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Abstract

Background

Infant morbidity is a topic of interest because it is used globally as an indicator of the status

of health care in a country. A large body of evidence supports an association between bacte-

rial vaginosis (BV) and infant morbidity. When estimating the relationship between the pre-

dictors and the estimated variable of morbidity severity, the latter exhibits imbalanced data,

which means that violation of symmetry is expected. Two competing methods of analysis,

that is, (1) probit and (2) logit techniques, can be considered in this context and have been

applied to model such outcomes. However, these models may yield inconsistent results.

While non-normal modeling approaches have been embraced in the recent past, the

skewed logit model has been given little attention. In this study, we exemplify its usefulness

in analyzing imbalanced longitudinal responses data.

Methodology

While numerous non-normal methods for modeling binomial responses are well established,

there is a need for comparison studies to assess their usefulness in different scenarios,

especially under a longitudinal setting. This is addressed in this study. We use a dataset

from Kenya about infants born to human immunodeficiency virus (HIV) positive mothers,

who are also screened for BV. We aimed to investigate the effect of BV on infant morbidity

across time. We derived a score for morbidity incidences depending on illnesses reported

during the month of reference. By adjusting for the mother’s BV status, the child’s HIV sta-

tus, sex, feeding status, and weight for age, we estimated the standard binary logit and

skewed logit models, both using Generalized Estimating Equations.

Results

Results show that accounting for skewness in imbalanced binary data can show associa-

tions between variables in line with expectations documented by the literature. In addition,

an in-depth analysis accounting for skewness has shown that, over time, maternal BV is

associated with multiple health conditions in infants.
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Interpretation

Maternal BV status was positively associated with infant morbidity incidences, which high-

lights the need for early intervention in cases of HIV-infected pregnant women.

Introduction

Skewed and non-normal data are commonly observed in health research. Usually, the dataset

is transformed, censored, or truncated to impose normality, rather than modeling the data in

its natural state [1]. Many conventional approaches to modeling lead to incorrect estimates of

parameters and standard errors due to the assumptions imposed.

For example, imbalances can occur in binary response data, when symmetry is violated.

There are two types of models which are typically employed to analyze data in these scenarios

—1) logit and 2) probit models. Logit models have error variables that follow a logistic distri-

bution and this type of model is considered to be characteristic of discrete choice models. The

probit model uses the cumulative standard normal distribution function and assumes the

error term is normally distributed. Although this assumption is viewed as a reasonable com-

promise to achieve mathematical simplicity and parsimonious results, its suitability has been

doubted of late.

Several recent studies have investigated various ways of handling non-normal data. How-

ever, few have focused on the methodology. For example, a paper published by Bono et al. [2]

details several non-normal distributions typical in health, education, and social science, but

their substantiation in the literature remains scarce. Further, several other distributions are

not considered in this paper, suggesting that they were not common in the study’s period of

reference. However, these distributions could be vital in answering some important scientific

questions on binary responses that suffer from substantial departure from the commonly

assumed symmetric logistic distribution [3–5].

For example, for the Bernoulli distribution, binary asymmetry is defined as the sensitivity

to changes in the independent variable that is not maximized at 0.5. This means that a stimulus

in any of the independent variables for any individual with probability P = 0.5 is not exagger-

ated. Assuming symmetry in some settings could be inefficient and can lead to biased estima-

tors [4].

The importance of normality and symmetry in traditional methods of data analysis cannot

be under-estimated. There is a need for compromise between statistical simplicity and plausi-

ble estimates of parameters when these assumptions do not hold. Questions regarding the suit-

ability of the assumption-based methods have been raised in the literature [4]. Put differently,

although the numerous probability distribution function options can fit the data quite well, the

data need to speak for themselves, rather than being forced into a model with assumptions [1].

There is mounting scientific evidence regarding the inconsistency and weakness of the logit

and probit models for skewed binary response data. Recent studies have proposed alternative

methods for handling binomial responses, such as: a gamma generated logistic distribution

[6], gamma and log-normal distributions [7], improved analysis for skewed continuous

responses [8], a skewed Weibull regression model [9], a generalized logistic distribution [10],

and a skewed logit model [4]. This shows that modeling non-normality continues to be a topic

of importance in recent general research. However, few methods have been considered and

applied in health research. Most of the literature and applications have focused on cross-sec-

tional data in social, political, and economics research [3, 11–15].
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Our study is focused on (1) estimating skewness parameter from GLM (2) applying the

value in a longitudinal study on infant morbidities under GEE [34].

