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Abstract

Recently, workers in most enterprises suffer from excessive occupational stress in the work-

place, which negatively affects workers’ productivity, safety, and health. To deal with stress

in workers, it is vital for the human resource management (HRM) department to manage

stress effectively, bridging the gap between management and stressed employees. To

manage stress effectively, the first step is to predict workers’ stress and detect the factors

causing stress among workers. Existing methods often rely on the stress assessment ques-

tionnaire, which may not be effective to predict workers’ stress, due to 1) the difficulty of col-

lecting the questionnaire data, and 2) the bias brought by workers’ subjectivity when

completing the questionnaires. In this paper, we aim to address this issue and accurately

predict workers’ stress status based on Deep Learning (DL) approach. We develop two

stress prediction models (i.e., stress classification model and stress regression model) and

correspondingly design two neural network architectures. We train these two stress predic-

tion models based on workers’ data (e.g., salary, working time, KPI). By conducting experi-

ments over two real-world datasets: ESI and HAJP, we validate that our proposed deep

learning-based approach can effectively predict workers’ stress status with 71.2% accuracy

in the classification model and 11.1 prediction loss in the regression model. By accurately

predicting workers’ stress status with our method, the HRM of enterprises can be improved.

Introduction

With the rising of artificial intelligence (AI), the new technique has impacted various fields.

Human resources management (HRM) in the high-technology enterprise, is being reshaped

by developing the novel personal selection and management with neural network [1]. For a

long time, managers in enterprises attempt to adopt the optimal method to recruit and manage

the employees. Rather than the traditional recruit procedure consisting of cover letter, resume

and interview, HR consultants commonly make the decision according to the social network-

ing, online competitions and data exploration techniques, by which they are able to know the

advantages and disadvantages of the candidates. Using neural networks is a new way to screen

the accurate background and potentials of candidates, consequently fastening recruiters’ work.
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As the development of the neural network in HR, the neural network-based recruit is much

more mature, comparing to the HR management for the management is usually affected by

the difference of individuals.

From the view of enterprises manager, they commonly pay more attention to their working

performance and the sense of belonging to enterprises. In the research of HRM, the scientific

measurement to HRM policies include: involvement; training, development and education;

work conditions; and compensation and rewards. Gisela Demo et al. [2] pointed out that if the

appropriate psychometric parameters are involved, along with firm policies, the HRM would

be more reliable and comprehensive. Additionally, it can be used to be a diagnosis to improve

employees’ well-being at work and optimize organizational results. From 2012, the research on

psychometric parameters in HRM has attracted numerous attention from different aspects [3–

5]. We notice that the previous works lack scientific analysis on the psychometric parameters,

especially in the high-tech companies, that the majority of companies are the youth. Then, our

work focuses on these employees’ mental conditions as stress level. By using the neural net-

work technique, our scheme is able to provide a stress level report for the manager to make a

proper decision, which aims to release and eliminate the influence caused by the mental issues.

Different from the research on stress in the behavioral [6, 7] and health [8, 9] fields using

social “theory” to explain the stress as an aspect of an individual’s daily life, our work is aiming

to describe the stress in the mathematic method by combining statistics and artificial intelli-

gence technique. However, there is a challenge in the real-world applications, that is the

continuous monitoring of an individual’s state, involving physiological data collection, prepro-

cessing, feature extraction coupled with selection/transformation to finally classify these

stress-related features. The state-of-the-art of stress recognition algorithms such as the auto-

matic stress recognition algorithms, the real-time non-intrusive fatigue monitor and a wear-

able emotional state assessing system, and a classification of emotions by neural network.

To optimize the accuracy of the model, it is required that we perform a comprehensive

analysis of the machine learning paradigms available and choose the one with optimal predic-

tive ability and sensitivity. Solutions derived for determining the stress level of individual-

related phenomenons using such soft-computing methodologies offer a high degree of sensi-

tivity and specificity required over other heuristic prediction approaches.

Our contributions are summarized as follows:

• Key Problem. We study workers’ stress prediction problem in the context of human

resource management. Studying this problem is vital to manage workers’ stress and improve

enterprise human resource management.

• Novel Method. We propose a deep learning-based method for the workers’ stress prediction

problem. We develop two stress prediction models (i.e., stress classification model and stress

regression model) and correspondingly design two neural network architectures. We train

these two stress prediction models based on the workers’ data (e.g., salary, working time,

KPI).

