spring and summer (March to
August) and cool seasons for fall and winter (September to February). For vital rate estimates
from studies that averaged over multiple years, we used the median year and mean climate var-
iables in the models.

We classified climate data into four groups: extreme temperature, average temperature,
extreme precipitation, and average precipitation. Extreme temperature variables included the
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number of hot days (maximum temperature over 32.2°C), number of freezing days (maximum
temperature below freezing), number of extremely cold nights (minimum temperature below

Table 1. Studies included in quantitative synthesis of lesser prairie-chicken vital rates (note that additional vital rates may have been published

in a study that was not included due to overlap with another study).

Study Years Location Vital Rates

Boal et al. 2010 [35] 2008,

2009

Cochran, Hockley, Terry, Yoakum Co., TX Nest initiation, nest success

Campbell 1972 [36] 1962–

1970

Roosevelt, Lea Co., NM Subadult/adult survival

Copelin 1963 [37] 1959 Ellis Co., OK Clutch size, hatchability, nest success

Davis 2009 [38] 2004–

2005

Roosevelt Co., NM Brood success, nest initiation, nest success, renest initiation

Fields 2004 [39] 2002–

2004

Gove Co., KS Chick survival, clutch size, hatchability, nest initiation, nest

success, renest initiation

Grisham 2012 [40] 2001–

2010

Roosevelt Co., NM; Cochran, Hockley, Terry,

Yoakum Co., TX

Brood success, subadult/adult survival, nest success

Grisham et al 2014

[41]

2008–

2011

Cochran, Hockley, Terry, Yoakum Co., TX Clutch size, hatchability, nest initiation, nest success, renest

initiation

Hagen et al. 2002

[42]

1997–

1999

Finney Co., KS Nest success

Hagen et al. 2007

[43]

1998–

2002

Finney Co., KS Subadult/adult survival

Holt 2012 [44] 2008–

2010

Gray, Hemphill Co., TX Clutch size, subadult/adult survival, nest success

Jamison 2000 [45] 1997–

1999

Finney Co., KS Subadult/adult survival

Jones 2009 [46] 2001–

2003

Hemphill, Lipscomb, Wheeler Co., TX Subadult/adult survival, nest success

Kukal 2010 [47] 2008–

2010

Gray, Hemphill Co., TX Subadult/adult survival

Leonard 2008 [48] 2006–

2007

Cochran, Yoakum Co., TX Subadult/adult survival, nest success, renest initiation

Lyons et al. 2009

[49]

2003–

2005

Cochran, Yoakum Co., TX Subadult/adult survival

Lyons et al. 2011

[50]

2001–

2007

Hemphill, Wheeler, Lipscomb Co., Cochran,

Yoakum Co., TX

Nest initiation, renest initiation

Merchant 1982 [51] 1979–

1980

Lea, Roosevelt, Co., NM Clutch size, nest initiation, nest success, renest initiation

Patten et al. 2005

[52]

1999–

2003

Beaver, Ellis, Harper Co., OK; Roosevelt Co., NM Clutch size

Pirius et al. 2013

[53]

2008–

2011

Cochran, Hockley, Terry, Yoakum Co., TX Subadult/adult survival

Pitman 2003 [54] 1998–

2002

Finney Co., KS Chick survival

Pitman et al. 2005

[55]

1997–

2002

Finney Co., KS Nest success

Pitman et al. 2006

[56]

1997–

2002

Finney Co., KS Clutch size, nest initiation, renest initiation

Pitman et al. 2006

[57]

1997–

2003

Finney Co., KS Brood success

Riley et al. 1992

[58]

