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Abstract

Objective—To evaluate the effectiveness of ceftriaxone treatment in attenuating relapse-like 

ethanol drinking behavior in male P rats following 14-weeks of continuous ethanol consumption.

Methods—After 14-weeks of continuous access to free choice of 15% and 30% ethanol, male P 

rats were deprived of ethanol for two weeks. On the last five days of abstinence period, P rats 

were treated, once a day, with either saline or ceftriaxone (50 or 200 mg/kg; i.p.). This was 

followed by re-exposure to ethanol for the next 10 days to simulate the relapse-like ethanol 

drinking behavior.

Results—Ceftriaxone treatment (during abstinence) reduced ethanol intake upon re-exposure to 

ethanol, compared to the saline treated P rats. This statistically significant reduction in ethanol 

consumption in P rats following treatment with ceftriaxone (200 mg/kg/day) was observed from 

Day 2 to Day 9. Similarly, water consumption in P rats treated with ceftriaxone was significantly 

higher than the saline treated group between Day 2 and Day 7. Importantly, ceftriaxone treatment 

at both doses did not cause any significant changes in body weight compared to saline treated 

group.

Conclusions—We report here that ceftriaxone at higher dose has been found to be effective in 

the attenuation of relapse-like ethanol-drinking behavior in chronic ethanol intake model. This is 

in accordance with previous data from our lab in cocaine animal model demonstrating that only 

higher dose of ceftriaxone has been effective in attenuating cocaine relapse.
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Introduction

Relapse rates for addiction were found to be similar to those of chronic illness such as 

hypertension, asthma, diabetes [1]. Various factors, external and internal, have been 

associated with relapse to drug-seeking and drug-consumption behaviors [2–5]. Much 

attention has been focused for studying relapse to ethanol consumption following a period of 

abstinence [6–10]. Several factors have been attributed to this resumption of ethanol 

consumption [11–13]. Subsequently, studies have revealed multiple targets/biomarkers for 

the prediction and treatment of alcohol relapse [14,15].

The significance of glutamatergic system in development of alcohol dependence has been 

extensively studied [16]. Ethanol has been suggested as an inhibitor of the N-Methyl-D-

Aspartate (NMDA) receptors and chronic exposure to ethanol results in increased expression 

of these receptors [17–19]. Interestingly, withdrawal from alcohol results in a 

hyperexcitability state which has been implicated in withdrawal related seizures and 

neuronal cell death [20–22]. Apart from influencing the expression of the NMDA receptors, 

we have previously reported the role of the major glutamate transporter, GLT1, in the 

nucleus accumbens (NAc) [23].

Ceftriaxone was found effective in preventing relapse to cocaine seeking in rats [24,25]. 

Furthermore, we have recently demonstrated the effectiveness of ceftriaxone treatment in 

reducing ethanol intake by ethanol-dependent alcohol-preferring (P) rats via modulation of 

GLT1 expression in both NAc and prefrontal cortex (PFC) [23,26]. Moreover, since relapse 

to ethanol drinking has been linked to the increased glutamate neurotransmission in the 

mesocorticolimbic reward pathway, we also have evaluated the efficacy of ceftriaxone 

treatment in relapse-like drinking paradigm. Five weeks of free-choice ethanol exposure was 

followed by a two-week abstinence period [27].

While previous work concerning efficiency of ceftriaxone treatment in relapse-like ethanol- 

drinking behavior proved effective following five-weeks of exposure to ethanol, our aim for 

the present study was to evaluate the therapeutic value of ceftriaxone treatment in relapse-

like ethanol-drinking by P rats following 14-weeks of ethanol dependence. After 14-weeks 

of continuous access to free choice of 15% and 30% ethanol solutions, P rats were deprived 

from ethanol for 2 weeks. On the last 5 days of this abstinence period, P rats were treated, 

daily once, with either saline or ceftriaxone (50 or 200 mg/kg; i.p.). This was followed by 

re-exposure to ethanol for the next 10 days to simulate the relapse-like ethanol-drinking 

behavior.