• Extensive Evaluation. We evaluate our method over two real-world datasets about workers’

stress levels (i.e., ESI and HAJP). The experimental results show that our method can effec-

tively predict workers’ stress levels with high accuracy.

The remainder of this paper is organized as the following 5 parts: “Related work”, “Prelimi-

nary”, “Method”, “Experiments”, and “Conclusion and future work”. We review literature

related to our work in part 1. In part 2, we briefly introduce the background of HRM problem

and neural network approach. In part 3, we propose the deep learning-based predictor to pre-

dict employees’ stress levels and design the architecture of neural network we use. In part 4, we
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carry out the experiments of our proposed deep learning-based predictor for employees’ stress

level prediction over two real-world datasets: ESI and HAJP. Finally, we conclude this paper

and discuss future work in part 5.

Related work

To mitigate work-related disorders, stress detection gains increasing research attention. The

basic existing approach is the questionnaire-based stress level detection (WSQ [10]). However,

the questionnaire-based stress level detection is potentially subjective such that the conclusions

may be inaccurate for the decision-making. Therefore, we propose the artificial neural net-

works (ANN)-based stress level detection approach and apply this approach to any objective

worker’s data, including but not limited to salary, working time, KPI. One should note that

our ANN-based detection is essentially different from the questionnaire-based stress level

detection. Our approach is more general due to its objective, quantitative and automated prop-

erties. Once our approach trains a general prediction model based on the collected data, it can

be adaptive to predict the new instances (i.e., workers). In contrast, the questionnaire-based

stress level detection is more specific and lacks adaptation to new instances. Besides, it requires

tedious manual effort to collect data and analyze data. We summarize the difference of them in

Table 1 below.

Neural network

The neural network has attracted a large amount of interest for training the mathematical

model of complex systems [11, 12], and extending this concept to engineering applications.

Since that, a sequence of significant works on the neural network has been proposed. Long

Short-Term Memory (LSTM) [13] was proposed to deal with the gradient related issues of

Recurrent Neural Network (RNN) with remarkable success in different applications, as speech

recognition [14], machine translation [15], fault forecasting [16] and forecasting [17]. Then,

the convolutional neural network (CNN) has been proposed for extracting features adaptively

and effectively in different research fields [18–20]. In particular, deep learning theory [21] pro-

vides new perspectives for the feature representation of complex systems. Multiphase flow

research that deep learning provides a lot of excellent solutions for its complex challenges.

Ghosh et al. [22] and Roman et al. [23] separately use the genetic algorithm and the neural net-

works to identify the flow features. Some researchers try to use deep learning methods to study

the pattern recognition [24] for further prediction. Deep learning was used to diagnose liver

disease and predict the potential of liver disease [25]. Guo et al. [26] use the deep learning algo-

rithm to identify the stock patterns for assisting the expert to predict the trend of the target

stock. Recently, Le et al. [27] was attempting to predicting for Acute kidney injury (AKI) up to

48 hours in advance of onset by using CNN and patient Electronic Health Record (EHR) data,

in order to overcome the difficulties of prediction and diagnosis.

Here, we can conclude that deep learning algorithms have achieved a giant success in

numerous research fields along with impressive and profound impacts in real-world

Table 1. Comparing our method with questionnaire-based stress level detection (WSQ).

Ours WSQ [10]

General Specific

Adaptive Static

Quantitative Qualitative

Automatic Manual

https://doi.org/10.1371/journal.pone.0266373.t001

PLOS ONE Workers’ stress prediction using deep learning for human resource management

PLOS ONE | https://doi.org/10.1371/journal.pone.0266373 April 13, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0266373.t001
https://doi.org/10.1371/journal.pone.0266373


applications. The outstanding performance in industry, economy and medical science, indi-

cates the potential of management.

Neural network-based stress level analysis

In the next part, we introduce some works related to stress analysis based on the neural net-

work. Singh et al. [28] investigate continuous stress level monitoring based on neural network

classifier. The features they use are physio-logical signals like Galvanic Skin Response (GSR)

and Photoplethysmography (PPG) and the network architecture they design is Layer Recur-

rent Neural Networks (L-RNN). However, it is not easy to obtain physio-logical signals.