Morbidity is the state of being symptomatic or unhealthy due to a disease or condition [16]

and this can be experienced at any stage in life. This study is focused on BV related morbidi-

ties, since this remains a major point of concern globally and particularly in Africa, where the

majority of BV cases are recorded [17–19]. Child morbidity and mortality as a consequence of

BV in conjunction with human immunodeficiency virus (HIV) has been a significant hin-

drance to meeting goal three of the United Nations Sustainable Development Goals

(UN-SDGs) on Good Health and Well-being [20], which aims to end preventable deaths of

newborns and children under 5 years of age.

The scientific literature has established a link between BV and adverse outcomes in mothers

and their children [21]. Past studies have investigated the occurrence of health deficiencies [22,

23], pregnancy loss, labor complications and preterm delivery [24–26], as well as spontaneous

and recurrent abortions [27] among mothers, while others have reported adverse outcomes

such as neonatal malformations [28] and low birth weight [29] among the babies. While some

studies have tried to investigate the effects of BV in the context of HIV infection [23, 30, 31],

there is still a lack of knowledge regarding the long-term effects in these cases.

To shed light on this topic, we apply the skewed logit model using Generalized Estimating

Equations (GEE) to evaluate the variations in the data across time in months and thereby, bet-

ter understand the infant morbidities. This approach relaxes the strong conditional probability

on a binary response, thereby accommodating for the heterogeneity of repeated measures on

the same subjects, and accounting for interaction effects in the selected covariates across time.

Materials and methods

Data

The Nairobi Infant Morbidity Study (NIMS) was a randomized clinical trial carried out by

scholars in the International AIDS Research and Training Program supported by grant

NICHD-23412 from the National Institutes of Health. The objective was to collect high quality

longitudinal data on morbidity and mortality of babies from HIV-positive pregnant women in

a random sample considering mothers who either breastfed or gave their baby formula. The

description, analysis and findings of the original study can be found elsewhere [32].

The study participants were drawn from a population of 16529 pregnant mothers attending

four antenatal clinics in Nairobi, Kenya. After screening for HIV, 2315 were found to be posi-

tive. Of these women, 425 were selected and verbally agreed to be enrolled in the study. At

each prenatal visit, each woman was subjected to a standard physical and clinical examination,

and an interview.

Before birth, at 32 weeks of pregnancy, pelvic examination, including analysis of vaginal

and cervical secretions were conducted for each woman to determine their BV status. This was

done using sterile Dacron swabs by a trained clinical officer and the Nugent criteria was used

to qualify a woman for a BV diagnosis. A pH value from the swab, of� 7 was considered a

case, indicating alkalinity of the vaginal fluids and inhibition of bad bacteria such as as Tricho-
monas, Candida albicans, Enterobacteriaceae, Staphylococcus and Streptococcus.

Immediately after birth, infants were assessed for HIV using enzyme-linked immunosor-

bent assay (ELISA). Those who tested positive were subjected to a more accurate Polymerase

chain reaction (PCR) test. Infants who had three consecutive negative tests were deemed nega-

tive. The pairs of infants who survived were regularly re-examined over the next two years and

their history of ailments were documented at every visit.

PLOS ONE Skewed-logit for correlated data

PLOS ONE | https://doi.org/10.1371/journal.pone.0246269 February 8, 2021 3 / 16

https://doi.org/10.1371/journal.pone.0246269


The study data was collected in two ways, scheduled and unscheduled visits. Scheduled vis-

its meant that the dyad pairs were supposed to come to the clinic for examination at a specific

time, while unscheduled visits meant they could pop in any time in case of an illness. Other

physical examinations of the baby, including details like sex, weight, and height, were observed

and recorded.

The planned visits were bi-weekly during the first 3 months and monthly thereafter for up

to two years. In all scenarios, data were collected either through parental report or diagnosis at

the hospital or clinic. Of the total number of women enrolled, complete records from birth to

six months were only available for 401 women. The other 24 women either had miscarriages

or still births or did not complete the follow up appointments. Of the 401 women, 74 pairs had

missing values, either for the mother’s BV measure or for the morbidity incidences of the

infants. To address this, we applied a missing completely at random (MCAR) mechanism.

There is sufficient evidence that, using the GEE approach, this approach still enables a consis-

tent estimate of the regression parameters so long as the mean model is correctly specified

[33].

A standard questionnaire developed by the principal investigator of the study to identify ill-

nesses was completed for both the mother and the child. This was achieved using a 19-item

yes/no morbidity questionnaire which purports to measure health status of an infant. The total

score of the questionnaire is computed as the count of all the “yes” responses. There were a

total of 1962 observations from 327 pairs of mothers and babies. From the total score, we cre-

ated a binary response of; (1) those who did not have any illness and (2) those who had either

minimal or severe illnesses. Table 1 presents an initial exploratory analysis used to identify the

asymmetry in the total responses for each month. This evidence of asymmetry justifies the use

of the skewed logit model.