1976–

1978

Chaves Co., NM Nest success

Toole 2005 [59] 2001–

2002

Hemphill, Lipscomb, Wheeler Co., TX Subadult/adult survival

doi:10.1371/journal.pone.0163585.t001
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-17.8°C), the extrememaximum temperature, and the extrememinimum temperature. Aver-
age temperature variables included the number of freezing nights, the mean daily maximum
temperature, the mean daily minimum temperature, and the mean daily temperature. Extreme
precipitation variables included the number of days with heavy rain (daily precipitation greater
than 2.5 cm), the maximum daily precipitation, and the maximum snow depth. Average pre-
cipitation variables included the number of rainy days (precipitation greater than 0.25 cm), the
total precipitation, and the total snowfall. For each data set, we first assessed the correlations
among climatic variables within each group. For correlated variables (|r|> 0.7), we kept the vari-
able most highly correlated with the vital rate of interest. For an indication of drought, we used
the Palmer Drought Severity Index, where index values -4.0 or below indicate extreme drought
and index values +4.0 or above indicate extreme wet conditions [60]. We used historical drought
data fromNOAA calculated for multi-county US Climate regions in each state. Our data covered
two climate regions in Kansas (regions 4 and 7), one in Oklahoma (region 1), two in NewMexico
(regions 3 and 7), and two in Texas (regions 1 and 2). For cases where a study site spanned two
climatic regions, we calculated the average of the two regions for the time period.

For the analyses, we used the vital rate estimate as a response variable in general linear mod-
els. Note that because of the nature of the study, the data does not lend itself to calculating tradi-
tional effects sizes. As such, there is no establishedmethod for assessing publication bias.
However, there is also less concern about potential bias relative to studies calculating traditional
effect sizes, because there are not non-significant results that might be less likely to be published,
and we also included graduate theses. One potential source of bias is a change in the established
methods for estimating vital rates through time. To potentially account for this, we included a
model with the year(s) that each vital rate was estimated as a predictor variable (see below).

For each analysis, we used one vital rate estimate as a replicate. Each replicate was weighted
by the sample size to account for differences in precision among vital rate estimates [61]. We
attempted to include the study as a random variable to account for possible non-independence
between estimates made by the same researchers, but a strong relationship between study and
climate variables prevented the inclusion of both factors in the models. As such, analyses did
not include any random variables.We partitioned vital rates into three categories based on
sample size and performed analyses accordingly. For vital rates with less than ten estimates, we
report the weightedmean. For vital rates with 10–20 estimates, we restricted the model set to
sevenmodels (year, latitude, ecoregion, individual, habitat, nesting attempt [for nest success
and clutch size]; null [intercept-only]; Table 2), which we will refer to as the limited model set.
For ecoregion, we established two categories of ecoregion based on the four ecoregions speci-
fied in McDonald et al. [62]. The two categories were the sand shinnery oak prairie ecoregion
(including NewMexico and the southern portion of the Texas pandhandle) and all other ecore-
gions (including northern Texas, Oklahoma, Kansas, and Colorado). These two areas are
spatially separate portions of the lesser prairie-chicken geographic distribution, and there is
evidence that there is no genetic or demographic connectivity between the two areas [63, 64].
We also included a timemodel for chick survival that included a parameter for the number of
days over which survival was estimated.We further included post hoc models for clutch size
containing the interaction between nesting attempt and other key variables, including year,
latitude, ecoregion, age class, and habitat. For vital rates with greater than 20 estimates, we
first rankedmodels in the limited model set (Table 2). We included variables with significant
parameter estimates (i.e. 95% confidence intervals that did not include zero) found in the
best and competingmodels in all of the climate models.We examined eleven climate models:
null, drought, average temperature, average precipitation, extreme temperature, extreme pre-
cipitation, and five additional models with the interaction between each of the five types of cli-
mate variables and ecoregion (Table 2). We wanted to include the ecoregion-climate variable
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interactionmodels to account for the possibility that climate variables affected vital rates differ-
ently in the two different portions of the lesser prairie-chicken’s geographic distribution. For
all climate models, we checked the variance inflation factors for all variables to determine the
degree of multicollinearity. Variables in all models were included as fixed effects and had vari-
ance inflation factors less than four. Models were ranked using Akaike’s Information Criterion
corrected for small samples sizes (AICc,), where the lowest value is considered to be the best
model in the set of models and models within two units are competing models [65, 66]. We
also computed Akaike weights to evaluate the relative support for each model. In cases with
competingmodels, we usedmodel averaging to make parameter estimates. All models were
implemented in R [67] using standard functions and the AICcmodavg package. Nest initiation,
chick survival, and adult/subadult survival were arcsine transformed, renest initiation was
square root transformed, and nest success was log transformed to meet assumptions of normal-
ity and homoscedasticity.

