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Switchable unidirectional 
waves on mono‑ and diatomic 
metamaterials
Jiaruo Yan*, Anna Radkovskaya, Laszlo Solymar, Chris Stevens & Ekaterina Shamonina

We demonstrate switchable unidirectional propagation of slow waves of coupling within a 
metamaterial array of strongly coupled elements. We predict theoretically and verify experimentally 
that the direction of propagation of magnetoinductive waves for any chosen excitation pattern is 
dictated by the dispersion relations, with forward and backward waves propagating in opposite 
directions along a chain of meta-atoms. We further prove that the same fundamental phenomenon 
of direction selectivity due to the forward/backward wave nature is not limited to magnetoinductive 
waves: we predict analytically and verify numerically the same selective unidirectional signal 
propagation occurring in nanostructured metamaterial arrays with purely electric coupling. 
Generalising our method of unidirectional waveguiding to a diatomic magnetoinductive array 
featuring both forward-wave and backward-wave dispersion branches, switchable unidirectional 
signal propagation is achieved with distinct frequency bands with opposite directions of signal 
propagation. Finally, by expanding our technique of selective unidirectional waveguiding to a 2D 
metasurface, a selective directional control of waves in two dimensions is demonstrated opening 
up possibilities for directional wireless signal transfer via magnetoinductive surfaces. The observed 
phenomenon is analogous to polarisation-controlled near-field interference for unidirectional guiding 
of surface plasmon-polaritons.

Contrary to classical interference of travelling electromagnetic waves observable on a large, wavelength scale, 
near-field interference can occur in metamaterials on an extremely short scale resulting in novel phenomena of 
unidirectional waveguiding which may enable fast switching of propagation direction in the near field or radia-
tion direction in the far field. The key to the near-field interference is the vector nature of near-field electromag-
netic fields and their ability to interact with slow eigenmodes of a medium. The most prominent examples are 
based on polarisation-controlled near-field interference of surface plasmon polaritons (SPPs)1. The interference 
requires at least two waves, and a number of possibilities explored recently include use of two closely spaced 
light sources, or the presence of two different polarisation modes within the same light source, or the presence 
of a corrugated surface or another kind of structuring of the medium on the nanoscale. Liu et al.2 tailored the 
relative phase and separation between two detuned nanomagnetic antennas that allowed the travelling SPPs 
to be steered in a desired direction, whereas Rodriguez–Fortuno et al.3 achieved unidirectional excitation of 
guided near-field electromagnetic modes through interference of polarisation components of a circularly polar-
ised dipole. Similarly, methods of engineering of both far- and near-field directionality from dipolar structures 
with phased combinations of electric and magnetic moments were discussed by Picardi et al.4. Nanostructured 
materials enable strong light-matter interaction resulting in controllable near-field interference of SPPs. Bouil-
lard et al.5 demonstrated directional excitation of SPPs via chirped plasmonic gratings. Using arrays of metallic 
slits patterned into a thin gold film, Lin et al.6 presented a method to realise tunable directional coupling of SPP 
waves while preserving their polarisation, with both bidirectional and unidirectional launching of SPPs. Bisharat 
et al.7,8 demonstrated selective excitation of electromagnetic modes confined and guided along an infinitesimal 
interface between complementary metasurfaces.

In the present paper we explore the near-field interference of a different kind of slow short waves that can 
propagate on metamaterials with strong inter-element coupling. We shall consider magnetoinductive (MI) and 
electroinductive (EI) waves and demonstrate switchable unidirectional propagation using a pair of closely spaced 
sources yielding the near-field interference of slow waves of coupling. MI waves are short slow waves and they 
can couple to electromagnetic waves forming polaritons9–11 – this makes them analogous to other types of slow 
eigenmodes of a medium like surface plasma waves or acoustic waves.
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The propagation of MI waves relies on the magnetic coupling between elements in the structure. The idea of 
MI waves was introduced in 200212 in the context of the emerging field of metamaterials as waves that can only 
propagate within the host magnetic metamaterial by virtue of magnetic coupling between individual resonators. 
Fundamental properties of MI waves have been studied both theoretically and experimentally in metamateri-
als comprising magnetically coupled resonant meta-atoms such as split ring resonators (SRRs) or capacitively 
loaded loops9,10,13–16, including also nanostructured metamaterials17,18. Applications of MI waves include near-
field imaging19,20, guiding21–24, and sensing25,26, wireless data or power transfer27–29, transducers30, amplifiers for 
MRI31, phase shifters32, polarisers33, and superdirective antennas34.

