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Abstract: Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in
Hong Kong and, since its discovery, it was reported in domestic cats worldwide. Although a
potential association between FeMV infection and tubulointerstitial nephritis (TIN) has been sug-
gested, this has not been proven, and the subject remains controversial. TIN is the most frequent
histopathological finding in the context of feline chronic kidney disease (CKD), which is one of
the major clinical pathologies in feline medicine. FeMV research has mainly focused on defining
the epidemiology, the role of FeMV in the development of CKD, and its in vitro tropism, but the
pathogenicity of FeMV is still not clear, partly due to its distinctive biological characteristics, as
well as to a lack of a cell culture system for its rapid isolation. In this review, we summarize the
current knowledge of FeMV infection, including genetic diversity of FeMV strains, epidemiology,
pathogenicity, and clinicopathological findings observed in naturally infected cats.

Keywords: feline morbillivirus; genetic heterogeneity; epidemiology; kidney disease; tropism; diagnosis

1. Introduction

Paramyxoviruses constitute a large group of viruses that are responsible for impor-
tant diseases in humans and animals [1]. According to the International Committee on
Taxonomy of Viruses (ICTV, https://talk.ictvonline.org, accessed on 14 April 2021), the
family Paramyxoviridae is divided into four subfamilies (Metaparamyxovirinae, Avulavirinae,
Orthoparamyxovirinae and Rubulavirinae) and within the Orthoparamyxovirinae subfamily,
eight genera have been established (Aquaparamyxovirus, Ferlavirus, Jeilongvirus, Henipavirus,
Morbillivirus, Narmovirus, Respirovirus, and Salemvirus). The Morbillivirus genus includes
highly infectious viruses, such as canine distemper virus (CDV), peste-des-petits-ruminants
virus, cetacean morbillivirus, and measles virus (MeV), which can cause severe and occa-
sionally fatal systemic diseases [2–5]. In the last decade, the genus Morbillivirus has received
growing attention, due to the recent discovery of a new feline morbillivirus (FeMV) in
stray cats from Hong Kong and Mainland China [6]. The first case–control study [6] has
proposed an association of FeMV infection with chronic tubulointerstitial nephritis (TIN),
the most frequent histopathological finding in feline chronic kidney disease (CKD) [7]. CKD
affects approximately 30% of cats older than 10 years and represents the major clinical
complication in this age group [8,9]. Following its discovery, FeMV was also described in
other countries including Japan [10–13], USA [14], Turkey [15], Brazil [16], Thailand [17],
Italy [18–23], United Kingdom [24], Germany [25,26], Malaysia [27], and Mainland China [28].
While several studies suggested an association between FeMV infection and kidney disease
in infected cats [6,10,12,13,18,26,29], many others have investigated, but not demonstrated,
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the causative role of FeMV in the pathogenesis of feline CKD [14–17,21–24,28]. Thus, the
aim of this review is to provide a summary of the current knowledge regarding FeMV,
focusing on epidemiology, pathogenesis, and clinicopathological aspects of FeMV infection.
Virus isolation and molecular and serological methods developed for FeMV diagnosis are
also covered in this review.