Ethical approval

The study protocol was approved by the institutional review boards of the University of Wash-

ington and University of Nairobi. Verbal consent was obtained from all mothers prior to their

inclusion in the study. The investigators in the study did not require documentation of any

consent for the participants because at the time of the study, written consent was not mandated

by the ethics bodies involved. Therefore, at that time, no procedures regarding written consent

were violated given the research context of doing the study in Kenya.

Statistical model

Generalized Linear Models (GLMs) and the GEEs were used to model infant morbidity. The

first modeling approach to determine the need for the skewed logit model and the value for

skewness was carried out with GLMs [34]. The response variable was the health status of the

Table 1. BV with morbidity incidences reported from month one to six for both BV-exposed and unexposed

babies in the Nairobi data survey.

Time in Months BV present(n = 148) BV absent(n = 179) Total(n = 327)

1 115(78%) 85(47%) 200(61%)

2 97(66%) 84(47%) 181(55%)

3 97(66%) 85(48%) 182(56%)

4 92(62%) 101(56%) 193(59%)

5 86(58%) 96(53%) 182(56%)

6 79(53%) 103(58%) 182(56%)

https://doi.org/10.1371/journal.pone.0246269.t001
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infant within a particular month at the time of the hospital visit or the reported health status

about the infant from the mother. For our study, we considered all health events, whereby a

health event occurred if an infant was reported to have experienced any illness within the

month.

Let Yit be the response for subject i measured at different points in time t = 1, . . ., ni denote

the outcome vector for subjects i = 1, 2, . . ., N and xit is a ni × q matrix of covariate variables

for subject i. The expected value is given by E(Yit) = πit and the linear predictor that relates the

mean to the covariates is given by

kðpitÞ ¼ Zit ¼ xit
⊺β ð1Þ

where xit is the covariate vector for subject i at time t with length q. This includes the infant

weight, mother’s BV status, HIV status of the infant, and feeding status of the infant. k−1(.) is a

known link function such as the skewed logit model and β are regression parameters.

For each infant status of illness at any chosen time point, the response follows a Bernoulli

distribution with pi(probability of being ill=πit) and is specified as:

Yit � Bernð1; pitÞ ð2Þ

To model the outcome, the logit and probit models are preferred options, but they both

have conditional probability distributions, which have a maximum at 0, such that Pi for i 2 (0,

1) is 0.5 and thus, they have a fixed symmetry of 0.5. However, this assumption of symmetry

may not be realistic to all Bernoulli responses and therefore, not desired [4, 11, 15]. For this

reason, the skewed logit approach is employed here, taking advantage of the fact that the logit

model is nested within the skewed logit model (Fig 1). There are reported similarities in terms

of model specification, estimation, and iterations. Using the skewed logit model made it possi-

ble to see if the data were skewed and therefore, to estimate the skewness value.

The probability of a child experiencing illness is given by

Prðillness ¼ 1Þ ¼ k� 1ðx⊺
itβÞ ð3Þ

In this work, we aim to consider a response that violates the symmetry assumption, using

the framework described above. Following Burr [35], k−1(.) accommodates asymmetry

through;

k� 1ð:Þ ¼ Prðyit ¼ 1 j xitÞ ¼ 1 �
1

ð1þ expðxitβÞÞ
a ð4Þ

for α> 0 and this is the skew value to be estimated.

This variation implies that the maximum is no longer restricted to P = 0.5. Since the skew

value cannot be observed, we fit a regression of all covariates under the skewed logit model

using the GLM approach [34]. Further, we use the α obtained as a proxy for the disturbance to

be used in the GEE [36].

To obtain robust standard errors that are meaningful for the parameter estimates, we

adopted the Huber sandwich estimator [37, 38], which has the ability to relax the intra-group

correlation. To increase the efficiency of model convergence, we specify a tolerance value of

0.0001 and set the maximum number of iterations to 100.

The applicability of the two models using the set of covariates was determined by the likeli-

hood ratio test that compares the logit and the skewed logit model to identify any significant

differences [39].
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Estimation of parameters using the GEE

Developed by Liang and Zeger [40] in their land mark paper, GEE can be used to model corre-

lated data and give a marginal inference interpretation. The strength of this approach is its

straightforward application, since the mean response depends on the covariates and not on

any random effects or any previous responses. Thus, only the marginal distribution of the sub-

ject dependent vector is specified.