The dispersion of MI waves is controlled by the coupling coefficient and can feature both forward-wave and 
backward-wave behaviour12. In the presence of retardation, i.e. when the resonators are not small enough, the 
coupling coefficient can become a complex quantity and can include both magnetic and electric coupling35, 
resulting in more complex dispersion relations22,36,37. When meta-atoms are coupled electrically rather than 
magnetically the established name for slow waves of coupling is electroinductive (EI) waves38. Examples are 
complementary metamaterials in which the metal is replaced by dielectric and vice versa39, and nanostructured 
split-ring media in which the magnetic coupling is largely suppressed due to the so-called kinetic inductance 
caused by the inertia of electrons35,40.

In this paper we shall consider both types of slow waves, MI and EI waves, and derive universal rules for 
switchable unidirectional propagation for a pair of closely spaced sources yielding near-field interference. We 
predict theoretically and verify experimentally that the direction of propagation of MI waves for any chosen exci-
tation pattern is dictated by the dispersion relations, with forward and backward waves propagating in opposite 
directions along a chain of coupled meta-atoms. We further prove that the same fundamental phenomenon of 
direction selectivity due to the forward/backward wave nature is not limited to MI waves: we predict analyti-
cally and verify numerically that the same selective unidirectional signal propagation would be occurring in 
nanostructured metamaterial arrays with purely electric coupling. Generalising our method of unidirectional 
waveguiding to a diatomic MI array featuring both forward-wave and backward-wave dispersion branches, 
switchable unidirectional signal propagation is achieved with distinct frequency bands with opposite directions 
of signal propagation. Finally, by expanding our technique of selective unidirectional waveguiding to a metas-
urface, a selective directional control of waves in two dimensions is demonstrated, thus opening up possibilities 
for directional wireless signal transfer via magnetoinductive surfaces.

The structure of this paper is as follows. In Sect. “Near-field interference of MI waves” we derive analytical 
conditions for the unidirectional signal guiding based on MI waves interference. In Sect. “Experiments” we 
verify our model experimentally using chains of capacitively loaded split ring resonators operating in the MHz 
frequency range. In Sect. “Slow waves of different nature: electroinductive waves in THz arrays” we demonstrate 
that the same principles of unidirectional guiding apply also to slow waves of a different nature by looking at 
nanostructured arrays of SRRs in the THz frequency range with predominantly electric coupling. In Sect. “Dia-
tomic case: switchable direction for power flow” we verify the statement that the direction of the signal guiding 
is dictated by the dispersion characteristics and demonstrate its validity on diatomic chains of SRRs with mul-
tiple branches of forward and backward waves. In Sect. “Metasurface example” we expand to two dimensions 
exploring possibilities of establishing controllable switchable paths for signal propagation on 2D metasurfaces. 
Conclusions are drawn in Sect. “Conclusions”.

Near‑field interference of MI waves
Magnetoinductive waveguides consist of resonant elements coupled to each other. A typical example is a line 
consisting of capacitively loaded resonant loops where the coupling is obviously magnetic. As may be seen in 
Fig. 1 there are two main configurations, axial and planar.

Assuming that the nth element is coupled to its first, second and third neighbour we may write Kirchhoff ’s 
equation41 for In , the current in the nth element, as

where

(1)Z0In + jω

3
∑

s=1

Ms(In+s + In−s) = 0

(2)Z0 = jωL+
1

jωC

Figure 1.   Axial (a) and planar (b) metamaterial arrays resulting in forward (a) and backward (b) MI waves .
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is the impedance of an element, ω is the angular frequency, L is the self-inductance, C is the capacitance, Ms is 
the mutual inductance between two elements s units apart. Note that the elements are assumed to be lossless, 
because for the phenomena we are interested in, a finite resistance presents only mathematical complications, 
and has hardly any effect upon the physics. In a finite structure comprising N elements, currents in an array can 
be calculated from the generalised Kirchhoff ’s Law,

where V and I are N-dimensional vectors standing for the applied voltages and for the resulting currents, and Z is 
the impedance matrix the main diagonal elements being all equal to the self-impedance Z0 and the off-diagonal 
entries being the mutual impedances between elements of the array.