2. FeMV Is Classified in the Genus Morbillivirus within the Paramyxoviridae Family

The FeMV genome is a single-stranded, negative-sense RNA with a size of
16,050 bases, representing the largest genome among all morbilliviruses [6]. In mem-
bers belonging to the Paramyxoviridae family, all genes are separated by untranslated
regions, which include stop signals at the end of the upstream gene and start signals for the
expression of downstream genes. There are also conserved sequences at the 3′ and 5′ ends
of the genome, which are used as promoters by the RNA-dependent RNA polymerase. At
the 3′ end, is a leader sequence (55 nucleotides), which represents the genome promoter
for the synthesis of viral messenger RNA or full-length antigenome (positive-sense RNA).
Similarly, at the 5′ end of the genome, there is a conserved long trailer sequence including
the antigenome promoter, which is responsible for the production of full-length genomic
RNA (negative-sense) from the antigenome [30]. In FeMV, this trailer sequence is much
longer than that of other morbilliviruses: these typically consist of only 40–41 nucleotides,
while the genome of FeMV has a 5′ trailer sequence of 400 nucleotides [6,19]. Within the
family, such long trailer sequences have been described only in avian paramyxoviruses
(APMV), specifically in APMV-3 (707 nt) [31] and APMV-5 (552 nt) [32]. As for other
paramyxoviruses, the genome of FeMV conforms to the “rule of six”, since each nucleocap-
sid protein (N) monomer encapsidates six nucleotides of RNA [30]. Moreover, as a member
of the Morbillivirus genus, FeMV contains six non-overlapping genes in the following order
N–P/V/C–M–F–H–L, encoding eight structural and non-structural proteins [19]. The two
non-structural proteins V and C are encoded within the P open reading frame by RNA
editing and alternative translation initiation, respectively [30]. In morbilliviruses, the six
encoded structural proteins include a matrix protein (M), two RNA-polymerase-associated
proteins (the phosphoprotein P and the large protein L), a nucleocapsid protein (N) and
two glycoproteins (the hemagglutinin H and the fusion protein F) [33]. The genome is
encapsidated in the nucleocapsid, which includes proteins N, P, and L. The latter proteins
along with the viral RNA form a ribonucleoprotein complex that is responsible for the
transcription and the replication steps [34]. Externally, these viruses are enveloped by a
host plasma membrane-derived lipid bilayer acquired during the budding process. The M
protein represents a bridge between the envelope and the nucleocapsid and is involved in
virus particle assembly and budding [35,36]. During virus biogenesis, the F glycoprotein
precursor is cleaved into the biologically active and mature F protein, which consists of
two subunits (F1 and F2) required for the initial viral attachment and subsequent fusion
peptide-mediated entry process [37,38]. Glycoproteins H and F interact with protein recep-
tors in the host cell membrane determining host susceptibility, tissue tropism, and viral
pathogenesis [39,40]. The H glycoprotein is a major determinant for virus–host interactions,
being responsible for the virus attachment to the host cellular receptors, triggering the
activation of glycoprotein F and fusion peptide exposure.