The variance of the response is a function of the mean and is conditional on the vector of

covariates represented as

Varðyit j xitÞ ¼ vðpitÞ�

where v is the variance function depending on yit and ϕ is the dispersion parameter assumed

to be 1 for the exponential dispersion model family.

Let D be a diagonal matrix of derivatives @πi/@ηi and V(πi) is a ni × ni diagonal matrix to be

decomposed as;

VðpiÞ ¼ D½VðpitÞ�
1
2Iðni�niÞD½VðpitÞ�

1
2 ð5Þ

This estimation equation treats each observation within a given time point as independent.

Our work focuses on the marginal distribution of the response for which the mean and the var-

iance are averaged over the six observation time points. However, the variance of correlated

data does not have a diagonal form and hence, we replace the identity matrix Iðni�niÞ using

methods proposed by Liang and Zeger [40] with another correlation structure Ri(ρ). Gi is the

diagonal matrix with jth the diagonal element equal to v(πij) such that Eq 5 corresponds to Eq 6

Fig 1. Cumulative density function of the skewed logit model with different values of skewness. The bold

continuous line represents the logit model which assumes symmetry.

https://doi.org/10.1371/journal.pone.0246269.g001
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as shown:

Wi ¼ G
1
2
iRiðρÞG

1
2
i

ð6Þ

The working correlation structure Ri with dimension ni × ni is assumed to depend on a vec-

tor of the association parameter ρ. Liang and Zeger [40] stated that the mis-specification of

Ri(ρ) only affects the efficiency of the β̂ and β̂ is robust against mis-specification. In our appli-

cation, we will consider several correlation structures. These include the unstructured struc-

ture, where every measure between two points is assigned its association parameter; the auto-

regressive (AR-1) structure with lag = 1, in which correlation decreases exponentially with the

differences in measurements; the independence structure in which we use the identity matrix

as the correlation structure; and the exchangeable structure in which correlation is assumed to

be equal across different measurements. Liang and Zeger have provided evidence that mis-

specification of the correlation structure only affects β’s efficiency. This is because of the

assumption that the estimation equation for the regression coefficients is orthogonal to the

estimation equation for the correlation coefficients.

The GEE are as follows;

Xj

1¼1

D⊺
iW

� 1

i ðyi � piÞ ¼ 0 ð7Þ

Where Di = GΛi xi, Wi ¼ VðpitÞ
1
2RiðρÞVðpitÞ

1
2 and Λi is a diagonal matrix with jth entry given

by
dk� 1ðZijÞ

dZij
.

The most traditional way of solving the estimating equations is to employ the iterative re-

weighed least squares algorithm, which is a modification of the Newton–Raphson algorithm.

In this approach, the observed Hessian matrix replaces the expected Hessian matrix, using the

Fisher scoring algorithm.

However, McDaniel [41] proposed an alternative approach to estimate β’s such that instead

of the summation in Eq 7, they are evaluated using the matrix form as shown;

x⊺LG G
1
2RiðρÞG

1
2

� �� 1

Z ð8Þ

Several methods of analyzing skewed binary data have been proposed in the literature [9,

42–44]. Of particular importance for this current study is the method described by Prentice

[5] that allows for the elimination of asymmetry through the modification of the inverse link

function of the logit model, given as:

expx⊺β

1þ expx⊺β

� �a

Statistical analysis was then implemented in R version 3.6.3 [45] (The R Development Core

Team, Vienna, Austria). Though most functions are available directly in the software, we

required an extra library including “dplyr” [46] for data manipulation, “glogis” [47] for the

skewed logit Cumulative Density Functions (CDFs) plots with different values of α and the

“geeM” [41] for the skewed logit analysis under the GEE.

The final GEE models were calculated and the probabilities of a child having morbidities

were interpreted. These probabilities were calculated using the inverse-logit function and odds

ratio as the exponential values of the differences in the logits. The p-values were calculated for

each parameter estimate, as were the Z statistic and the model and robust standard errors.
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Results

Application to the real dataset and interpretation of findings

The preliminary analysis showed that 148 (45%) infants were born to women who tested posi-

tive for BV while the remaining 179 (55%) were born to women who tested negative for BV.

185 (57%) infants were breastfed, while 142 (43%) were formula-fed. 168 (51%) were males

and 159 (49%) were female. 61 (19%) of the infants were HIV-positive, while 266 (81%) were

HIV-negative.