Results

We found 44 relevant papers of which 25 contained sufficient data for the quantitative synthe-
sis and met all of our eligibility requirements. Studies were conducted across the lesser prairie-

Table 2. Model sets used in the analysis of lesser prairie-chicken vital rates.

Model Set Model K Parameters

Limited Model

Set

Null 2 Intercept only

Habitat 4 Habitat (sand sagebrush, sand shinnery oak, mixed)

Year 3, 5 Year of study; season1 (warm, cool, both)

Individual 4, 6 Sex1 (male, female, both); age class (subadult, adult, both)

Latitude 3 Latitude of study site

Ecoregion 3 Ecoregion (sand shinnery oak prairie, other ecoregion)

Nesting attempt2 4 Nesting attempt (1st, 2nd, both)

Nesting attempt interactions (set

including 5 models)3
7,

10

Nesting attempt (1st, 2nd, both); other variables (year, latitude, ecoregion, habitat, or age

class); interaction terms

Time4 3 Number of days included in original estimate

Climate

models

Null 4–7 Parameters from best model in limited model set (also included in all climate models)

Average Temperature 6–9 Mean maximum daily temperature5; mean minimum daily temperature2; number of days with

a minimum below freezing6

Average Precipitation 6–9 Total precipitation7; total snow fall; number of days with more than 0.25 cm of precipitation5

Extreme Temperature 6–9 Number of days with a high over 32.2˚C5; extreme maximum temperature7; extreme minimum

temperature2; number of days with a minimum below -17.8˚C1

Extreme Precipitation 6–9 Number of days with greater than 2.5 cm of precipitation; maximum snow depth

Drought 5–8 Palmer drought severity index

Climate interaction with ecoregion

(set of 5 models)

7–

12

Ecoregion; climate variable(s); interaction between ecoregion and climate variables

1 Only included in the analysis of subadult/adult survival.
2 Only included in the analysis of clutch size and nest success.
3 Only included in the analysis of clutch size; developed as post-hoc models.
4 Only included in the analysis of subadult/adult and chick survival.
5 Only included in the analysis of clutch size and subadult/adult survival.
6 Only included in the analysis of nest success and subadult/adult survival.
7 Only included in the analysis of nest success.

doi:10.1371/journal.pone.0163585.t002
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chicken geographic range, except for Colorado (Table 1, data in S2 File). Egg hatchability and
brood success had low sample sizes, and as such, we only present the weightedmeans (± stan-
dard error). Egg hatchability was estimated as 0.918 ± 0.043 (N = 5 estimates, 125 total nests)
at three sites in Kansas, Oklahoma, and Texas, which included all three habitat types. Brood
success was estimated at three sites in Kansas, NewMexico, and Texas, which also included all
three habitat types. Brood success was estimated for time periods from 18 to 68 days, but the
amount of time examined did not affect the estimate (p = 0.86). Brood success was estimated as
0.134 ± 0.072 (N = 5 estimates, 246 total broods).

Nest initiation, nest re-initiation, and chick survival had intermediate sample sizes. As such,
we used the limited model set. The nest initiation probability was estimated at two sites in Kan-
sas and Texas, and one site in NewMexico. The latitude model was the best model with the
null and habitat models competing (Table 3; S1 Table for full AIC tables). However, only habi-
tat parameters had confidence intervals that did not include zero. The nest initiation probabil-
ity (N = 13 estimates, 370 females) was lower in mixed habitat (0.6381 ± 0.102) than sand
sagebrush (0.936 ± 0.062) with sand shinnery oak intermediate (0.787 ± 0.112). Nest re-initia-
tion was also estimated at two sites in Kansas and Texas, and one site in NewMexico. The best
model for nest re-initiation was the ecoregionmodel with the null model and latitude model
competing (Table 3 and S1 Table). However, model-averaging revealed that only the intercept
had a confidence interval that did not include zero. Nest re-initiation was estimated at
0.213 ± 0.050 (N = 12 estimates, 204 females). Chick survival was estimated for only two sites
in Kansas (both sand sagebrush; N = 13 estimates, 117 chicks). Because of the lack of variability
in many of the parameters (habitat, latitude, sex), the model set for chick survival included
only three models: the null, year, and time. The timemodel was the best (r2 = 0.36) with the
null model competing (Table 3 and S1 Table). Daily chick survival increasedwith the number
of days that survival was estimated [arcsine(survival) = 1.190 (± 0.045) + 0.003(± 0.0012)�

days], where survival estimates were made over 14 to 60 days (Fig 1).
We examined climate models for clutch size, nest success, and subadult/adult seasonal sur-

vival (i.e. for three-month periods). Clutch size was estimated in all four states (N = 31 esti-
mates, 363 nests), including three sites in Kansas and two sites each in NewMexico,
Oklahoma, and Texas. The best model from the limited model set was the nesting attempt lati-
tude interactionmodel with a highmodel weight (0.99; Tables 3 and S1). As such, nesting
attempt, latitude, and the interaction were used as the null model, which was the best out of the
climate model set with no models competing (Tables 4 and S2). Clutch size increasedwith lati-
tude for first nesting attempts, but decreasedwith latitude for second nesting attempts (r2 =
0.91; Fig 2). This relationship resulted in very little difference in clutch size between nesting
attempts in the southern latitudes, but first nesting attempts had greater clutch sizes than sec-
ond nesting attempts in the northern latitudes.

Nest success was estimated in all four states (N = 32 estimates, 506 nests), including four
sites in Texas, three sites in NewMexico, two sites in Kansas, and only one site in Oklahoma.
The best model from the limited model set was the nesting attempt with a model weight of 0.93
(Table 3). We included nesting attempt in all of the climate models. Of the climate model set,
the null model containing only nesting attempt was the best (model weight = 0.46; Table 4)
with the drought model competing. However, the drought parameter had a confidence interval
that overlapped zero. Second nesting attempts (0.091 ± 0.245) had lower nest success than first
nesting attempts (0.632 ± 0.091), and estimates that included both first and second nesting
attempts were intermediate (0.297 ± 0.091).

Seasonal subadult/adult survival was estimated at one site in Kansas, four sites in Texas, and
one site in NewMexico (N = 32 estimates with a combined samples size of 1395 individuals).
The best model from the limited model set was the individual model with no models
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competing (Table 3). Only the age class parameters had confidence intervals that did not
include zero; these were incorporated into all climate models. This null model was the best cli-
mate model (r2 = 0.44, Table 4) with several climate models competing. However, all of the cli-
mate variable slopes had confidence intervals that included zero. Seasonal survival (i.e. over
three months) was greater for mixed age classes (0.902 ± 0.035) than adults (0.733 ± 0.027)
with intermediate survival for subadults (0.834 ± 0.063).

Table 3. Model ranking for the limited model set for each vital rate, where K is the number of parame-

ters and ωi is the model weight.