3. Genetic Heterogeneity of FeMVs

The FeMV strains are classified into two genotypes, with genotype 1 being the most
prevalent worldwide (Figure 1). Genotype 1 was identified for the first time in domestic
cats in Hong Kong; mostly urine samples, along with one rectal swab and one blood sample
tested positive by RT-PCR amplifying a partial fragment of the L gene of morbilliviruses.
The complete genome sequences of three FeMV strains showed nucleotide identities below
80% with other paramyxoviruses and were phylogenetically clustered with other mor-
billiviruses [6]. Additional evidence of the circulation of FeMV genotype 1 was found
among domestic cats in Japan in 2014 [10,11,41]. The Japanese strains were genetically
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divergent, as they shared a nucleotide identity between 90.6% and 96.8% [11]. FeMVs
genotype 1 were reported in cats from Malaysia [27] and Thailand [17], with strains from
Malaysia showing a high nucleotide sequence identity (99%) with other Asian FeMVs
(Thailand, Japan, and Hong Kong) [27]. Likewise, phylogenetic analysis of FeMV strains
from Thailand revealed that they clustered with those reported in Hong Kong and Japan,
sharing the highest nucleotide identity with FeMV strains SS3 and M252A (97.98–98.5%
and 97.5–98.3%, respectively) [17]. More recently, additional FeMVs were identified and
characterized from Mainland China [28]. Genetic analysis showed that the circulating
FeMVs were most closely related to the Asian isolates Japan-N153U (99.4–99.6% nucleotide
identity), Thailand-U16 (99.4–99.6% nucleotide identity), and Malaysia-PCS139 (99.6–99.8%
nucleotide identity) and genetically diverse from isolates from other countries (91.8–96.1%
nucleotide identity) [28]. Since 2015, FeMV was repeatedly detected in Europe, specifically
in Germany, Italy, and Turkey [15,18,26]. In Italy, FeMV was described for the first time
in 2015, and the whole genome sequence of the involved strain (Piuma/2015) was charac-
terized [19]. Piuma/2015 showed the highest sequence nucleotide identity (94.5%) with
early FeMV strains 761U and 776U from Hong Kong [6] and the lowest (88%) with strains
OtJP001 and SS1 from Japan [11,41]. Upon sequence analysis based on the partial L gene
sequences available for FeMVs from Europe, Piuma/2015 showed a nucleotide identity of
84.1–96.1% and 81.2% with German and Turkish FeMV sequences, respectively [19], high-
lighting the existence of genetic heterogeneity in Europe as already described for Japanese
FeMVs [11]. Additionally, the complete genome of nine FeMVs and additional 27 partial L
gene sequences detected in Italy were characterized as FeMVs genotype 1 clustering in two
different clades. Sequences of the first clade bore the highest nucleotide sequence identity
with Hong Kong FeMV strains 761U and 776U (95.4–97.3% and 94.3–96.2%, respectively)
and with the first discovered Italian FeMV Piuma/2015 strain (95.4–100%), which shared
only a 88.4–89.5% nucleotide identity with sequences belonging to the second clade [22].
The whole genome sequence of one FeMV strain identified in USA, referred to as FeMVUS1,
was shown to be 98% identical to the Hong Kong isolates 776U and 761U [14]. On the other
hand, the one from Brazil (FeMV BR Boni), bore the highest nucleotide identity (97%) with
the isolate Pepito/2018 from Italy and the Japanese strain SS1, while the nucleotide identity
with FeMVUS1 was 87.8% [16]. The phylogenetic analysis based on the 29 publicly available
whole genome sequences suggests the existence of two different clades within FeMVs
belonging to genotype 1, the first including FeMVs from China, Japan, Thailand, Germany,
Italy, Brazil, and USA, and the second including only FeMVs from Italy. Additionally,
within the first more numerically representative clade, three clusters may be distinguished,
further evidencing FeMVs heterogeneity (Figure 1). A new genotype, thereby designated
FeMV genotype 2 (FeMV-GT2), was discovered in Germany [42]. FeMVs belonging to
genotype 1 and FeMV-GT2 share a genome nucleotide sequence identity of approximately
78.2% [42]. Little is known about the clinical significance of the genetic heterogeneity of
FeMVs. It is thus important to investigate if any diversity in clinical outcome occurs within
genetically divergent strains of the same genotype as well as between FeMV genotypes.
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4. Epidemiology: Known and Unknown
4.1. Prevalence of FeMV

The current literature on FeMV suggests that genotype 1 has a global distribution.
Data on the molecular prevalence of FeMV are summarized in Table 1. Although studies
vary considerably in size and origin of the enrolled cats, they document that FeMV RNA
can be found mostly in urine and kidney tissues with a prevalence ranging from 3% [14]
to 39.4% [27]. Interestingly, surveillance studies focusing on cats living in multi-cat envi-
ronments showed higher infection rates than those from household cats [10,15,16,22]. This
finding is likely due to the higher probability of successful transmission occurring in cats
having multiple contacts with other cats. Intriguingly, a higher risk of FeMV infection
was found in unneutered male cats compared to female cats [12,27]. Surveillance studies
evaluating FeMV seroprevalence are summarized in Table 2. As observed in molecular
studies, seroprevalence values vary widely, ranging from 17.32% [22] to 63% [45]. In a
recent study conducted in Italy, molecular and serological prevalence were evaluated based
on age. Prevalence of FeMV RNA was found higher in urine samples collected from young
and middle-aged cats, while prevalence of FeMV antibodies was higher in old cats [22].
The molecular prevalence of FeMV-GT2 was as low as 0.83% in urine samples, which is
lower than that obtained in reports on genotype 1 [25]. In the most recent study from
Chile [45], 112 serum samples from domestic cats were serologically tested against FeMV
genotype 1 and FeMV-2 using an indirect immunofluorescence (IIF) assay. Here, 63% of the
samples showed antibodies against one of the 2 FeMV genotypes, while 30% of samples
were seropositive for both genotypes. It is noteworthy that further serological studies can
be informative in assessing the real global prevalence of FeMV. However, these studies
might not be as informative on the FeMV genotype-specific prevalence, since cross-reactive
antibodies may be present in FeMV-GT1- or -GT2-positive cats. Additionally, anti-CDV
neutralizing antibodies have been reported in cats [46,47]. Interestingly, sera from dogs
infected with CDV were demonstrated to cross-react with FeMV N protein and, in a similar
way, sera from FeMV-infected cats cross-reacted with the N protein of CDV [11]. It is
thus important to confirm these findings at a larger scale and whether genotype-specific
antibodies are elicited following a primary FeMV infection.