It was of scientific interest to model the effects of BV on the marginal probability of an

infant suffering from different morbidities in the first six months of life. Assuming morbidity

incidence as the response, our data had the number of morbidity incidences recorded in a

given month for each infant. Zero was recorded if no incidences occurred.

We sought to assess whether children born to women who tested positive for BV were

more likely to have a higher morbidity incidence than their counterparts and if the effects

would change with time. The literature has shown that BV has more effects during the first

months after birth as the child continues to build immunity as they grow. Also, we expect chil-

dren who gain weight consistently to have fewer morbidity incidences than those babies who

take time to gain weight.

The frequency of morbidity incidence seemed to decrease evenly in the BV present group.

This was not the same in the BV absent group, which evidenced increases and decreases in

morbidities in the different months considered (Table 1). It was, therefore, important to exam-

ine the effect of BV on infant morbidity over time. In order to correctly estimate the marginal

effect of the parameters of interest to be estimated, a distribution had to be chosen for the

dependent variable, which did not involve assuming a specific distribution would apply. Thus,

we considered the following logistic model:

logitðpikÞ ¼ log
pik

1 � pik

� �

¼ b0 þ b1BVi þ b2HIVi þ b3feedingi þ b4malei

þ b5timek þ b6weighti þ b15timek � BVi

ð9Þ

for k = 1, . . ., 6, i = 1, . . ., 327 where Timek = k. Malei = 1 if the ith child is male and 0 if

female, HIVi = 1 if the child tests positive to HIV and 0 otherwise, Breastfedi = 1 if the

child was randomized to the breastfeeding group and 0 if randomized to the formula feeding

group, BVi = 1 if the mother tested positive for BV and 0 if she tested negative, and Weighti is

recorded continuously for each infant across the six months. Data on morbidities from birth

were included in the month 1 tally, and not as an independent time period, since morbidities

due to BV on neonates was found to be insignificant in previous research [21, 32]. We inter-

acted time and BV to assess changes in immunity over the time of exposure.

Our data can effectively account for the within-subject correlation. Hence, we consider the

following correlations structures in terms of independence, as well as whether they are

exchangeable, AR(1), M-dependent, and unstructured. In this paper, we were interested in

comparing two models, the skewed logit-GEE and the standard GEE, when the response is

assumed to be asymmetric. We assessed different correlation structures and all our parameter

estimates were within the acceptable standard error ranges. However, measurements which

were not taken for the same individual exhibit lower correlation and follow a pattern imposed

by AR(1), thus for the interpretation of our work, AR(1) was adopted. For the M-dependent

variable, we use the default m = 1.

Very few iterations are needed for the convergence of the models in GEE. Therefore, we ini-

tially set the maximum iterations to 50, however, the models with M-dependent variable and
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AR(1) correlation structure did not converge. We increased the maximum iterations to 200

and this achieved convergence. More precisely, independence converged after 12 iterations,

exchangeability was achieved after 16 iterations, unstructured compliance was achieved after

14 iterations, AR1 was achieved after 89 iterations and after 108 iterations, the model was m-

dependent.

The results in Table 2 showed a significant differences in the coefficients and their marginal

effect, particularly in the interaction terms. When we chose a p-value = 0.05 level of signifi-

cance, parameter estimates from the standard GEE were not significant. In this case, only time

and gender were significant. However, when using the skewed logit GEE, gender, time, BV,

and the interaction between time and BV were significant.

Model-based vs sandwich-based variance ratio

Table 3 shows the differences in variances from the model and the Huber sandwich estimate

in which we sought to establish by what factor are they different. This was calculated using

V:R ¼
Robust S:E
Model S:E

� �2

As expected, and confirmed by our results, the major differences between the model-based

and empirical variance occur as a result of the independence correlation structure. The largest

differences are in the estimated variance of the BV with the sandwich-based variance ratio.

There are differences, but these do not have a notable influence on the variances. They are

comparable within the correlation structure. The least variances differences are observed in

the AR(1) correlation structure. This supports our choice for using the AR(1) correlation

structure for model interpretation. This is because, for a correctly specified correlation, we

expect the model and sandwich errors to be comparable, thus increasing the efficiency in the

estimation of the β’s.

Effects of time on BV

We proceed and calculate the effects of BV across time on infants given by expðb̂1 þ b̂15timeÞ
and reported in Table 4. This table shows that the effects of BV on morbidity tend to decrease

with time from month 1 to month 5. For example, if we compare month 1 and month 5, we

can conclude that at month 1, the OR of having morbidity incidences are 3.37 times higher for

exposed than unexposed babies. At month 5, the OR decreases to 1.11 for exposed babies. At

month 6, we observe a reverse causality, whereby the unexposed had higher OR for morbidi-

ties. This can be explained such that sick babies had more hospital visits and therefore, were

treated for different illnesses, thus achieving a better health status in the long run. This leaves

the BV unexposed group of babies vulnerable to other illnesses during growth, with minimal

health intervention as they rarely sought medical attention. This is likely due to the non-threat-

ening nature of the health conditions. With time, these could have led to an increase in ill-

nesses experienced by infants in the unexposed group.