An alternative approach is to invoke the wave concept. A solution of the difference Eq. (1) may be obtained as

where d is the separation between the elements, I0 is a constant and k is the wave number. The wave number is 
real within the passband of MI waves due to our assumption of negligible losses. The solution is valid when the 
frequency, ω , and the wave number, k, are related to each other by the dispersion equation

where ω0 = 1/
√
LC = 2π f0 and f0 is the resonant frequency of each unit cell and κs = 2Ms/L are the coupling 

constants. The dispersion equation can has two notable solutions, a forward wave in the axial configuration 
when Ms > 0 and a backward wave in the planar configuration when Ms < 0 . If we apply a voltage, to any of 
the elements, then magnetoinductive waves will propagate in both directions (with the obvious exception when 
the excited element is the first or the last one in the line). Our main interest is to control the relative amount of 
power propagating in the two directions. For that we need to excite at least two elements and should be free to 
choose their relative phases.

Our model is a linear array of N identical elements, numbered from left to right, elements p and p+ 1 near 
the centre of the array are excited with voltage sources of the same amplitude but with a phase difference of ψ , 
i.e. Vp = exp(jψ) and Vp+1 = 1 . If we consider the currents in elements p− 1 and p+ 2 that are on opposite 
sides of the excited elements, the expressions for the currents Ip−1 , Ip+2 , can be found based on superposition of 
the waves launched from elements p and p+ 1 as

There will be reflections from both ends of the array that may be considerable in the absence of losses. The 
remedy is to terminate both ends with impedances which may offer perfect matching. The matching impedance 
is given by41

which becomes purely resistive at the resonant frequency kd = π/2 within the nearest-neighbour approxima-
tion. In order to have a better idea of the effect of the chosen phase on the ratio of powers we shall have a more 
detailed look at the expression

where Pl and Pr stand for the power propagating to the left and to the right respectively. A complete suppression 
of the power flow to the left corresponds, according to Eq. (9) to the condition

whereas a complete suppression of the power flow to the right corresponds to the condition

where kd is dictated by the dispersion Eq. (5). In particular, if we were to fix the value of the phase shift ψ between 
the voltage sources, the preferential power flow will be opposite in an axial array and in a planar array. In other 
words, a forward-wave structure and a backward-wave structure will guide the power in opposite directions. 
This is detailed in Fig. 2, in which the variation of Pl/Pr is shown as a contour plot on the (ψ ,ω) parametric plane 
using typical parameters of an axial MI array with a positive coupling coefficient κ = 0.13 (a) and a planar MI 
array with a negative coupling coefficient κ = −0.13 (b) and assuming no reflections from the ends of the array. 
The red colour corresponds to the power flow to the left, and the blue colour corresponds to the power flow to 
the right. For the phase shift in the positive range of 0 < ψ < π , the axial array [Fig. 2a] enables the power flow 
mostly to the right and the planar array [Fig. 2b] enables the power flow mostly to the left. Changing the phase 

(3)V = ZI

(4)In = I0e
−jknd

(5)
ω2
0

ω2
− 1 =

3
∑

s=1

κs cos(skd)

(6)|Ip−1| =|ejψ + e−jkd |

(7)|Ip+2| =|ejψ + ejkd |.

(8)ZT = jω

3
∑

s=1

Mse
−jskd

(9)
Pl

Pr
=

Pp−1

Pp+2
=

|Ip−1|2

|Ip+2|2
=

cos2[(ψ + kd)/2]
cos2[(ψ − kd)/2]

(10)ψ = −kd ± π

(11)ψ = kd ± π
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shift to the negative range of −π < ψ < 0 the directions of the power flow switch. As will be shown below this 
is a fundamental feature which links the type of the dispersion (forward/backward) and the direction of the 
power flow suppression. White dashed lines show the conditions of the complete suppression of the power flow 
as dictated by Eqs. (10 and 11) and they can be seen to accurately predict the phase shift-frequency relationship 
for maximum unidirectional power flow.