Table 1. Reported FeMV molecular prevalence of cats in relation to population sampled, type of sample, and geography.

Reference Population Total Sample FeMV RNA-Positive
Tissues

Prevalence per
Type of Sample Prevalence c Country

Woo et al., 2012 Stray cats

457

Urine 11.6%

12.3%
Hong
KongBlood 0.2%

Feces 0.8%

16
Oral swab 6.2%

6.2% Mainland
ChinaRectal

swab 6.2%

Furuya et al., 2014 Household cats

82 Urine 6.1%

9.8% Japan10 Blood 10%

10 Tissues Kidney 40%

Sakaguchi et al., 2014 Household cats 13 Urine 23% 23% Japan

Furuya et al., 2016 Household cats 166 Urine 15.1% 15.1% Japan

Sharp et al., 2016 Household cats 327 Urine 3% 3% USA

Park et al., 2016 Stray/household
cats

100
Urine 17%

22% Japan
Tissues Kidney 18%

Darold et al., 2017
Colony cats a 17

Urine
52.9%

23% Brazil
Household cats 35 8.6%
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Table 1. Cont.

Reference Population Total Sample FeMV RNA-Positive
Tissues

Prevalence per
Type of Sample Prevalence c Country

Yilmaz et al., 2017 Household cats

96 Urine 3.1%

5.4% Turkey
15 Tissues

Kidney 26%

Lymph nodes 13%

Lung 6%

Spleen 6%

Intestine 6%

Liver 6%

McCallum et al., 2017 Household cats 40 Urine 12.5% 12.5%
United
King-
dom

Stranieri et al., 2019

Stray cats 6
Urine

16.6% 3.2%

ItalyHousehold cats 59 0%

Stray/
household cats 27 Tissues Kidney 7.4%

Mohd et al., 2019 Stray/
household cats

124 Urine 50.8%
39.4% Malaysia

25 Tissues Kidney 80%

Sieg et al., 2019 na 723 Urine 0.8% 0.83% Germany

De Luca et al., 2020

Colony cats b 69
Urine

31.8%
16.8%

Italy

Household cats 127 8.6%

Colony cats b 7 Tissues

Kidney 57.1%

22.8%

Bladder 14.2%

Spleen 28.5%

Lymph nodes 14.2%

Household cats 28 Tissues

Kidney 10.7%

Bladder 10.7%

Spleen 3.5%

Brain 3.5%

Muratore et al., 2020

Household cats 127 Urine 3.9%
7.3%

Colony cats b 40 Tissues Kidney 7.5%

Household cats 23 Urine 26%
8%

Colony cats b 10 Tissues Kidney 10%

Ou et al., 2020 n.a. 64 Urine 9.3% 9.37% Mainland
China

Chaiyasak et al., 2020

Colony cats b 31 Urine 19.3%

11.9% Thailand
Household cats 100 Urine 13%

Colony cats b 61 Blood 19.6%

Household cats 200 Blood 0%

n.a., information about the origin of the cats was not available; a cats living in a multi-cat house; b stray cats; c cats with positive results in
multiple tissues and/or samples were counted once
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Table 2. Reported FeMV seroprevalence of cats in relation to population sampled and geography.

Reference Population Total Seroprevalence Country

Woo et al., 2012 Stray cats 457 27.8% China
Sakaguchi et al., 2014 Household cats 13 23% Japan

Park et al., 2016 Stray and household cats 100 21% Japan
Arikawa et al., 2017 n.a. 100 22% Japan

McCallum et al., 2017 Household cats 72 31% United Kingdom

De Luca et al., 2020
Colony cats a 69 21.73% Italy

Household cats 127 17.32%
Busch et al., 2020 Colony cats a 112 63% Chile

n.a., information about the origin of the cats was not available; a stray cats.