Discussion

In the present study, we utilized the skewed logit technique under the GEE framework to ana-

lyze the risk factors associated with BV. We built on the existing contributions put forth by

Nagler [4] and Liang and Zeger [40]. The model adopted in the present study is based on logis-

tic regression, but modified assuming a parameter for skewness, to allow it to accommodate

both symmetric and asymmetric responses.
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There are several situations in which the relationship between the function of the response

and covariates is not strictly symmetric. The asymmetric model is a class of models that bor-

rows strength from both symmetric and asymmetric forms and can be applied in both scenar-

ios, while still maintaining model parsimony. Furthermore, the frequently encountered

Table 2. Regression parameter estimates with model-based and empirical Standard Errors (SE) for independence, exchangeable, AR(1), unstructured and M-depen-

dent correlation structures estimated using unconditional residuals for GEE and skewed logit-GEE.

Effect Corr GEE SL-GEE

Est Model SE Rob SE Wald Z p-value Est Model SE Rob SE Wald Z p-value

Intercept Ind 0.253 0.228 0.276 0.918 0.359 0.176 0.209 0.239 0.737 0.461

Exch 0.088 0.263 0.264 0.335 0.738 0.024 0.242 0.235 0.100 0.920

AR(1) 0.119 0.267 0.276 0.430 0.667 0.043 0.245 0.239 0.180 0.858

Unstr 0.029 0.272 0.272 0.108 0.914 -0.038 0.249 0.238 -0.160 0.873

M-dep 0.129 0.261 0.276 0.468 0.640 0.050 0.239 0.239 0.207 0.836

Breastfed Ind -0.057 0.108 0.157 -0.361 0.718 -0.062 0.099 0.136 -0.455 0.649

Exch -0.022 0.146 0.150 -0.148 0.883 -0.027 0.134 0.134 -0.205 0.838

AR(1) -0.052 0.137 0.157 -0.332 0.740 -0.058 0.126 0.136 -0.425 0.671

Unstr -0.027 0.149 0.155 -0.173 0.863 -0.031 0.137 0.138 -0.224 0.823

M-dep -0.051 0.131 0.157 -0.323 0.747 -0.057 0.121 0.136 -0.416 0.678

BV Ind 1.086 0.431 0.791 1.373 0.170 1.495 0.348 0.420 3.561 <0.001

Exch 1.049 0.470 0.802 1.308 0.191 1.475 0.371 0.419 3.524 <0.001

AR(1) 1.000 0.533 0.910 1.099 0.272 1.494 0.421 0.444 3.368 <0.001

Unstr 0.901 0.530 0.957 0.941 0.347 1.286 0.440 0.553 2.326 0.020

M-dep 1.017 0.526 0.926 1.098 0.272 1.513 0.417 0.451 3.353 <0.001

BV:Time Ind -0.199 0.091 0.145 -1.376 0.169 -0.275 0.077 0.083 -3.310 <0.001

Exch -0.198 0.088 0.144 -1.368 0.171 -0.277 0.072 0.083 -3.340 <0.001

AR(1) -0.191 0.107 0.163 -1.176 0.240 -0.280 0.088 0.087 -3.214 <0.001

Unstr -0.176 0.099 0.170 -1.036 0.300 -0.246 0.084 0.103 -2.383 0.017

M-dep -0.196 0.106 0.166 -1.180 0.238 -0.285 0.088 0.088 -3.227 0.001

HIV Ind 0.189 0.179 0.309 0.612 0.541 0.222 0.159 0.244 0.910 0.363

Exch 0.248 0.250 0.299 0.830 0.406 0.273 0.225 0.249 1.096 0.273

AR(1) 0.216 0.234 0.326 0.662 0.508 0.253 0.208 0.253 1.001 0.317

Unstr 0.193 0.253 0.323 0.596 0.551 0.232 0.225 0.259 0.894 0.371

M-dep 0.212 0.224 0.328 0.646 0.518 0.250 0.198 0.253 0.989 0.323

Male Ind -0.370 0.117 0.168 -2.202 0.028 -0.382 0.107 0.145 -2.632 0.009

Exch -0.358 0.156 0.158 -2.261 0.024 -0.358 0.144 0.143 -2.495 0.013