Requiring the workers to wear the handsets is intrusive. Mohanty et al. [29] proposes a feature

reduction mechanism using the combination of Vector Quantization (VQ) and eigenvalue

decomposition and select effective features to recognize child emotion using the probabilistic

neural network. Lin et al. [30] study psychological stress detection from cross-media micro-

blog data using deep sparse neural network. Weng et al. [31] train different types of classifiers

using the neural network to predict the disease. The existing works [32–34] are most related to

our method. Umematsu et al. [32] study students’ daily life stress forecasting based on the long

short-term memory (LSTM) neural network and students’ data (i.e., physiological signals,

mobile phone usage, location, and behavioral surveys). Differently, we study the workers’

stress prediction problem in the context of human resource management and use the enter-

prise-related datasets. Li et al. [33] study stress detection using 1-dimensional (1D) convolu-

tional neural network and a multilayer perceptron neural network. Note that the dataset they

use is physiological data collected from chest-worn and wrist-worn sensors. Collecting the

physiological data from workers is difficult due to requiring the workers to wear the handset

sensors. Bekesiene et al. [34] propose an ANN-based framework to predicate the stress level of

military conscripts. However, they use the military data, which is secret. Besides, they do not

study the stress regression model, which is one of focus in our work.

Preliminary

Constitutive definitions of HRM policies

In this part, we review the constitutive definitions of typical HRM policies [35] as Table 2.

Some research points out that perceptions of HRM are associated with levels of employee well-

being [36], especially the emotional factors. The results show that the relationship between

work motivation and the level of stress, is positive, which leads to the improvement of

Table 2. The constitutive definitions of HRM policies.

HRM Policy Constitutive Definition

Recruitment and Selection (RS) Look for and select employees, in terms of: people’s values, interests,

expectations. on demands of the position.

Involvement (I) Contribute to employees’ well-being, in terms of: acknowledgement,

relationship, participation and communication.

Training, Provide employees systematic competence

Development & Education (TD&E) and stimulate continuous learning and knowledge.

Work Conditions (WC) Provide good work conditions to employees, in terms of: benefits, health,

safety and technology.

Competency-Based Performance

Appraisal (CBPA)

Evaluate employee’s performance for decisions on promotions, career

planning and development.

Compensation and Rewards (CR) Reward employees’ performance and competence via remuneration and

incentives.

https://doi.org/10.1371/journal.pone.0266373.t002
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employee’s performance straightly. Therefore, in our work, the research focuses on involve-

ment rather than other HRM policies.

The introduction of neural network

In this part, we review the technique of deep neural network (i.e., DNN), which serves as the

basis of our work. DNN consists of one input layer, numerous hidden layers, and one output

layer. In each layer, there are some neurons, of which the link is a cause-effect chain to be

learned and trained. Due to the non-linear representation ability, DNN is helpful to uncover

the underlying non-linear relation in the datasets. In our setting, the feature of the worker is

characterized by a 1-dimensional vector. Therefore, the fully connected network (also known

as Multi-layer perceptron, MLP) is applicable in our setting. Note that we do not use a convo-

lution neural network (CNN) because the datasets for workers’ stress prediction do not often

contain 2-dimensional image feature like MNIST.

The fully connected layer indicates that a neuron is connected to all neurons in the next

layer. The DNN model is of a linear function and an activation function as Eq 1,

a ¼
P

wixi þ bi; ð1Þ

where xi is the input value of every neuron; wi is the coefficient of linear relationship, and bi is

the bias.

Assuming there are L hidden layers in DNN, we use f(x) to represent the activation function

for increasing the nonlinearity of the neural network, which is usually applied for evaluating

the nonlinear function for nonlinear models. The calculation of the output value can be

expressed as Eq 2:

f ðxÞ ¼ f ½aLþ1ðhLðaLð. . . ðh2ða2ðh1ða1ðxÞÞÞÞÞÞÞÞ�;

aLðxÞ ¼ WLxþ b;
ð2Þ

where L represents the L-th layer; x is the matrix of input variables; W and b are high dimen-

sional matrices.

The loss function is used to estimate the difference between the real value and the predicted

value. The values are non-negatively real, which is the baton of the whole network model.