4.2. FeMV Persistent Infection

Numerous studies have reported evidence of chronic infection by FeMV. In one study,
FeMV strain US1, identified from a domestic male cat in 2013, was detected in the same
cat more than a year after the first RNA detection [14]. Viral RNA was constantly found
up to day 110 in the first FeMV-positive cat from Italy [18,20] and up to 10 months after
the initial molecular detection from five FeMV-positive carcasses [22]. Furthermore, virus
shedding was observed for several months in urine samples from two cats infected with
FeMV-GT2 [25]. These findings may suggest the capability of FeMV to establish a persistent
infection, although this remains to be ascertained in an experimental setting. Although the
mode of transmission of FeMV is currently unknown, the above observations suggest that
FeMV might be present in infected cats for a long time, which is consistent with the high
positive rates in cats living in colonies. Few investigators have successfully detected FeMV
RNA from blood samples [6,10]. This may implicate that viremia occurs for a short period
of time, or alternatively this may be related to the retrospective nature of the studies and to
sample collection time, which likely occurred after the viremic phase.

5. FeMV as the Causative Agent of Renal Disease?

The role of FeMV in the pathogenesis of feline CKD is still debated. A case–control
study proposed a link between FeMV infection and TIN [6], and several studies have been
performed to ascertain the association between FeMV infection and feline CKD, leading to
controversial conclusions [15,26,29]. An association between feline paramyxoviruses and
CKD has been suggested in a systematic investigation involving domestic cats with and
without CKD [26]. Paramyxoviral RNA was detected from samples of eight cats belonging
to the CKD-affected group, while none of the urine samples of the control group was
positive for paramyxoviral RNA. All cats were affected by lower urinary tract disease or
renal disease at the time of sample collection [26]. CKD is a frequent clinical scenario with
a described prevalence of 1–3% and a peak of 30% in elderly cats [48]. Consequently, a
prompt CKD diagnosis is necessary to avoid complications and to decrease the degen-
eration of renal functionality in domestic cats [29]. The diagnosis of CKD and staging
are mainly based on the concentration of serum creatinine, urine protein/creatinine ra-
tio, urine concentrating ability, and diagnostic imaging [49]. These parameters, however,
are late markers that are more indicative of a CKD diagnosis in advanced stages. Alter-
natively, and as indicated by the International Renal Interest Society guidelines (IRIS),
(http://www.iris-kidney.com/guidelines/, accessed on 14 April 2021) serum symmetric
dimethylarginine has been suggested as an early indicator of CKD. In addition, urinary
qualitative proteinuria and electrolytes urinary fractional excretion have been considered in
the assessment of renal damage [7,50]. Specifically, qualitative proteinuria and proteomics
allow the analysis of biomarkers indicative of kidney damage such as cauxin, uromodulin,
and retinol binding protein [50–52].

In this regard, clinical data from a cohort of 14 FeMV-infected cats were compared
with data obtained from 22 healthy and 21 CKD cats [29]. CKD was diagnosed in three
out of 14 FeMV-infected animals. Interestingly, even though only one cat was classi-

http://www.iris-kidney.com/guidelines/
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fied as proteinuric and five cats as borderline-proteinuric according to IRIS staging of
CKD Guidelines (http://www.iris-kidney.com/guidelines/ accessed on 14 April 2021),
sodium-dodecyl-sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of urine
samples revealed qualitative proteinuria in 77% of FeMV-infected cats. In these subjects, a
tubular pattern characterized by a reduction in uromodulin and augmented low-molecular-
weight proteins was observed. Infection with FeMV was therefore related to diverse levels
of kidney impairment, varying from minor tubular proteinuria with less concentrated
urine to azotemia. The data from this report highlight that this infection may be associated
with the occurrence of a sub-clinical renal disfunction in younger cats as compared to those
commonly presenting CKD [29].

