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Abstract: The interest in non-coding RNAs, which started more than a decade ago, has still not weakened.
A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially
the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers
of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds
of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some
attention and have been associated with cardiac injury and cardioprotection. In this review article,
we summarize the current knowledge of the function of these two miRs in the heart, their association
with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has
already been extensively studied, much remains to be done before research findings can be translated into
clinical application for patient’s benefit.

Keywords: microRNA-1 (miR-1); microRNA-21 (miR-21); cardiovascular diseases; cardioprotection;
biomarkers

1. Introduction

Despite significant progress in cardiovascular research and improvements in the management of
patients, cardiovascular disease (CVD) is still the leading cause of death worldwide. In addition to
major diseases caused by ischemic injury including ischemic heart disease and myocardial infarction,
non-ischemic cardiac disorders such as inflammatory cardiomyopathy, anthracycline-induced
cardiomyopathy, diabetic cardiomyopathy, or radiation-induced heart disease largely contribute
to overall disability and mortality due to CVD. Thus, searching for new therapeutic targets that may
lead to new treatments for CVD based on deep molecular research, including transcriptomic research
exploring the role of different RNAs in CVD, is very much needed.

In addition to numerous other mechanisms and molecules, there is emerging evidence that
non-coding RNAs (ncRNAs) play an important role in heart physiology and function including cardiac
development, aging, heart disease, and cardioprotection [1–5]. NcRNAs represent a large family of
RNA molecules that, in contrast to messenger RNAs (mRNAs), are not directly involved in gene
transcription to proteins but widely contribute to regulation of gene expression and protein synthesis,
thus regulating numerous processes in the cell. The most important and studied subgroup of ncRNAs
are microRNAs (miRNAs, miRs), a class of small ncRNAs of ∼22 nucleotides in length. MiRs are
involved in the regulation of gene expression at the post-transcriptional level by degrading their target
mRNAs and/or by inhibiting the translation, thus controlling many different processes and pathways
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within the cell [6]. Hundreds of different miRs have been identified so far, and their functions in different
organs and systems including the cardiovascular system are widely studied both under physiological
and pathological conditions. Various miRs have been documented to be involved in the development
of different types of CVD including myocardial infarction [7], drug-induced cardiotoxicity [8], as well
as different cardiomyopathies [9,10]. In line with their role in CVD pathogenesis, and reflecting the
fact that numerous miRs are released into the circulation in CVD, miRs are potential biomarkers of
CVD. However, translation of experimental knowledge to clinical application is complicated and the
routine use of circulating levels of miRs in the clinic is still far away.

Due to the high number of experimental studies revealing the role of different miRs in health
and disease including their role in CVD, there is a need to compare the studies and summarize the
knowledge about the role of specific miRs in the development of CVD as well as in cardiac protection
and repair. This will allow drawing an overall picture of the pathophysiological function of miRs.
Hence, this review article summarizes the current knowledge on the role of two miRs which have been
documented to play significant roles in CVD, miR-1, and miR-21. We will review their role in the
pathogenesis and progression of different types of CVD, as well as in cardiac protection and repair.
Finally, we will discuss their potential as CVD biomarkers.

2. MiR-1 and miR-21: Discovery, Structure, Biology, and Physiological functions

MiRs are present and encoded in the genomes of all plants and animals, as well as in some viruses.
The mechanism of their action consists of binding to the 3′ untranslated region (3′UTR) of the specific
messenger, RNA (mRNA), at the post-transcriptional level [11]. MiRs are small (∼19–25 nucleotides),
evolutionary conserved, non-coding, single-stranded RNA molecules. After binding of miRs to specific
mRNA, the cleavage of the mRNA strand into two parts, the loss of mRNA stability, and hampered
translation of the mRNA into proteins occur [12–15]. It is supposed that miRs can modulate at least
30% of the human protein-coding genome [16]. One of the characteristics of miR is that each miR
can influence several targets and more than one miR can affect a single mRNA. According to many
studies and experiments in different animal models, it is assumed that miRs play a critical role in
the regulation of many biological processes including cell differentiation and proliferation, apoptosis,
as well as cell cycle progression [12,16–18].