In the lossy case, the self-impedance of the resonators, Z0 = R + jωL+ 1/(jωC) includes the resistance R, 
and the dispersion Eq. (5) modifies to

where Q = ω0L/R is the quality factor of each resonator. In the lossy case the wave number k = β − jα is a 
complex number, with β being the propagation constant and α being the attenuation constant, however Eq. (9) 
is still valid and Eqs. (10 and 11) will only mildly be affected by the attenuation within the passband of MI waves.

Experiments
To verify our model, we use a planar and an axial array of 27 strongly coupled square-shape meta-atoms. Each 
meta-atom is a PCB-based square resonator of 10 mm side length, 1 mm track width, made of 1 oz copper, and 
has a 100 pF capacitor soldered into a 1mm gap to tune the resonant frequency to f0 = 116.6 MHz (axial array) 
and f0 = 114.1 MHz (planar array). The substrate is 1.6 mm FR4 TG130. The substrate size for the unit cells in 
the axial array is 19 mm × 19 mm, and the measured quality factor for a single element is Q = 80 . The photo-
graphs of the axial and planar configurations used in the experiments are shown in Figs. 3a and b, respectively.

The strength of the mutual coupling between meta-atoms depends on the separation between them. The 
lattice periods for the two configurations were designed to provide the nearest neighbour coupling coefficients 
that are equal in magnitude in both arrays, κ1 , for the axial and planar arrays. The lattice period d for the axial 
array is 6.6 mm, resulting in positive coupling coefficients, κ1 = 0.13 , κ2 = 0.034 and κ3 = 0.017 . For the planar 
array, the lattice period is d = 10.5 mm resulting in negative coupling coefficients κ1 = −0.13 , κ2 = −0.0062 
and κ3 = −0.0004.

We performed two sets of measurements, first, a standard dispersion relationship analysis and, second, the 
near-field interference measurements. To obtain the dispersion curve, we use an established technique in which 
the structure is excited at element 1 by a loop antenna of 4 mm diameter connected to a vector network analyser 
(VNA). The currents in three adjacent elements (n− 1) , n and (n+ 1) are then measured yielding the complex 
wave number k = β − jα as follows:

The normalised values of the currents are obtained by scanning the array with a receiving loop antenna of 4 
mm diameter and measuring the scattering parameter S21 proportional to the currents in the array. The experi-
mentally found dispersion is shown in Fig. 4 (dots). Within the passband the experimental data can be seen to 
be in agreement with the theoretical model (solid lines) obtained from Eq. (12) using the above parameters for 

(12)
ω2
0

ω2
− 1+ j

ω0

ωQ
=

3
∑

s=1

κs cos(skd)

(13)cos(βd − jαd) =
In−1 + In+1

2In
.

Figure 2.   Power flow ratio Pl/Pr for an axial array with κ = 0.13 (a) and a planar array with κ = −0.13 (b). 
N = 27 . Lossless case. Analytical model. Excitation in the central elements 14 and 15, V14 = exp(jψ) and 
V15 = 1 . Elements 1 and 27 are matched to eliminate reflections from the ends. White dashed line corresponds 
to the analytical conditions of unidirectional power flow from Eqs. (10 and 11).
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the resonant frequency, the quality factor and the coupling constants. While we are primarily interested in the 
passband, we note that in the stopband the experimental data show some outliers. The reason is that the signals 
in the stopband are too weak to enable reliable dispersion extraction.

The dispersion curves for both arrays confirm clearly the forward-wave nature for the axial array (a) and the 
backward-wave nature for the planar array (b) whereas the passband in both arrays are approximately equal due 
to the same magnitude of the dominant coupling coefficient in both arrays.