Several studies have been conducted in cats to investigate the link between FeMV
infection and TIN, which involves primary injury to renal tubules and interstitium and
represents the most frequent histopathological finding in CKD. A case–control report
described the occurrence of TIN in 7 out of 12 FeMV-positive cats and in only 2 out of
15 FeMV-negative cats [6]. Histological examination revealed interstitial inflammatory
infiltrate and renal tubular degeneration or necrosis in kidney sections from positive cats.
In addition, a marked decrease in cauxin expression in the degenerated tubular epithelial
cells was observed. FeMV immunoreactivity was revealed within kidney tubular cells and
lymph node-resident macrophages [6]. In a subsequent study, although no statistically
significant relationship was confirmed between TIN and FeMV infection, a significant
association was found between FeMV and the presence of renal inflammatory lesions [12].
Moderate to severe chronic interstitial nephritis, mild infiltration of inflammatory cells and
other lesions, including interstitial fibrosis, glomerulosclerosis, tubular microcystic change,
proteinaceous casts, and calcification were described in FeMV-positive kidney tissues. Here,
FeMV immunoreactivity was limited to tubular epithelial cells of the renal cortex, medulla,
and pelvis, and not detected in inflammatory cells [12]. To study the association between
FeMV infection and pathological changes in kidney tissues of infected cats, 38 kidney tissue
samples were evaluated using immunohistochemistry and immunofluorescent assays [13].
Certain tissue damage scores were statistically higher where FeMV antigen was detected,
particularly those associated with renal tubular tissues. The histopathological findings
correlated with the presence of FeMV antigens were tubular atrophy, fibrosis, interstitial
cell infiltration, and glomerulosclerosis. Feline IgG were also found in glomerular tissues.
However, a different localization as well as the absence of a significant association with
the FeMV antigens was reported [13]. On the other hand, different studies failed to
report a statistically significant association with kidney disease [10,15–17,21–24,28]. Several
reasons can explain these controversial findings. First, the retrospective nature of the
studies does not allow to establish a definite association between FeMV infection and
kidney pathological lesions or CKD. In addition, given the general complexity of CKD
pathogenesis, it is difficult to associate CKD to a single etiological trigger in cats. In
fact, in most cats, the underlying etiology of CKD is not completely understood. Various
factors potentially contributing to renal damage have been proposed, including toxic
insults, hypoxia, chronic glomerulonephritis, chronic pyelonephritis, upper urinary tract
obstructions, and viral infections such as feline immunodeficiency virus, feline infectious
peritonitis virus, and feline leukemia virus [53–57]. Therefore, further efforts are warranted
to disentangle the role of FeMV in comorbidities and clarify whether FeMV infections are
causatively involved in feline CKD or just benefit from inflamed tissues of the upper urinary
tract. Also, certain feline chronic diseases such as TIN, may still progress when FeMV is
not molecularly detected in urine or FeMV antigens in the lesions might have been already
eliminated by the host immune response in the case of severe chronic TIN, a phenomenon
already described for other viral infectious diseases [58,59]. Since a definite role of FeMV
in the pathogenesis of renal disease is difficult to ascertain, given the retrospective nature
of these studies, it is clear that in vivo experimental infection is needed to examine the
pathogenesis of FeMV and the elicited immune response during the acute and chronic
stages of infection.

http://www.iris-kidney.com/guidelines/
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6. FeMV: Not Just a Renal Pathogen?

Morbilliviruses related to FeMV, such as CDV and MeV, invade the host following
aerosol infection [60]. After a primary replication in dendritic cells and tissue macrophages
located in the draining lymph nodes, they can infect lymphocytes, resulting in a short-term
viremia [61], which leads to viral spread to the other organs. Infection by morbilliviruses
has been described in various tissues such as the lung, kidney, gastrointestinal tract,
vascular endothelium, and brain [33]; however, the detailed cell entry mechanisms of
FeMV are unknown. The signaling lymphocyte activation molecule (SLAM or CD150)
and Nectin-4 are potential candidates since they represent the major receptors for other
morbilliviruses in immune and polarized epithelial cells, respectively [40,62–64]. In this
regard, FeMV has been observed to infect in vitro diverse feline cell lines such as epithelial,
fibroblastic, lymphoid, and glial cells [65]. These findings suggest that the receptor(s) of
FeMV may be expressed in multiple tissues. FeMV F protein has only one basic proteolytic
cleavage site, while the cleavage sites in other morbilliviruses are multibasic [6]. Based on
the amino acid differences of other morbilliviruses, this observation suggests that the F
protein of FeMV may be cleaved by different proteases, thus affecting viral entry and host
cell tropism. Indeed, contrarily to F proteins containing multibasic cleavage sites which are
targeted by ubiquitous endopeptidases (e.g., furin), F proteins with a single basic residue
at the cleavage site may be cleaved by substrate-specific extracellular proteases (such as
trypsin-like enzymes), as reported for other paramyxoviruses [66].