MiRs were discovered in 1993 by Ambros and colleagues. The first miR, lin-4, was isolated from
nematode Caenorhabditis elegans [19]. Up to now, almost 2000 miRs have been identified and described
in humans (http://www.miRbase.org—27.11.2019) and more than 200 miRs have been found in the
heart or associated with cardiovascular diseases [20].

Synthesis of miR starts with the transcription of miR genes by RNA polymerase II. This process
of transcription leads to the formation of primary miR transcript (pri-miR) [21]. By the action of
microprocessor complex, which contains two important parts—the double-stranded RNase III enzyme,
DROSHA, and cofactor, the DiGeorge syndrome critical region 8 (DGCR8)—production of a hairpin
structure precursor miR (pre-miR) in the nucleus occurs [15]. These pre-miRs are double-stranded, circa
70 nucleotides long, and they have a terminal loop. After this, pre-miRs are relocated by exportin-5
to the cytoplasm for additional processing. In the cytoplasm, the RNase III enzyme, DICER, cleaves
a hairpin, resulting in the formation of a mature, circa 22 nucleotides long miR:miR duplex [22].
Helicase transforms miR duplexes into single-stranded miRs. Together with the Argonaute (AGO)
protein, they create the multiprotein RNA-induced silencing complex (RISC) inside which one strand
represents the mature miR and the other is degraded. Within this complex, miRs inhibit the translation
of specific mRNAs or give rise to their destabilization and degradation [11,18,21,22]. The process of
miRs synthesis, maturation, and targeting miR–binding is summarized in Figure 1.

http://www.miRbase.org
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Figure 1. Process of microRNAs (miRs) synthesis, processing, and targeted miR–binding. MiR 
synthesis occurs in the nucleus and the cytoplasm. In the nucleus, the primary miR transcript 
(pri-miR) is processed to pre-miR. In the cytoplasm, pre-miR is transformed to the mature miR. 

MiR-1 is considered as a muscle-specific miR. There are two different precursors of miR-1 in 
humans, miR-1-1 and miR-1-2, both of which are processed into an identical mature form of miR-1 
[23]. Usually, it exists in a cluster with miR-133. It was observed that it is preferentially expressed in 
cardiac and skeletal muscles and, according to Rao et al. [24], miR-1 is the most abundant miR in the 
adult mouse heart since embryonal development. Early experiments with modulation of miR-1 
expression resulted in significant embryonic defects leading to many cardiovascular disorders, or to 
the death of animals. MiR-1, together with a few other miRs, have a significant role in the 
development of embryonic stem cells and cardiomyocyte progenitor cells [25]. It is also connected 
with the expression of many cardiac transcription factors like myocardin, Nkx2.5, serum response 
factor (SRF), WNT, and FGF signaling pathways. Cyclin-dependent kinase-9 (Cdk9), histone 
deacetylase 4 (HDAC4), Sox6, FZD7 (Frizzled-7), and FRS2 (fibroblast growth factor receptor 
substrate 2) are considered targets of miR-1 genes that are involved in cardiac development or 
function [26,27]. 

In recent years, miR-21 has received increased attention due to its involvement in many 
biological processes, mainly in CVD. Deregulated expression of miR-21 was observed also in the 
heart and vasculature under CVD conditions such as proliferative vascular disease, cardiac 
hypertrophy and heart failure, and ischemic heart disease [28]. MiR-21 belongs to the miRs that are 
most abundantly expressed in the organism. Changed expression of miR-21 was observed in 
different kinds of diseases and damaged tissues like CVD, pulmonary diseases, 
inflammation-induced diseases, or oncological diseases, and it is also included in immunological 
and developmental processes [29]. It was proved that miR-21 acts as an anti-apoptotic and 
pro-survival factor in different cells [30,31]. Up-regulated expression of miR-21 was observed in 
cancer cells and it is considered as a common attribute of pathological cell growth and cell stress 
[32]. MiR-21 exhibited higher expression levels in mice with cardiac hypertrophy [33]. Pan et al. [34] 
identified several conserved enhancer elements in the sequence of miR-1, including binding sites for 
activation protein 1 (AP-1), Ets family transcription factor PU.1, CCAAT/enhancer-binding 
protein-α, nuclear factor I (NFI), serum response element, p53 and signal transducer, and activator 
of transcription 3 (STAT3). Further potential targets of miR-21 were detected like AP-1 and 
programmed cell death protein 4 (PDCD4) in solid and hematological malignancies [35]. 