They guide the network parameter learning through the error backpropagation generated by

the predicted sample and the real sample marks. When the value of the loss function is smaller,

the robustness of the model is better. W and b are determined by the minimum value of the

loss function in the process of training. The last layer of the network has only one neuron of

LI. Thus, the Binary_Crossentropy loss function was used to train the network, instead of

using the conventional softmax classification loss function. For all N points,

HpðqÞ ¼ �
1

N

X
yi � logðpðyiÞÞ þ ð1 � yiÞ � logð1 � pðyiÞÞ; ð3Þ

where yi is the label (1 for positive point and 0 for negative point); p(y) is the predicted proba-

bility of the point to be positive.

Method

We propose a deep learning-based predictor to predict employees’ stress levels. The employee’s

feature is represented by a vector with predefined dimensions. We construct the neural net-

work architecture using Multi-layer perceptron (MLP), which is essentially a fully connected

network. In our problem, there are two kinds of output layers. When the prediction is binary
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results that characterize workers’ satisfied statuses or unsatisfied statuses, the output layer con-

sists of 2 neurons. When the prediction is the numeric result that characterizes workers’ satis-

factory level in the interval [0, 1], the output layer consists of 1 neuron. And these two

networks are called the classification model and regression model, respectively. We illustrate

the network architectures of the stress classification model and stress regression model in Figs

1 and 2, respectively. In Fig 1, the input layer consists of several neutrons that correspond to

the number of worker’s features. Following the input layer, several hidden layers are set up to

Fig 1. The network architecture of the classification model used in our setting.

https://doi.org/10.1371/journal.pone.0266373.g001

Fig 2. The network architecture of the regression model used in our setting.

https://doi.org/10.1371/journal.pone.0266373.g002
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extract the worker’s feature in the more abstract representation spaces layer by layer. Due to

the binary classification in the stress classification model, we set up 2 neutrons in the output

layer. Similar network architecture is used in the stress regression model as shown in Fig 2.

Differently, the output layer consists of only one neutron due to the scalar stress level predic-

tion in the stress regression model. Actually, we can construct the stress regression model by

adding a neutron as the output layer in the stress classification model.

By setting up the network architectures, we can formally develop our method for the work-

ers’ stress prediction problem. Taking two real-world datasets (ESI for the stress classification

model and HAJP in the stress regression model) as examples, we illustrate our method in Fig

3. The procedure of constructing a predictive model can be summarized as follows: 1) Data

collection: system receives the datasets (e.g., ESI and HAJP) as inputs; 2) Variables determina-

tion input: System identifies the variables and inputs the determined variables; 3) Data pre-

processing: Before model training, system scrambles and generalizes the variables due to a dif-

ferent physical unit of the variables; 4) Database dividing: System divides the dataset into three

shares for model training, model validation, and model testing; 5) ML-FCN DNN: System

runs DNN over the training set and checks the accuracy of the training DNN model over the

validation set. When the training process is finished, the system uses the test set to evaluate the

generalization ability of the model and further validate the prediction accuracy.

Experiments

Setup

We carry out experiments to evaluate the proposed predictor over two datasets: Employee Sat-

isfaction Index (ESI) https://www.kaggle.com/mohamedharris/employee-satisfaction-index-

dataset and Hr Analytics Job Prediction (HAJP) https://www.kaggle.com/mfaisalqureshi/hr-

analytics-and-job-prediction, which are publicized in Kaggle.

In ESI, there are 500 workers with 14 attributes. We exclude the index id and worker id and

set the valid features as: “age, dept, location, education, recruitment_type, job_level, rating,

onsite, awards, certifications, and salary”. Among these features, the numeric ones include

“age, job_level, rating, onsite, awards, certifications and salary”. For attributes “job_level and

rating”, their values are ranged in {1, 2, 3, 4, 5}. For attribute “dept”, it represents the depart-

ment worker belongs to and its domain is {HR, Technology, Sales, Purchasing, Marketing}.

For attribute “education”, it represents the degree worker has and its domain includes under-

graduate (UG) and postgraduate (PG). For attribute “location”, it represents the location

worker lives and its domain includes city and suburb. For attribute “recruitment_type”, its

Fig 3. The procedure of constructing a predictive model.

https://doi.org/10.1371/journal.pone.0266373.g003
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domain is {Referral, Walk- in, On- Campus, Recruitment Agency}. The label is “satisfied”

which is a binary attribute. Thus, our predictor for the ESI dataset belongs to the classifier

model.