Next we performed the near-field interference experiment exciting two central elements (elements 14 and 
15) with a constant phase shift ψ = π/2 by using two loop antennas (of 4 mm diameter) connected to a VNA 
via a hybrid 2 power splitter (Mini-Circuits, ZMSCQ-2-120+). Using the same procedure as before, a receiving 
antenna performed a scan of the array and currents in all elements of the array were obtained and compared to 
the theoretical calculations. The results for the axial and the planar array are summarised in Fig. 5 (left column: 
axial array, right column: planar array). The experimentally found current distributions for both arrays are shown 
in Fig. 5a and b as contour plots with the horizontal axis being the element number (from 1 to 27) and the vertical 
axis being the frequency. The corresponding theoretical results from Eq. (3) shown in Fig. 5c and d can be seen 
to reproduce all salient features of the experimental data. These results confirm clearly the main prediction of 
our model: near-field interference results in a preferential signal propagation to the right in the axial array and 
to the left in the planar array. The interference pattern caused by reflections from the ends of the structure can 
be suppressed by using at the resonant frequency approximate matched loads: ZT = 1� for the axial array, and 
ZT = 0.9� for the planar array. With the reflections significantly suppressed, the current distributions in Figs. 5e 
and f reveal unilateral signal propagation around the resonant frequency, in accordance with the dispersion rela-
tions and selection rules of Eqs. (10 and 11).

Figure 3.   Photographs of the axial (a) and planar (b) structures used in the experiments. Small loop antennas 
under the central elements 14 and 15 are used to excite the array, while the receiving antenna is moved across 
the structure.

Figure 4.   MI dispersion relations for the axial (a) and the planar (b) array. Red: attenuation constant α vs. ω , 
blue: propagation constant β vs. ω . Analytical model (solid lines) and experimental data (dots).
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Slow waves of different nature: electroinductive waves in THz arrays
Next we shall investigate whether the conclusions reached so far are also valid in another much higher frequency 
band and for a different coupling mechanism between the elements. We can test this by venturing into the THz 
region, which enables a different type of slow waves of coupling, electroinductive waves35. In a nanostructured 
array of split ring resonators, if the frequency is sufficiently high and the structure sufficiently small, the magnetic 
coupling is largely suppressed due to electrons inertia and the remaining coupling mechanism is the electric 
coupling35. The dispersion relationship for EI waves can be written as

(14)
ω2

ω2
0

− 1+ j
ω

ω0Q
=

3
∑

s=1

κE,s cos(skd)

Figure 5.   The normalised current distribution in the 27 elements of the MI waveguides over frequency, for an 
axial array (left column) and for a planar array (right column) shown schematically in the insets, with elements 
14 and 15 excited as indicated by arrows. (a), (b): spectra for the magnitude of S21 (experiment). (c)–(f): spectra 
for the current magnitude (analytical model). (a)–(d): arrays are open (not loaded). (e), (f): both ends of the 
array are loaded to suppress reflections.
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where κE,s = 2C/Ks is the electric coupling coefficient and Ks is the mutual capacitance between meta-atoms 
s lattice periods apart. Similarly to their MI counterpart, EI waves can also yield forward and backward waves 
depending on the sign of the coupling coefficient. We shall consider two types of geometries as shown in Fig. 6, 
but instead of experiments (THz equipment is not easily available) we shall use numerical simulations (CST 
Microwaves Studio) to confirm the analytical results.

The unit cell we use is a silver SRR as shown in Fig. 6a with inner radius R = 80 nm, width w = 8 nm, height 
h = 40 nm, and the gap width g = 12 nm. We use the Drude model with plasma frequency, ωp = 1.35 · 1016 
rad/s, and collision frequency, γ = 33 THz to evaluate the permittivity of silver35. These parameters yield the 
resonant frequency of a single element, f0 = 93.5 THz, and the quality factor, Q = 25.

We use two different arrangements of the split rings, shown in Figs. 6b and c, in order to find both forward-
wave and backward-wave behaviour. When all SRRs in the array have gaps facing upwards [Fig. 6b] the nearest 
coupling constant is almost real positive (with a small phase due to retardation). This configuration will be called 
the ‘uu’ configuration (as each of the elements resembles the letter ‘u’). By flipping every second element so that 
their gaps are now facing downwards [Fig. 6c] the nearest coupling constant becomes almost real negative, with a 
small phase due to the retardation. We call this a ‘un’ configuration (as now the elements resemble an alternating 
sequence of the letters ‘u’ and ‘n’). We chose for both arrays the same lattice period d = 192 nm and the same 
number of elements, N = 27.