Materials and Methods

Animals

Male P rats were obtained from the Indiana University School of Medicine (Indianapolis, 

IN) breeding colonies. Animals, single housed in wood-chip bedded plastic cages, were 

housed in a temperature (21°C) and humidity (50%) controlled vivarium maintained on a 

12/12 hour light/dark cycle. Rats had ad lib access to food and water for the entire duration 

of this study, including abstinence period. Protocol approved by the Institutional Animal 
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Care and Use Committee of the University of Toledo, Health Science Campus, Toledo, OH, 

was used for this study. The protocol was designed based on the guidelines set forth by the 

Institutional Animal Care and Use Committee of the National Institutes of Health and the 

Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal 

Resources, Commission on Life Sciences, 1996). Before the start of the treatment (i.p.), 

animals were divided in three groups: 1) saline group (n=5); 2) ceftriaxone 50 mg/kg 

treatment group (n=5); 3) ceftriaxone 200 mg/kg treatment group (n=5). Ceftriaxone was 

administered as a solution made in physiological saline.

Ethanol intake measurements

P rats at the age of 90 days old were given continuous access to two concentrations of 

ethanol solution, 15% and 30%, prepared with distilled water for 14 consecutive weeks. 

Multiple choices of ethanol solutions (15% and 30%) is an established model of ethanol 

drinking that is known to enhance ethanol intake in P rats [28,29]. Starting week 11, body 

weight, water intake, and ethanol consumption by P rats were recorded three times per week 

(Monday, Wednesday, and Friday). Ethanol and water measurements were taken to the 

nearest 10th of a gram by subtracting the weight of the bottle from its previous weight. The 

average of the data observed during weeks 13 and 14 for the three parameters- body weight, 

water intake, and ethanol consumption- served as the baseline value for the study. 

Importantly, animals with a baseline ethanol intake of less than 4 g/day were subsequently 

discarded from this study. After the completion of 14 weeks of ethanol consumption, 

animals were randomly divided into saline and ceftriaxone treatment groups and deprived of 

ethanol solutions for the next two weeks. During the last five days of the two-week 

abstinence period, saline or ceftriaxone was injected once daily around noon. We have 

chosen to treat the animals for 5 days based on previous studies from our lab and others 

demonstrating the effective of five-day treatment paradigm in upregulating the GLT1 levels 

in the key brain regions of the mesocorticolimbic reward pathway [23,25,30,31]. 

Subsequently, at the end of the two-week abstinence, this time point was also 24 h after the 

last dose of either saline or ceftriaxone, all P rats were re-exposed to the ethanol solutions 

and ethanol consumption, water intake, and body weights measurements were recorded daily 

for the next 10 days. On the 11th day, all animals were euthanized by exposure to CO2 

inhalation.

Statistical analyses

We used general linear model (GLM) repeated measures for statistical analysis (using SPSS 

statistical program) of data related to ethanol consumption, water intake, and P rat body 

weight. Furthermore, to observe the day-wise effect of treatment, data were analyzed 

employing one-way ANOVA for comparing the three treated groups using post hoc 

dunnett’s (two-sided) test with equal variances assumption since there was homogeneity of 

variance for ethanol and water intakes as well as body weight. All statistical tests were based 

on p<0.05 level of significance.
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Results

Effect of ceftriaxone on ethanol intake

The effect of ceftriaxone treatment on relapse-like ethanol drinking behavior was monitored 

for 10 days following abstinence. Figure 1 represents the average ethanol consumption by P 

rats (g/kg/day) treated with either ceftriaxone (50 or 200 mg/kg/day) or saline vehicle. 

Baseline value represents the average ethanol consumed over the two weeks preceding 

abstinence (weeks 13 and 14). A GLM repeated measures analysis comparing ethanol 

consumption after re-exposure between the three groups revealed a significant main effect of 

Day [F(1,10)=7.65, p<0.05)] along with a significant Day X Treatment interaction effect 

[F(2,20)=2.11, p<0.05)]. One-way ANOVA, post hoc dunnett’s test, revealed that 

ceftriaxone treatment (during ethanol deprivation) induced reduction of ethanol intake upon 

re-exposure to ethanol, compared to saline treated group, was statistically significant 

(p<0.05) only for the higher dose (200 mg/kg). This effect was observed from Day 2 to Day 

9. The lower dose of ceftriaxone used in this study (50 mg/kg/day) did not induce any 

significant decrease in ethanol consumption. These findings suggest that higher dose, which 

is known to upregulate GLT1 levels in key reward brain regions, has been effective in 

reducing ethanol intake.