Figure 1. Process of microRNAs (miRs) synthesis, processing, and targeted miR–binding. MiR synthesis
occurs in the nucleus and the cytoplasm. In the nucleus, the primary miR transcript (pri-miR) is
processed to pre-miR. In the cytoplasm, pre-miR is transformed to the mature miR.

MiR-1 is considered as a muscle-specific miR. There are two different precursors of miR-1 in
humans, miR-1-1 and miR-1-2, both of which are processed into an identical mature form of miR-1 [23].
Usually, it exists in a cluster with miR-133. It was observed that it is preferentially expressed in cardiac
and skeletal muscles and, according to Rao et al. [24], miR-1 is the most abundant miR in the adult
mouse heart since embryonal development. Early experiments with modulation of miR-1 expression
resulted in significant embryonic defects leading to many cardiovascular disorders, or to the death
of animals. MiR-1, together with a few other miRs, have a significant role in the development of
embryonic stem cells and cardiomyocyte progenitor cells [25]. It is also connected with the expression
of many cardiac transcription factors like myocardin, Nkx2.5, serum response factor (SRF), WNT,
and FGF signaling pathways. Cyclin-dependent kinase-9 (Cdk9), histone deacetylase 4 (HDAC4), Sox6,
FZD7 (Frizzled-7), and FRS2 (fibroblast growth factor receptor substrate 2) are considered targets of
miR-1 genes that are involved in cardiac development or function [26,27].

In recent years, miR-21 has received increased attention due to its involvement in many biological
processes, mainly in CVD. Deregulated expression of miR-21 was observed also in the heart and
vasculature under CVD conditions such as proliferative vascular disease, cardiac hypertrophy and
heart failure, and ischemic heart disease [28]. MiR-21 belongs to the miRs that are most abundantly
expressed in the organism. Changed expression of miR-21 was observed in different kinds of diseases
and damaged tissues like CVD, pulmonary diseases, inflammation-induced diseases, or oncological
diseases, and it is also included in immunological and developmental processes [29]. It was proved
that miR-21 acts as an anti-apoptotic and pro-survival factor in different cells [30,31]. Up-regulated
expression of miR-21 was observed in cancer cells and it is considered as a common attribute of
pathological cell growth and cell stress [32]. MiR-21 exhibited higher expression levels in mice with
cardiac hypertrophy [33]. Pan et al. [34] identified several conserved enhancer elements in the sequence
of miR-1, including binding sites for activation protein 1 (AP-1), Ets family transcription factor PU.1,
CCAAT/enhancer-binding protein-α, nuclear factor I (NFI), serum response element, p53 and signal
transducer, and activator of transcription 3 (STAT3). Further potential targets of miR-21 were detected
like AP-1 and programmed cell death protein 4 (PDCD4) in solid and hematological malignancies [35].

3. Role of miR-1 and miR-21 in Ischemic Injury of the Heart

Ischemia-reperfusion (I/R) injury of the heart is a major CVD associated with such clinical
manifestations and situations as ischemic heart disease and acute myocardial infarction (AMI), as well



Int. J. Mol. Sci. 2020, 21, 700 4 of 30

as with heart surgery and transplantation. Ischemia is caused by obstruction in the coronary artery
leading to the reduction or stopping of blood flow to the heart tissue and finally leading to insufficient
oxygen and metabolic supply. Reperfusion is the restoration of the blood flow, which in case that
is maintained too late, may even exacerbate ischemic injury. Numerous mechanisms have been
documented to be involved in the development and progression of cardiac I/R injury including different
intracellular, extracellular, as well as systemic changes in response to ischemic insult. These changes
lead to altered homeostasis within the heart as well as to systemic changes due to the release of
different molecules to circulation. The final state of the heart depends on the intensity and duration
of ischemic stimuli as well as on the presence/absence of protective interventions to ischemic heart.
Major mechanisms have been suggested to play a crucial role in the development of I/R injury are
oxidative stress and inflammation [36,37]; however, other mechanisms such as activation of matrix
metalloproteinases, activation of apoptosis, alterations in gene expression, etc., have been documented
to be involved as well [38–40]. In the last decade, there has been emerging evidence documenting
changes in various types of non-coding RNAs (ncRNAs) including miRs [41,42], long non-coding
RNAs (lncRNAs) [2,43,44], and circular RNAs (circRNAs) [45–47] due to myocardial infarction,
thus suggesting that these molecules may be involved in the mechanism of cardiac I/R injury and may
potentially be candidates for therapeutic targets and/or biomarkers of cardiac I/R injury, including AMI.