The in vitro tropism of FeMV-GT2 was investigated on primary cells from cat kidney,
urinary bladder, lung, peripheral blood mononuclear cells, and brain [25]. The main
target of FeMV-GT2 infection was renal epithelial cells, whereas epithelial cells from the
urinary bladder were less susceptible to infection. Feline lung epithelial cells and cerebrum-
and cerebellum-derived cells were described to be susceptible to FeMV-GT2 infection.
In addition, FeMV-GT2 was demonstrated to be able to infect numerous immune cells
such as monocytes, B lymphocytes, CD4+ T lymphocytes and to a lesser extent, CD8+ T
lymphocytes. However, no cytopathic effect (CPE) was detected in any of the tested cell
lines, except for cerebellum cultures from which small syncytia were observed [25]. This is
in contrast with previous reports on FeMV genotype 1 which induced syncytia formation in
Crandell–Rees feline kidney (CrFK) [11] and feline embryonic fibroblast (FEA) cells [22,67].

In a subsequent study, the in vitro tropism was investigated by virus histochemistry
(VHC) using FeMV genotype 1. VHC revealed specific immunoreactivity in lungs, kidneys,
and brain sections, with FeMV particles being able to bind to epithelial cells of bronchioles
and alveolar macrophages in the lungs. In kidneys, FeMV antigens were found in inflamma-
tory cells located in the lumen of tubuli and in glomeruli. In brain tissues, immunoreactivity
was weak and occasionally seen in cerebellar granule cells and in inflammatory cells within
blood vessels [22]. Detection of FeMV RNA in diverse extra-renal tissues such as lung,
spleen, liver, lymph node, and brain has also been described in naturally infected cats.
Severe cholangiohepatitis and splenic hyalinosis, megakariocytosis with lymphocytic de-
pletion were described in RNA-positive tissues, and FeMV immunoreactivity was observed
within the cytoplasm of hepatocytes and mononuclear cells, respectively [15,20,22]. The
in vitro tropism and histopathological findings described above may suggest a role of
FeMV in pathological processes, not only at the urinary tract level, but also in other organs.

7. FeMV Detection Methods

Even though virus isolation remains the reference standard for the diagnosis of
morbilliviruses, it has been generally confirmed to be difficult and time-consuming for
FeMV [6,11,22,25]. Molecular detection approaches followed by sequencing have been
proven essential for a rapid confirmation of FeMV infection and to characterize new
strains [11,22]. Serological studies have also been useful for the evaluation of FeMV epi-
demiology and to assess the immune status of feline populations in Italy, United Kingdom,
Japan, China, and Chile [6,11,12,22,24,45,68]. However, it is important to mention that a
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commercial detection assay for FeMV is not currently available and it is not recommended,
given the yet not completely clear pathogenetic role of FeMV infection in cats.

7.1. Virus Isolation

FeMV isolation has been achieved using urine samples of domestic cats inoculated
into monolayers of CRFK cells [6,11]. African green monkey cells and diverse feline cell
lines (epithelial, fibroblastic, lymphoid, and glial cells) have also been proven to be useful
for the isolation of FeMV [69]. Typically, several weeks are needed before virus growth in
the form of cell rounding, cell lysis, and syncytia formation [6]. Recently, FEA cells were
shown to reduce from weeks to days the time necessary for FeMV isolation using urine
diluted with Minimum Essential Medium Eagle immediately after collection [67]. Although
an identical procedure was used in a study conducted by the same group [22], these results
were not confirmed, and CPE was observed only after two 10-day periods of blind passage
on FEA cells. This apparent inefficiency for rapid virus isolation might depend on either
the biological characteristics of the virus, possibly combined with the absence of a proper
viable cell line, or the timing of sample collection as well as inappropriate sample storage.
A Vero cell line stably expressing the canine SLAM was shown to greatly improve the
efficiency of isolation and propagation of CDV strains [70]. Therefore, it would be beneficial
to establish a homologous cell system stably expressing the feline SLAM to attempt the
rapid isolation and propagation of FeMV RNA-positive samples.