The resulting dispersion relations are shown in Fig. 7 confirming the expected forward-wave character for the 
‘uu’ array (a) and the backward-wave character for the ‘un’ array (b). The analytical curves (solid lines) are calcu-
lated from Eq. (14) using f0 = 91.5 THz and κE,1,2,3 = [−0.2ejϕ1 , −0.025ejϕ2 , −0.015ejϕ3 ] (‘uu’ configuration) 
and using f0 = 92 THz and κE,1,2,3 = [0.22ejϕ1 , −0.025ejϕ2 , 0.016ejϕ3 ] (‘un’ configuration), where ϕs = s · 0.09 
rad is the coupling coefficient phase due to retardation. The numerical dispersion curves are obtained following 
the same extraction procedure as the one used for post-processing experimental data for neighbouring currents, 
i.e. by using Eq. (7), and with the current values evaluated from signals in magnetic probes placed near the centres 
of the elements. As the magnitudes of the dominant coupling constants are similar in both arrays, it can be seen 

Figure 6.   Schematic for (a) a single SRR element with inner radius R, width w, height h, and gap g, (b) a linear 
‘uu’ array, which has positive nearest-neighbour coupling coefficient and (c) a ‘un’ array which has negative 
nearest-neighbour coupling coefficient.

Figure 7.   EI dispersion relations for the ‘uu’ (a) and the ‘un’ (b) array. Red: attenuation constant α vs. ω , blue: 
propagation constant β vs. ω . Analytical model (solid lines) and numerical data (dots).
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from Fig. 7 that their passband occupy the same frequency band from 80 to 100 THz. To perform the near-field 
interference test for EI waves, we follow the same recipe as before. Two central elements (elements 14 and 15) 
are driven with a phase shift of ψ = π/2 applying V14 = exp(jπ/2) and V15 = 1 V and the frequency spectra 
for all currents along the array are recorded. The results are summarised in Fig. 8, with the left column showing 
the results for the forward-wave ‘uu’ array, and the right column for the backward-wave ‘un’ array. Numerically 
obtained current distribution for both arrays are shown in Fig. 8a and b as contour plots with the horizontal axis 
being the element number (from 1 to 27) and the vertical axis being the frequency. The corresponding analytical 
results shown in Fig. 8c and d can be seen to reproduce all salient features of the simulation data. In comparison 
to the MI wave case of Fig. 5, there are no visible ripples due to reflections from the ends of the arrays as the 
THz structures are rather lossy and the signal decays too much along the line to yield any noticeable reflection. 
Importantly, the main prediction of our model is validated: also for the electroinductive waves, the near-field 
interference results in a preferential signal propagation to the right in the forward-wave ‘uu’ array and to the left 
in the backward-wave ‘un’ array.

Diatomic case: switchable direction for power flow
Having verified the main feature of the near-field interference of slow MI and EI waves, namely that the direc-
tion of signal propagation is dictated by whether the wave is a forward or a backward wave, we shall now use 
diatomic MI arrays to implement a switchable device. The key thought is that diatomic chains, with two resona-
tors constituting a unit cell, are proven to exhibit two passbands of slow waves23,42. We shall look at diatomic 
arrays featuring two bands of the opposite wave type, one band with a forward-wave dispersion and another 
one with a backward-wave dispersion. Switching between two bands should enable switching of the direction 
of the power flow.

There are two obvious ways of implementing the diatomic structure, (i) to use two types of meta-atoms, say, 
having different resonant frequencies, f01 and f02 , and thus different self-impedances, Z01 and Z02 and (ii) to 
alternate the distance between the elements from d1 to d2 thus having two alternating mutual inductances M1 
and M2