In addition to other ncRNA types, numerous miRs have been documented to be associated
with the development of cardiac I/R injury as well as with post-ischemic remodeling of the heart.
Among them, miR-1 and miR-21 have been extensively studied and well documented, although their
exact role in I/R injury is still not fully clarified. The aim of this part of the paper is to summarize
the current knowledge on the involvement of these two particular miRs in the development and
progression of cardiac I/R injury based on recent findings from in vitro studies in cell cultures of cardiac
myocytes, as well as in ex vivo and in vivo studies in AMI animal models and human studies in AMI
patients and patients undergoing ischemia-associated cardiac surgery.

3.1. Role of miR-1 in Cardiac I/R Injury

MiR-1 is a muscle-specific miR reported to be tightly associated with CVD. Regarding I/R injury, miR-1
was found to be down-regulated in response to myocardial I/R injury in the heart tissue of rats [48,49]
and mice [50], as well as in cardiac-derived H9c2 cells [48] and neonatal cardiac myocytes [51] exposed
to hypoxia/reoxygenation (H/R). The level of miR-1 down-regulation was increased with prolonged time
of MI in rats, and also with prolonged time of post-hypoxic reoxygenation in H9c2 cells [48]. MiR-1 was
found to be down-regulated also in heart tissues obtained by post-mortem autopsies from infarcted human
hearts [52,53]. When the infarcted hearts were divided into subgroups according to the duration of MI,
tissue expression of miR-1 was down-regulated only in the subgroup with more than one day and less
than seven days old MI, in which signs of total coagulation necrosis and loss of nuclei accompanied by
edema and neutrophil infiltration of the interstitium was observed [52]. The findings suggest that there is
a time-dependent alteration in miR-1 expression during the process of I/R injury and/or post-infarction tissue
remodeling due to MI. In contrast, it was documented that miR-1 is up-regulated in remote myocardium
when compared to infarcted tissue or healthy adult hearts [54]. The important role of miR-1 in I/R injury was
proven in an animal model of I/R injury using transgenic mice overexpressing miR-1 and treatment with
locked nucleic acid-modified oligonucleotide against miR-1 (LNA-anti-miR-1) to suppress miR-1 expression.
It was found that while miR-1 overexpression exacerbated myocardial I/R injury manifested by increased
infarct size, apoptosis and caspase-3 expression in the hearts, as well as elevated serum LDH and CK levels,
LNA-anti-miR-1 treatment attenuated I/R injury [55]. In concordance, miR-1 inhibition has been shown to
protect rat H9c2 cardiomyocytes against H/R-induced apoptosis likely via targeting Bcl-2 [48]. Inhibition of
miR-1 was found protective against cardiac I/R injury also in rats likely via promoting MAPK3/PI3K/Akt
signaling [56]. In a comparative study in young and old mice exposed to MI, increased levels of miR-1 were
found in old mice post-MI in comparison to young ones, and this was associated with enhanced adverse
cardiac remodeling, suggesting elevated levels of miR-1 as a predictive biomarker of high-risk of myocardial
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injury in older individuals [57]. Since elevated miR-1 predicts an increased risk of post-ischemic injury,
it seems that the down-regulation of tissue miR-1 due to I/R or MI might represent an adaptive mechanism
of the heart to the ischemic conditions. In contrast to widely documented reduced levels of miR-1 in the
heart tissue, levels of circulating miR-1 were significantly increased in AMI patients [58], in ST segment
elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention,
as well as in a pig model of AMI [59]. Interestingly, circulating miR-1 levels strongly correlated with the
rate of glomerular filtration indicating renal elimination in STEMI patients, which was finally confirmed
by the detection of miR-1 in urine [59]. The increase in serum and urine levels of miR-1 were found also
in patients undergoing open-chest surgeries with cardiopulmonary bypass (CPB) when these levels were
increased both 60 min and 24 h post-CBP. A similar increase in serum troponin-I and a strongly positive
correlation with miR-1 was identified in these patients, suggesting miR-1 to be a potentially novel biomarker
for myocardial injury in heart surgery [60]. On the other hand, in a recent study in STEMI patients and
patients with cardiogenic shock (CS), circulating levels of miR-1 were elevated only in CS patients while
no changes in circulating miR-1 were observed in STEMI patients, thus making the potential of miR-1 as
biomarker of acute myocardial injury less optimistic [61].