Effect of ceftriaxone on water consumption

Following treatment with ceftriaxone, P rats consumed significantly higher amounts of 

water when compared to saline treated animals (Figure 2). A significant main effect of Day 

was observed [F(1,10)=3.53, p<0.05)] along with a significant Day X Treatment interaction 

effect [F(2,20)=2.93, p<0.05)]. Interestingly, one-way ANOVA revealed that water 

consumption was statistically different (p<0.05) in ceftriaxone (50 mg/kg/day) treated group 

as compared to saline treated group only on Day 2 and Day 5. Alternatively, animals treated 

with higher dose of ceftriaxone (200 mg/kg/day) consumed significantly higher amounts of 

water as compared to saline treated group, on Days 2, 3, and 7. These findings suggest that 

increase in water intake is considered as a compensatory mechanism for the decrease in 

ethanol intake, which is reflecting the amount body fluid intake.

Effect of ceftriaxone on body weights

A GLM repeated measures analysis revealed a significant main effect of Day [F(1,10)=6.83, 

p<0.05)] along with a significant Day X Treatment interaction effect [F(2,20)=3.98, 

p<0.05)] in body weights. One-way ANOVA did not reveal any significant differences in 

body weights between both ceftriaxone and saline treated groups (Figure 3). These findings 

suggest that higher dose did not induce any changes in food intake that may reflect the body 

weight of animals.

Discussion

We report in this study that after long term continuous ethanol consumption (14 weeks) 

followed by two week deprivation, a dose dependent (50 vs. 200 mg/kg/day) effect was 

observed upon relapse-like ethanol drinking paradigm. During the 10 days of re-exposure to 

free-choice ethanol, the 200 mg/kg/day dose of ceftriaxone reduced ethanol intake from Day 
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2 to Day 9 compared to saline treated group. However, towards the end of the present study 

(Day 10), animals treated with the 200 mg/kg/day dose of ceftriaxone were found to 

consume amounts of ethanol equivalent to the saline-treated group. The lower dose (50 

mg/kg/day) of ceftriaxone, did not change the ethanol drinking pattern following re-

exposure.

These findings are in accordance with our previous studies that demonstrated that 

ceftriaxone at higher dose (200 mg/kg/day) attenuated reinstatement to cocaine-seeking 

behavior; however, the lower dose of ceftriaxone (50 mg/kg/day) did not induce any effect 

[30]. It is important to note that higher dose of ceftriaxone has been associated with 

upregulation of GLT1 in PFC and NAc [30].

Modulation of glutamatergic neurotransmission, including treatment with ceftriaxone, has 

been proved effective in attenuating relapse to drug addiction [24,25,27,32,33]. Studies 

investigated the underlying causes of alteration of glutamate neurotransmission have 

revealed that changes in the levels of two important proteins expressed on astrocytes, xCT 

[24,34] and GLT1 [23,25,31,35], are key players in drug abuse, including ethanol and 

cocaine.

Ceftriaxone and other compounds have been shown to modulate the glutamatergic 

neurotransmission primarily through the upregulation of GLT1 and xCT levels in the NAc in 

model of relapse to cocaine-seeking behavior [24,36]. Interestingly, administration of 

mGluR2/3 agonist and mGluR5 antagonist were found to attenuate cue-induced 

reinstatement of ethanol-seeking, which demonstrated the significance of glutamatergic 

neurotransmission in relapse to ethanol [37–39]. Our previous studies revealed the 

effectiveness of modulation of extracellular glutamate levels in the mesocorticolimbic 

pathway in relapse-like ethanol-drinking behavior [27]. After five weeks of ethanol 

exposure to P rats, ceftriaxone treatment was found to upregulate GLT1 in the NAc and 

PFC.