41. The dispersion equation derived for either of the cases

Figure 8.   The normalised current distribution in the 27 elements of the EI waveguides over frequency, for the 
‘uu’ array (left column) and for the ‘un’ array (right column) shown schematically in the insets, with elements 14 
and 15 excited as indicated by arrows. (a), (b): numerical simulation. (c), (d): analytical model .
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shows the existence of two passbands. Interestingly, using both the axial and the planar array results in the lower 
band being a forward wave branch and the upper band being a backward wave branch. It is important to note 
that the degenerate case (i. e. the case with Z01 = Z02 = Z0 , d1 = d2 = d and M1 = M2 = M ) is equivalent to 
a monoatomic array, so both descriptions of a monoatomic array are compatible, taking into account that the 
lattice period in the diatomic array is twice that of the monoatomic array, and using the usual rules of folding 
for Brillouin zones for waves in periodic structures43. This is illustrated in Fig. 9 using a planar array as an exam-
ple. Figure 9a shows the familiar backward-wave dispersion of a monoatomic planar MI array, with the lattice 
constant d, with the Brillouin zone range of kd from 0 to π . Figure 9b shows the degenerate diatomic dispersion 
for the same array, with the lattice constant d now doubled and the dispersion seen to have folded into the 1st 
Brillouin zone forming a forward-wave and a backward-wave branch.

This leads us to a simple possibility for implementing a switchable power flow. Treating monoatomic arrays 
as degenerate diatomic arrays, we shall implement near-field interference exciting not two neighbouring meta-
atoms, but two neighbouring unit cells instead. In this case the analysis of Eq. (11) is still valid. In Fig. 10 we 
show the variation of Pl/Pr as a contour plot on the (ψ ,ω) parametric plane for the the planar array with N = 27 , 
excitation on elements 13 and 15 with a phase shift of ψ and using the same coupling coefficient as in Fig. 2 
(b), κ = −0.13 and assuming again that reflections from the ends are eliminated by using the matched loads. 
Figure 10 verifies that by exciting non-adjacent elements the near-field interference would indeed enable the 
switching of the power flow directions.

For the phase shift in the positive range of 0 < ψ < π , if the frequency is below the resonant frequency, the 
power would flow mostly to the right (corresponding to the forward-wave type), but switching to a frequency 
above the resonant frequency would enable the power to flow mostly to the left (corresponding to the backward-
wave type). Changing the phase shift to the negative range of −π < ψ < 0 swaps the directions of the power 
flow. White dashed lines show the conditions of the complete suppression of the power flow as dictated by Eqs. 
(10 and 11) and they can be seen to accurately predict the phase shift-frequency relationship for the unidirec-
tional power flow.

We have carried out the experiment confirming the switchable power flow – the setup is exactly the same as 
before, with the only difference being that elements 13 and 15 are now being excited ( V13 = exp(jπ/2) , V15 = 1 ). 
The results are summarised in Fig. 11 both for the axial and for the planar array. The experimentally found current 
distributions for both arrays are shown in Fig. 11a and b and the corresponding theoretical results from Eq. (3) 
are shown in Fig. 11c and d and can be seen to match well the experimental data.

As can be seen, by exciting non-adjacent elements 13 and 15 with the right phase difference, our array can be 
regarded as a diatomic one which can support both a forward wave and a backward wave. In the lower-frequency 
forward-wave band the power travels to the right end and in the higher-frequency backward-wave band the 
power travels towards the opposite, left end of the structure. The switch occurs when the frequency changes. 
Potentially, this phenomenon can have application as a channel dropping filter.

(15)
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Figure 9.   An example of a lossless MI dispersion of a monoatomic metamaterial structure with κ = −0.13 (a) 
and its degenerate diatomic counterpart showing doubling the lattice constant d and the resulting folding of the 
dispersion forming the double-band frequency structure with a forward and a backward wave within the 1st 
Brillouin zone.
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Figure 10.   Power flow ratio Pl/Pr for a diatomic excitation ( V13 = exp(jψ) and V15 = 1 ) of a planar array 
with κ = −0.13 (shown by arrows in the inset). Length of the array N = 27 . Lossless case. White dashed line 
corresponds to the analytical conditions of unidirectional power flow from Eqs. (10 and 11).