In HAJP, there are 14999 workers with 10 attributes. We select “last_evaluation,

number_project, average_montly_hours, time_spend_company, Work_accident, left,

promotion_last_5years, Department, salary” as valid features. The label is “satisfaction_level”

which is floating attribute and ranged in [0, 1]. Thus, our predictor for the HAJP dataset

belongs to the regression model.

We implement the proposed predictor using the Pytorch framework with version 1.6.0. We

run all the experiments on a Ubuntu 16.04.3 server with five NVIDIA TITAN xp graphic

cards. We set up 2 hidden layers for our MLP-based predictor. We split the whole datasets into

training datasets, validating datasets, and testing datasets with a ratio 6: 2: 2. The maximum

training steps are set to be 500 by default. To conveniently demonstrate the performance of

testing phase, we report the test results during the training process.

Fig 4. The model loss performance of our DNN model over the ESI dataset.

https://doi.org/10.1371/journal.pone.0266373.g004
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Numerical results

The performance of stress classification model. We first evaluate the performance of

our stress classification model over the ESI dataset where the labels are the binary attribute:

satisfied and unsatisfied. The performance indicators to evaluate the stress classification

model include model loss and model accuracy. We train the stress classification model up to

1000 epochs and evaluate the model loss and model accuracy in the training stage, validation

stage and testing stage, respectively. The results are plotted in Figs 4 and 5. As shown in Fig

4, we can see that the model losses in the training stage, validation stage and testing stage

decrease with the training step. When the training step is close to 600, the loss function grad-

ually converges. This means that the model can learn to predict the workers’ stress from the

training dataset as long as enough training steps are taken. As shown in Fig 5, we can also

see that the model accuracies in the training stage, validation stage and testing stage increase

with the training step. After 200 epoch, the model accuracy of 3 curves for the training stage,

validation stage and testing stage becomes stable and reaches the peak value. This also vali-

dates that the stress classification model can predict accurately workers’ stress. The

Fig 5. The model accuracy performance of our DNN model over the ESI dataset.

https://doi.org/10.1371/journal.pone.0266373.g005
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maximum accuracy our stress classification model achieves in the validation stage is 71.2%.

The model performance can be improved when the samples are heterogeneous and the size

of the training dataset is increased. When the data samples are more diverse and heteroge-

neous, the data distribution in the dataset is more approximate to the original ground-truth

distribution. Thus, the trained model can learn more and have a more powerful prediction.

And when the size of dataset is large, the dataset is more likely diverse and heterogeneous

[37, 38].

Fig 6. The performance of DNN’s architecture.

https://doi.org/10.1371/journal.pone.0266373.g006

Table 3. Comparing our stress classification model with SVM-based stress classifier.

Methods Ours SVM

Accuracy 71.2% 60.9%

F1 score 68.6 57.9

https://doi.org/10.1371/journal.pone.0266373.t003
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It should be noted that the test data was never used in the training phase though we report

the testing result in each time step in Figs 4 and 5.

The comparison with SVM classifier. To verify the performance of our stress classification

model, we compare our stress classification model with a baseline: SVM-based stress classifier,

a traditional classification approach. We still use the same experimental setup: train the models

1000 epochs and report the accuracy and F1 score results. We summarize the comparison

result in Table 3.

From Table 3, we can see that the accuracy and F1 score metrics of our stress classification

model are 71.2% and 68.6, respectively. The accuracy and F1 score metrics of the SVM-based

stress classifier are 60.9% and 57.9, respectively. Therefore, our stress classification model out-

performs the SVM-based stress classifier when predicting workers’ stress statuses.

The impact of number of layers and neurons. Next, we evaluate the impact of the network’s

architecture (i.e., the number of the network’s layers and neurons) on the model accuracy. We

vary the number of total neurons in {10, 20, . . ., 90} and the total hidden layers in {1, 2, . . ., 6}.