7.2. Reverse-Transcription Polymerase Chain Reaction

A primer set based on a 155-nt highly conserved region of morbillivirus L gene
has been successfully used to detect FeMV by RT-PCR (reverse-transcription polymerase
chain reaction) [6]. Using a similar approach, Furuya et al. designed a protocol that
allows the detection of degraded RNA in formalin-fixed paraffin-embedded samples by
amplifying a 115-nt region of the FeMV L gene [10]. In addition, a loop-mediated isothermal
amplification technique targeting a 215-nt region of the FeMV L gene was developed for the
detection of FeMV RNA [71]. Since then, other RT-PCR assays were also successfully used
for FeMV diagnosis, including a pan-paramyxovirus primer set amplifying a 398-nt region
of the L gene [14], a primer set for a 398-nt region of the N gene [27], and primers amplifying
a 401-nt region of the L gene [22]. A quantitative RT-PCR, named qPCRFeMV, targeting a
76-nt region of the P/V/C gene, was developed for rapid detection and quantitation of
FeMV RNA [20]. qPCRFeMV was shown to have a higher sensitivity with respect to RT-
PCR, enabling the detection of FeMV RNA even in samples with a low viral concentration.
FeMV-GT2 RNA was first detected using a set of degenerated consensus primers able to
detect known and novel paramyxoviruses [72]. The development of a quantitative RT-PCR
assay specific for FeMV-GT2 may be useful to provide a more rapid differentiation between
the two FeMV genotypes.

7.3. Serology

Various serological methods have been used to detect FeMV infection. However, a
virus neutralization assay, the reference standard for diagnostic serology, has not been
developed yet. Western blot, IIF, and an indirect enzyme-linked immunosorbent assay
(iELISA) have been the main published platforms used to detect FeMV-specific antibodies.
Western blot and IIF assays allowed the detection of antibodies directed against the N
protein [6], whereas iELISA was developed to detect those against the P protein [68]. The
N and P proteins are highly expressed in morbillivirus-infected cells, representing a good
target for detecting the antibody response to FeMV [73]. Western blot analyses used FeMV
isolate [11] or the recombinant N protein [6,24] as antigens. Feline antibodies were detected
using a horseradish peroxidase-conjugated goat anti-cat antibody which reacts specifically
with cat IgG and with light chains common to other cat immunoglobulins. For antibody
detection by IIF, the N protein was expressed in HeLa cells, and antibody binding was
detected using a goat anti-cat-IgG conjugated with fluorescein (FITC) specific for the IgG Fc
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region [12,22]. The iELISA used the recombinant P protein as antigen, and FeMV antibodies
were detected using a horseradish peroxidase-conjugated goat anti-cat antibody [68]. An
iELISA for the P protein has been described for other paramyxoviruses and showed
an increased specificity and accuracy in comparison to other common assays [74]. It is
noteworthy that iELISA tools may be useful in the diagnosis of FeMV-infected cats or may
contribute as serological screening tools in epidemiological studies.

8. Conclusions

Cats are among the most common pets, and kidney failure represents one of the
most important and frequent clinical scenarios, with CKD prevalence increasing with age,
affecting up to 30% of cats older than 15 years [48]. Therefore, it is important to clarify
the characteristics and the pathogenicity of FeMV in domestic cats as a natural host. Even
if the association between FeMV and renal disorders has not been well defined, FeMV
infection could lead to a potential renal insult causing an initial kidney disorder. FeMV
has some distinctive characteristics, and the biology of FeMV, including its pathogenicity,
is still not well understood partly due to its uniqueness. The described in vitro studies
on FeMV tropism and extra-renal histopathological findings resemble the pathology of
other morbilliviruses such as CDV or MeV and may suggest a role of FeMV in pathological
processes in other organs besides the urinary tract. Since a well-defined etiopathogenetic
role of FeMV cannot be ascertained in the case of a spontaneous disease due to the presence
of other possible confounding factors, an experimental study in the natural host or in a
susceptible animal model is highly needed.
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