AR(1) -0.359 0.148 0.166 -2.162 0.031 -0.369 0.135 0.144 -2.568 0.010

Unstr -0.319 0.159 0.165 -1.937 0.053 -0.329 0.145 0.146 -2.262 0.024

M-dep -0.363 0.142 0.167 -2.173 0.030 -0.373 0.130 0.144 -2.589 0.010

Time Ind 0.178 0.062 0.076 2.346 0.019 0.192 0.057 0.066 2.915 0.004

Exch 0.146 0.067 0.075 1.941 0.052 0.165 0.061 0.065 2.539 0.011

AR(1) 0.135 0.071 0.076 1.783 0.075 0.150 0.065 0.065 2.289 0.022

Unstr 0.110 0.069 0.075 1.457 0.145 0.126 0.063 0.065 1.918 0.055

M-dep 0.143 0.070 0.076 1.875 0.061 0.156 0.064 0.066 2.370 0.018

Weight Ind -0.112 0.057 0.071 -1.581 0.114 -0.125 0.052 0.061 -2.043 0.041

Exch -0.068 0.067 0.069 -0.982 0.326 -0.087 0.062 0.060 -1.447 0.148

AR(1) -0.062 0.067 0.071 -0.871 0.384 -0.076 0.062 0.061 -1.242 0.214

Unstr -0.034 0.068 0.072 -0.481 0.631 -0.050 0.063 0.062 -0.805 0.421

M-dep -0.068 0.065 0.071 -0.953 0.341 -0.080 0.060 0.061 -1.311 0.190

https://doi.org/10.1371/journal.pone.0246269.t002
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assumption of symmetry is very restrictive, unrealistic, and can lead to incorrect conclusions

regarding the parameter estimates.

The model we have used in this study has been shown to be useful in applications when the

symmetry properties of a binary outcome are unknown, and it seems to be applicable in both

symmetric and asymmetric cases. Due to the correlated nature of longitudinal data, and

Table 3. Differences in model-based vs sandwich-based variance ratios for both GEE and SGEE.

Effect Corr GEE SL-GEE

Est V.R Est V.R
Intercept Ind 0.253 1.465 0.176 1.317

Exch 0.088 1.006 0.024 0.944

AR(1) 0.119 1.062 0.043 0.952

Unstr 0.029 0.996 -0.038 0.917

M-dep 0.129 1.115 0.050 0.997

Breastfed Ind -0.057 2.099 -0.062 1.893

Exch -0.022 1.051 -0.027 0.997

AR(1) -0.052 1.309 -0.058 1.169

Unstr -0.027 1.085 -0.031 1.022

M-dep -0.051 1.433 -0.057 1.274

BV Ind 1.086 3.364 1.495 1.458

Exch 1.049 2.915 1.475 1.275

AR(1) 1.000 2.911 1.494 1.109

Unstr 0.901 3.262 1.286 1.578

M-dep 1.017 3.108 1.513 1.172

BV:Time Ind -0.199 2.507 -0.275 1.168

Exch -0.198 2.690 -0.277 1.331

AR(1) -0.191 2.328 -0.280 0.977

Unstr -0.176 2.923 -0.246 1.505

M-dep -0.196 2.446 -0.285 1.006

HIV Ind 0.189 2.968 0.222 2.343

Exch 0.248 1.436 0.273 1.225

AR(1) 0.216 1.947 0.253 1.487

Unstr 0.193 1.634 0.232 1.322

M-dep 0.212 2.145 0.250 1.626

Male Ind -0.370 2.057 -0.382 1.845

Exch -0.358 1.027 -0.358 0.989

AR(1) -0.359 1.268 -0.369 1.128

Unstr -0.319 1.069 -0.329 1.001

M-dep -0.363 1.395 -0.373 1.234

Time Ind 0.178 1.498 0.192 1.344

Exch 0.146 1.261 0.165 1.137

AR(1) 0.135 1.132 0.150 1.003

Unstr 0.110 1.207 0.126 1.090

M-dep 0.143 1.180 0.156 1.049

Weight Ind -0.112 1.538 -0.125 1.365

Exch -0.068 1.057 -0.087 0.963

AR(1) -0.062 1.120 -0.076 0.979

Unstr -0.034 1.098 -0.050 0.988

M-dep -0.068 1.189 -0.080 1.042

https://doi.org/10.1371/journal.pone.0246269.t003
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needing an easy means of marginal interpretation, the GLM methods seem insufficient, but

the use of GEE has been recommended and successfully applied in recent literature.