Figure 11.   Switchable unidirectional power flow. The normalised current distribution in the 27 elements of 
the MI waveguides over frequency for an axial array (left column) and for a planar array (right column). (a),(b): 
spectra for the magnitude of S21 (experiment). (c),(d): spectra for the current magnitude (analytical model). 
Array is open (not loaded). Diatomic excitation of elements 13 and 15 [ V13 = exp(jπ/2) and V15 = 1 ] is shown 
schematically by arrows in the insets.
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Metasurface example
So far we have considered 1D arrays. Can we employ the near-field interference selectivity for controlling signal 
propagation in 2D metasurfaces? If we expand to two dimensions, the physics of MI waves does not change, the 
MI wave propagate in the same way as in 1D arrays, by means of coupling between the elements. Taking an iso-
tropic planar array with a square lattice of d × d shown schematically in Fig. 12 (a) as an example, each element 
is coupled to its neighbours in both the horizontal (x) and the vertical (y) direction. The coupling constants in 
both directions are negative and equal, κx = κy . The dispersion of the MI waves for such a metasurface can be 
written in the form41

with kx and ky being the components of the wave vector k . The 2D dispersion equation is illustrated in Fig. 12b 
using κx = κy = −0.13 as an example. The isofrequency dispersion curves show that at every frequency multiple 
waves can propagate with the relationship between kx and ky dictated by Eq. (16). We shall take as an example 
the resonant frequency ω = ω0 in which the isofrequency in Fig. 12b can be seen to form straight lines with a 
simple relationship between the wave vector components |kxd ± kyd| = π . A symmetric excitation in the centre 
of such an array results in signal travelling towards all four corners of the structure forming the ‘diagonal beam-
ing’ as reported previously41. Figure 13 illustrates that, by exciting just a small central section of 2× 2 resona-
tors in a symmetric 10× 10 array, we can successfully suppress any of the four diagonal beams thus achieving 
unidirectional signal propagation in the desired direction. In Fig. 13 we show the normal (z) component of the 
magnetic field distribution above the metasurface, which reflects the current distribution across the array for 
the four chosen excitation patterns. To impose single-ray beaming of Fig. 13a, the four central elements were 
excited with the voltage pattern

where q = 3.45 exp(jπ/2) . Multiple beams in Fig. 13b–d are obtained by superposition of the corresponding 
patterns of Eq. (17) rotated by 90 degrees. We point out that our goal in this section is to solely demonstrate the 
principal possibility of signal control by near-field interference in metasurfaces and that no attempt was made 
to use matching terminal loading to any of the elements. Not shown here but also successfully tested is a similar 
beaming suppression in arrays with odd number of elements, albeit with a more extended ‘excitation island’ of 
up to 3× 3 elements in the centre of the array, i. e. the central element and its neighbours. We conjecture that by 
moving to a different isofrequency of the dispersion equation of Fig. 12b and using appropriate load impedances 
would enabling beaming in any desired direction within a metasurface thus enabling an efficient way of wireless 
signal and power transfer, but this would be a subject of a future investigation.

Conclusions
Unidirectional wave guidance resulting from near-field interference is well established in the literature for a 
variety of scenarios for slow waves of surface-plasmon polaritons. We show that an analogous effect can also be 
realised with a different type of slow waves – with slow waves of coupling in metamaterials. Using as examples 
magnetoinductive waves (in the MHz frequency range) and electroinductive waves (in the THz frequency range) 
we prove that switchable unidirectional signal propagation is dictated by the dispersion relations of the slow 
waves, with cancellation direction determined by whether the waves are forward or backward. Selectivity rules 

(16)
ω2
0

ω2
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ωQ
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(
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Figure 12.   A schematic of a planar isotropic metasurface (a) and its lossless MI dispersion (iso-frequencies of 
ω/ω0 vs kx and ky ) for κx = κy = −0.13 (b).
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based on near-field interference have been verified experimentally for MI waves and numerically for EI waves. 
Extending the analysis to diatomic arrays we demonstrate the possibility of simultaneous bands of waves of both 
types (forward/backward) which enable frequency-controlled switching of unidirectional signal propagation. 
We successfully apply our technique of selective unidirectional waveguiding to 2D metasurfaces, demonstrat-
ing selective directional control of waves in two dimensions enabling an efficient mechanism for directional 
wireless signal transfer or power transfer. The observed phenomenon is analogous to near-field interference for 
unidirectional guiding of surface plasmon-polaritons and it is safe to assume that any other type of slow waves 
could be manipulated enabling controlled and switchable near-field signal guiding on the subwavelength scale.

Data availability
The data that support the findings of this study are available from the authors upon reasonable request.
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