In the present study, although effective initially in reducing ethanol intake following re-

exposure to ethanol in a 14 week relapse-like ethanol drinking paradigm, ceftriaxone (200 

mg/kg/day) treatment did not maintain a statistically significant reduction in ethanol intake 

towards the end of the study period (Day 10). An explanation for the observed deviation of 

results compared to our previous study based on five-weeks of ethanol exposure can be 

found in the fact that changes in CNS neurotransmission are based on length of exposure 

[29]. Long-term exposure to ethanol is known to precipitate extensive modulation of the 

neurotransmitter systems [40–42]. The results from the present study are consistent with our 

recent finding that demonstrated the effects of ceftriaxone treatment after 14-weeks of 

continuous ethanol exposure [43]. After 14 weeks of continuous ethanol consumption, 

ceftriaxone induced reduction in ethanol intake, however, this effect diminished towards the 

end of the post-treatment period. In order to better understand the differences in 

ceftriaxone’s effectiveness based on length of ethanol exposure, further studies are 

warranted to examine the changes in neurotransmitter systems in 5-week versus 14- week 

ethanol-drinking paradigms.
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Ceftriaxone treatment has been found effective in upregulating GLT1 levels in brain reward 

regions at 200 mg/kg, i.p. in rats [44,45]. This dose has been widely used in studies 

exploring the potential benefits, via GLT1 upregulation and subsequent modulation of 

glutamatergic neurotransmission, of ceftriaxone in attenuating drug dependence [46,47]. 

Importantly, while ceftriaxone treatment at higher doses attenuates the motivation for drug 

of abuse, it does not affect the responses for natural rewards, including sweet food [48]. 

Similarly, in our recent studies, we have shown that ceftriaxone treatment (200 mg/kg) does 

not affect the daily sucrose intake or body weights of P rats [23]. Therefore, based on the 

existing studies, this higher dose of ceftriaxone (200 mg/kg) was examined for its potential 

benefits in 14 week relapse-like ethanol-drinking model.

We conclude here that higher dose of ceftriaxone was effective in attenuating relapse-like 

ethanol-drinking behavior. However, the lower dose of ceftriaxone was ineffective. These 

findings are in accordance with our previous studies that revealed that higher dose of 

ceftriaxone, a dose known to upregulate GLT1 in PFC and NAc, was effective in attenuating 

reinstatement to cocaine-seeking behavior. Together, these findings suggest that the dose of 

ceftriaxone inducing upregulation of GLT1 is effective in the attenuation of relapse-like 

ethanol-drinking and cocaine-seeking behaviors.
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Figure 1. 
Graph represents average ethanol intake (g/kg/day) during the 10 days of re-exposure to 

ethanol. Based on GLM repeated measures followed by one-way ANOVA, ceftriaxone 

treatment (200 mg/kg/day) resulted in a significant reduction in ethanol consumption 

compared to saline vehicle-treated control group from Day 2 to Day 9. Lower dose of 

ceftriaxone (50 mg/kg/ day) did not cause any reduction in ethanol intake by P rats. Data are 

expressed as mean ± SEM (*: p<0.05). Saline group (n=5); ceftriaxone groups (50 and 100 

mg/kg, i.p. body weight, n=6 for each group)
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Figure 2. 
Graph represents average water intake (ml/kg/day) during the 10 days of re-exposure to 

ethanol. Based on GLM repeated measures followed by one-way ANOVA, ceftriaxone 

treatment resulted in significantly higher water consumption compared to saline-treated 

control group on Days 2 and 5 for 50 mg/kg, and on Days, 2, 3, and 7 for 200 mg/kg. Data 

are expressed as mean ± SEM (*: p<0.05). Saline group (n=5); ceftriaxone groups (50 and 

100 mg/kg, i.p. body weight, n=6 for each group)
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Figure 3. 
Graph represents average body weight (g) of P rats during the 10 days of re-exposure to 

ethanol. Based on GLM repeated measures followed by one-way ANOVA, ceftriaxone 

treatment (50 and 200 mg/kg/day) did not cause a significant change in body weights as 

compared to saline vehicle-treated control group. Data are expressed as mean ± SEM). 

Saline group (n=5); ceftriaxone groups (50 and 100 mg/kg, i.p. body weight, n=6 for each 

group)
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