Vital Rate Model K ΔAIC ωi

Nest Initiation Latitude 3 0 0.34

Null 2 0.36 0.29

Habitat 4 1.95 0.13

Ecoregion 3 2.04 0.12

Year 3 3.45 0.06

Individual 4 3.50 0.06

Nest Re-initiation Rate Ecoregion 3 0 0.39

Null 2 0.73 0.27

Latitude 3 0.90 0.25

Year 3 3.95 0.05

Individual 4 4.91 0.03

Habitat 4 10.91 < 0.01

Chick Survival Time 3 0 0.74

Null 2 2.39 0.22

Year 3 5.72 0.04

Clutch Size Nesting attempt, latitude interaction 7 0 0.99

Nesting attempt, ecoregion interaction 7 8.97 0.01

Nesting attempt, year interaction 7 33.39 < 0.01

Nesting attempt habitat interaction 10 34.90 < 0.01

Nesting attempt 4 35.82 < 0.01

Ecoregion 3 44.85 < 0.01

Latitude 3 45.62 < 0.01

Nesting attempt, age class interaction 7 47.81 < 0.01

Habitat 4 53.20 < 0.01

Null 2 60.44 < 0.01

Individual 4 60.74 < 0.01

Year 3 62.40 < 0.01

Nest Success Nesting attempt 4 0 0.93

Null 2 6.65 0.03

Year 3 9.06 0.01

Ecoregion 3 9.06 0.01

Latitude 3 9.07 0.01

Habitat 4 10.4 0.01

Individual 4 11.22 < 0.01

Subadult/Adult Survival Individual 6 0 0.98

Habitat 4 8.75 0.01

Null 2 12.02 < 0.01

Year 6 12.07 < 0.01

Latitude 3 14.01 < 0.01

Ecoregion 3 14.37 < 0.01

doi:10.1371/journal.pone.0163585.t003
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Discussion

We were able to compare the importance of climate means and extremes for three lesser prairie-
chicken vital rates: clutch size, nest success, and subadult/adult seasonal survival. Climatic factors
were never included in the best model. Previous work has examined climate extremes and aver-
ages separately, and it is clear that both can affect population vital rates (e.g., [16, 19]). Sometimes
temperature averages and extremes can affect the same vital rate simultaneously, as was found for
the greater sage-grouse,Centrocercus urophasianus [68], and recent reviews have highlighted the
need to include extreme events in climate change experiments on communities and ecosystems
[21, 22]. However, our results show that life history and geographic factors can be better predictors
of vital rates than climate variables in some cases, though this result may be due to methodology.

The lack of importance of climate variables may have occurred for a number of reasons.
First, our sample size may have been too low to account for relationships with climate variables,
and our method of accounting for vital rate precision with sample size may have had low accu-
racy. Second, climate data from nearby weather stations may not accurately reflect the

Fig 1. Relationship between lesser prairie-chicken daily chick survival and the amount of time over which survival was

estimated. Circles indicate the relative sample size for each survival estimate.

doi:10.1371/journal.pone.0163585.g001
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microclimates actually experiencedby individuals. Different microhabitats are known to
greatly affect the microclimates and operative temperatures experiencedby individuals [69],
and lesser prairie-chickens select microclimates that are cooler and more humid, which facili-
tates their survival [32] and is dependent on relative conditions [70]. If broader weather station
data does not accurately reflectmicroclimates experiencedby individuals, syntheses combining
published data with off-study site climate data may have only a limited ability to detect trends.
However, our results showing a lack of trends between climate and vital rates may also be due
to time lags in climate variable effects or result from adaptations to different climatic regimes
in different areas of the lesser prairie-chicken geographic distribution.

Previous work has found that climatic variables can affect lesser prairie-chicken vital rates,
particularly in the SouthernHigh Plains. For example, increases in winter temperature decrease
daily nest survival [23]. There is also evidence that lesser prairie-chicken nest temperatures can

Table 4. Model ranking for climate models for each vital rate, where parameters included in all models for each vita rate are in parentheses, K is

the number of parameters, and ωi is the model weight.