Fig 7. Confusion matrices of our DNN model over the ESI dataset in the training phase.

https://doi.org/10.1371/journal.pone.0266373.g007
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We plot the result in Fig 6. As shown in Fig 6, we can see that the testing accuracy has signifi-

cant non-convex relations with the number of the network’s layers and neurons. This means

that it is difficult to optimize the hyperparameters (i.e., the number of the network’s layers and

neurons) in DNN. Roughly speaking, the optimal accuracy 71.2% can be achieved when the

number of the network’s neurons is set to be 50 and the number of the network’s layers is set

to be 5. It is possible that there exists a global maximum with respect to the number of the net-

work’s layers and neurons. Applying the hyperparameter optimization technique, the optimal

hyperparameters can be determined. However, it would be expensive to find the optimal

hyperparameters due to the difficulty of non-convex optimization. And we will choose the

near-optimal hyperparameters (i.e., 50 neurons and 5 hidden layers) in our paper.

To further investigate the classification performance of our stress classification model, we

collect the accuracy results in the training stage, validation stage and testing stage and plot the

results in the confusion matrix in Figs 7–9. In each confusion matrix, each row represents

ground truth labels (stress status) while each column corresponds to predicted labels. In the

training phase (i.e., Fig 7), 63.5% workers are recognized as “satisfied” while their actual stress

statuses are “satisfied”. And 65.0% workers are recognized as “unsatisfied” while their actual

stress statuses are “unsatisfied”. In the validation phase (i.e., Fig 8), 71.2% workers are

Fig 8. Confusion matrices of our DNN model over the ESI dataset in the validation phase.

https://doi.org/10.1371/journal.pone.0266373.g008
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recognized as “satisfied” while their actual stress statuses are “satisfied”. And 70.9% workers

are recognized as “unsatisfied” while their actual stress statuses are “unsatisfied”. In the testing

phase (i.e., Fig 9), 69.5% workers are recognized as “satisfied” while their actual stress statuses

are “satisfied”. And 68.9% workers are recognized as “unsatisfied” while their actual stress sta-

tuses are “unsatisfied”.

The performance of stress regression model. Next, we evaluate the performance of our

stress regression model over the HAJP dataset where the labels are the numeric attribute in the

interval [0, 1]. The difference between the stress classification model and the stress regression

model is that the stress classification model has two neutrons in the output layer while the

stress regression model has only one neutron in the output layer. This is because the label in

the stress classification model is binary while the label in the stress classification model is

numeric. Thus, the performance indicator for evaluating the stress classification model is

model loss. We plot the results in Figs 10 and 11. As shown in Fig 10, we can see that the

model losses for the stress classification model in the training stage, validation stage and testing

stage decrease with the training step. When the training step is close to 650, the loss function

gradually converges. This means that the model can learn to fit the workers’ stress level from

Fig 9. Confusion matrices of our DNN model over the ESI dataset in the testing phase.

https://doi.org/10.1371/journal.pone.0266373.g009
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the training dataset (i.e., HAJP) as long as enough training steps are taken. In Fig 11, we evalu-

ate the impact of the selected features on the model loss reduction. We can see that the model

loss is reduced significantly when a large number of features is selected to train the stress

regression model. However, the more features are used to train the model, the marginal model

loss is reduced less. This demonstrates the diminishing return property in the relationship

between model loss and the number of features.

Conclusion and future work

In this paper, we investigate a DNN-based stress predictor for HRM, in terms of involvement;

training, development and education; work conditions; and compensation and rewards. Our

work fills the gap in HRM by introducing a scientific measurement to employees’ stress levels,

predicting the potential mental issues and assisting the manager to conduct the effective mea-

sure. In the experiments, the first test is in the ESI dataset of 500 workers with 14 attributes.

Then, in the HAJP dataset, the training and validating datasets are extended to be of 14999

workers with 10 attributes to build our regression model on stress level. The experimental

Fig 10. The model loss performance of our DNN model over the HAJP dataset.

https://doi.org/10.1371/journal.pone.0266373.g010
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results show that our proposed deep learning based approach can effectively predict workers’

stress status with 71.2% accuracy in the classification model and 11.1 prediction loss in the

regression model. By accurately predicting workers’ stress status with our method, the HRM

of enterprises can be improved.

Inspired by our stress predictor, there are some interesting issues to be exploited. First, is

there any scientific decision maker to solve the predicted mental issues? Then, there exist other

mental diseases which will make an influence on working performance, beyond the stress-

related mental diseases. We should attempt to find a more comprehensive mental disease pre-

dictor with high accuracy. Finally, the prediction and decision-making assistance should be of

more crucial issues rather than individuals’ issues, such as the development policies and mar-

keting strategies of enterprises.
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