In this paper, we found that gender is a reliable predictor of infant morbidity. Specifically,

girls were more likely to be healthy than boys. This finding is supported by previous studies

and adds to the large body of knowledge indicating that boys require more attention and

health care than girls. With girls having a higher survival probability than boys, our results

appear consistent with the reports of Stevenson et al. [48]. This finding implies that there is

hopes for a decline in mortality among boys if better interventions targeting their health can

be implemented.

BV was found out to have a significant relationship with infant morbidities when other

covariates are controlled for. Infants whose mothers tested positive for BV were found to have

higher morbidity incidences compared to those whose mothers tested negative. The effect of

BV on infant health has been reported in several studies, but with different conclusions on

morbidities and mortalities [49, 50]. The most important finding in this work was the degree

of significance observed in the skewed logit model for the interaction between BV and time.

This finding would be of interest to doctors, as it indicates the need to plan for proper treat-

ment and monitoring of an infant’s health after confirming the maternal BV status, particu-

larly during the first six months. This finding can also inform targeted infant morbidity

campaigns, depending on the mother’s BV status and the age of the infant.

The negative coefficient of weight and infant morbidities could indicate that an increase in

weight gain could reduce morbidity. Babies who eat well tend to gain nutrients from food and

have better capabilities of fighting illness in their bodies. Proper weight gain is also an indicator

of proper growth. These results were consistent with those reported by Sarah et al. [51].

Past work by Verma et al. indicated an increase in the number of illnesses during infant

growth [52]. This is in contrast with what was reported in Table 1, which shows only an insig-

nificant decline among all the infants(5%), from a high of 61% to a low of 56%. To be more

precise, considering the BV-exposed group, there was a huge decline of 25%, from a high of

78% in the first month to 53% in the sixth month. However, in the non-exposed group, there

was a slow increase, whereby the number of morbidities observed increased from 47% in

month one to 58% in month six. However, this study was based on the general population of

the infants, without factoring in any other factors defining the exposed group or applying any

randomization.

Not all covariates included in our study were statistically significant at p = 0.05. Nonethe-

less, their coefficient sign could assist in detecting a trend of association with the response. The

covariate set included, e.g. the mode of feeding, whereby breastfeeding had a negative relation

with infant morbidities. This finding could reflect behaviors that have been reported in other

studies whereby breastfed infants were healthier than their counterparts who were formula-fed

[32, 53]. Finally, the HIV status of the infant exhibited a positive coefficient with infant

Table 4. Calculated coefficient of bacterial vaginosis with time from exp(β1 + β51 × time), achieved by replacing

the respective values from the skewed logit-GEE model with the AR-1 correlation structure.

Time Coefficient of effects of bacterial vaginosis

Month 1 3.37

Month 2 2.54

Month 3 1.92

Month 4 1.45

Month 5 1.11

Month 6 0.83

https://doi.org/10.1371/journal.pone.0246269.t004
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morbidity. Infants who tested positive for HIV presented signs of morbidity, consistent with

the results obtained by Kartik et al. [53]. Morbidities associated with HIV were found to

increase infant mortality risk according to studies conducted in Kenya [54], Botswana [55],

Cameroon [49], and South Africa [53].

To our knowledge, this is the first health research study that considers a skewed logit model

under the GEE framework. Our study is one of the few studies that specifically explores the

effect of BV on infants across time and considering the HIV status.

Conclusion

Longitudinal binomial data are likely to be observed in numerous health fields where the

binary components are correlated. Logit and probit models are widely used for modeling this

outcome, which means applying the assumption that data is symmetrical. However, some

competing methods for symmetry have been proposed as the logit and probit models do not

support skewed binomial responses. We have shown that skewed logit-GEE is able to show an

association between variables which is not identified by the standard GEE. Accordingly, it fits

our imbalanced health dataset better. In this study, we have shown the superiority of the

SL-GEE over the standard GEE when asymmetry is assumed. In our approach, the score of

morbidities is converted to a binary, with asymmetry in the extreme morbidity cases. Litera-

ture supports an association between BV and morbidity among infants [21]. Thus, since

skewed logit-GEE has predicted a BV-time interaction, we conclude that asymmetry is an

important factor to consider before choosing the analysis method. It must be appropriately

accounted for in analytical models to avoid biases in final parameter estimates, as has been

established in this paper and other works [3–5, 11].

Our research has focused on the commonly neglected “minor diseases” which have been

ignored at the expense of “major causes” of infant morbidity and mortality [56, 57]. Therefore,

we recommend further research and policies that target infant morbidity on a more holistic

level.
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