Vital Rate Model K ΔAICc ωi

Clutch Size Null (nest attempt, latitude interaction) 7 0 0.54

Average precipitation, ecoregion interaction 10 2.01 0.20

Drought 8 2.74 0.17

Extreme precipitation 9 4.85 0.06

Extreme temperature 9 5.92 0.03

Average temperature 9 5.94 0.03

Average precipitation 9 6.20 0.03

Drought, ecoregion interaction 10 10.34 < 0.01

Average temperature, ecoregion interaction 12 14.52 < 0.01

Extreme precipitation, ecoregion interaction 12 14.59 < 0.01

Extreme temperature, ecoregion interaction 12 20.58 < 0.01

Nest Success Null (nest attempt) 4 0 0.46

Drought 5 1.91 0.18

Extreme temperature 6 2.74 0.12

Extreme precipitation 6 3.33 0.09

Average precipitation 6 3.47 0.08

Average temperature 5 4.21 0.06

Drought, ecoregion interaction 7 5.70 0.02

Average precipitation, ecoregion interaction 9 12.49 < 0.01

Extreme precipitation, ecoregion interaction 9 12.53 < 0.01

Extreme temperature, ecoregion interaction 9 13.09 < 0.01

Average temperature, ecoregion interaction 9 13.38 < 0.01

Subadult/Adult Survival Null (age) 4 0 0.27

Extreme Precipitation 6 0.01 0.27

Average Precipitation 6 1.65 0.12

Average Temperature 6 1.69 0.12

Drought 5 1.79 0.11

Extreme Temperature 6 1.94 0.10

Drought, ecoregion interaction 7 7.65 0.01

Extreme temperature, ecoregion interaction 9 7.69 0.01

Extreme precipitation, ecoregion interaction 9 10.49 < 0.01

Average temperature, ecoregion interaction 9 10.61 < 0.01

Average precipitation, ecoregion interaction 9 11.85 < 0.01

doi:10.1371/journal.pone.0163585.t004
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exceed the threshold for egg viability during extreme heat waves [23]. These types of relation-
ships may be different in other parts of the geographic distribution or may be stronger with dif-
ferent climate variables.While we did examine different relationships between climate
variables and vital rates in different areas of the geographic range, our statistical power to eval-
uate these more complex relationships was limited.

Clutch size in temperate birds typically increases with latitude [71, 72]. Our data also shows
this trend for first nesting attempts, which has been suggested previously for lesser prairie-
chickens [52]. However, clutch size decreasedwith latitude for second nesting attempts, a
trend that was based on a much smaller sample size than the first nesting attempt. This results
in similar clutch sizes for first and second nest attempts at the southern end of the distribution,
but much greater clutch sizes for first nest attempts than second nest attempts at the northern
end of the distribution. Latitude integrates a number of climatic and habitat factors that may
cause it to have a greater predictive power than any of those variables by themselves. However,
previous work has found weak or no relationship between clutch size and climate in lesser prai-
rie-chickens [23, 52], which is consistent with our results. Also, latitudinal changes in climate

Fig 2. Relationship between lesser prairie-chicken clutch size and latitude of the population. Circles indicate the relative sample

size for each clutch size estimate.

doi:10.1371/journal.pone.0163585.g002
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and habitat likely lead to greater fitness payoffs for different reproductive strategies along that
gradient. Across many bird species, there is a tradeoff between clutch size and the number of
nesting attempts that corresponds with latitude [71], which may be driven by latitudinal
changes in the onset and duration of the breeding season [73]. Although the latitude model
was a competingmodel for the nest re-intiation rate, the parameter estimate’s confidence inter-
val included zero, which is not consistent with a tradeoff between clutch size and nest re-intia-
tion rate. Some birds also trade off more clutches with fewer eggs per clutch in the face of
higher predation risk as a bet-hedging strategy [74].

Lesser prairie-chicken nest success was greater for first nesting attempts than second nesting
attempts. This is contrary to the closely related greater prairie-chicken (Tympanuchus cupido),
which has greater nest success for second nesting attempts [75]. Additionally, sage-grouse dis-
play no difference in nest success between first and second nesting attempts [76]. Further
modeling work will be necessary to understand how these changes affect recruitment and pop-
ulation growth rates across the lesser prairie-chicken geographic range.

Our modeling of lesser prairie-chicken subadult/adult seasonal survival (i.e. over three
months) showed no effect of any climate variables. Because of the limited sample size and the
vast number of different periods of time over which survival was estimated, our power to detect
effects of climate was likely limited. Standardized time periodswould likely increase the ability
to detect overall trends in future studies. We did find that subadults had greater survival than
adults overall. However, there were few estimates of subadult survival when compared with
adult survival in the data set, and this likely skewed this result. A greater number of subadult
survival estimates will be necessary to assess this trend.

Our results show that life history and geography are the primary factors affecting lesser prai-
rie-chicken vital rates. We found no effects of climate. Other studies have found equal impor-
tance of climate averages and extremes [68], but few studies have compared climatic averages
and extremes directly. Including both averages and extremes greatly complicates models pre-
dicting the current and future effects of climate change on population dynamics. As such, there
is great value in performing additional studies comparing climate averages and extremes across
a variety of species.With greater information, we can determine whether only one type of cli-
mate variable can result in robust population predictions or whether both or none are neces-
sary. Expanding this type of work will help determine which species are most vulnerable to a
changing climate and how managers may be able to mitigate that change.
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