Taken together, miR-1 is intimately associated with myocardial I/R injury; however, its exact role
still remains not fully clarified. On one side, I/R injury is associated with the down-regulation of miR-1
in the heart tissue or isolated cardiac cells; on the other hand, increased tissue levels of miR-1 are
associated with increased cardiac damage due to I/R. It also seems that tissue levels of miR-1 may
vary depending on the time duration of MI and/or post-ischemic reperfusion and cardiac remodeling
post-MI. The impact of miR-1 expression on arrhythmogenesis post-MI is also controversial; elevated
miR-1 was found both pro- and anti-arrhythmogenic. Finally, circulating levels of miR-1 were proven
to be elevated due to cardiac I/R thus being proposed to be potentially served as biomarkers of cardiac
I/R injury; however, the cardiac and disease specificity of this RNA should be carefully considered.
In the overall picture (Figure 2), it seems that in ischemic conditions or post-MI, miR-1 is released from
the heart tissue to circulation, which may represent an adaptive mechanism of the heart to ischemia,
since elevated levels of miR-1 exacerbate myocardial damage due I/R.
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Figure 2. Role of microRNA-1 (miR-1) in cardiac ischemia-reperfusion (I/R) injury. MiR-1 seems to play
diverse roles in I/R injury. In the heart tissue, miR-1 is down-regulated due to I/R (a) but up-regulated
in circulation (b), thus suggesting miR-1 as a potential biomarker of I/R injury. Up-regulation of miR-1
in the heart tissue (e.g., in transgenic animals or older patients) seems to exacerbate I/R injury via
promoting oxidative stress and apoptosis (a).
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3.2. Role of miR-21 in Cardiac I/R Injury

MiR-21 also belongs to miRs associated with different kinds of CVD including myocardial I/R
injury [28]. It was reported that tissue expression of this miR is changed in the early phase of AMI
(six hours after AMI) in rats, and these changes might depend on the zone of the infarcted heart.
While miR-21 expression was down-regulated in infarcted areas, it was up-regulated in borderline
areas [62]. I/R-induced up-regulation of miR-21 was found also on days two and seven post-MI in mice,
but in this study, miR-21 was specifically localized in the infarct region of the heart [63]. Further, it was
documented that miR-21 levels significantly decreased in the first week and second week post-MI,
but were almost unchanged in the fourth week in a mouse model of AMI [64]. These data suggest that
changes in tissue expression of miR-21 due to MI may depend on the time of MI and localization within
the heart. MiR-21 was found up-regulated also in different cardiac cells exposed to hypoxia, including
mouse cardiomyocytes, H9c2 and HL-1 cells, and human HCM cardiomyocytes [65]. In the same
study, inhibition of miR-21 increased cell apoptosis associated with reduced hypoxia-inducible factor
1-alpha (HIF-1α) expression, suggesting that there is a tight connection between HIF-1α and miR-21 in
myocardial I/R injury [65]. A recent study showed that miR-21 was down-regulated in rat neonatal
cardiomyocytes exposed to simulated ischemia (oxygen-glucose deprivation). This was associated
with the up-regulation of its target gene, PDCD4, an increased number of apoptotic cells, and reactive
oxygen species (ROS) [66]. While inhibition of miR-21 expression in MI seems to have detrimental
effects on the heart, overexpression of this miR was found to be cardioprotective. Adenovirus-mediated
gene transfer-induced overexpression of miR-21 decreased infarct size 24 h after AMI, and this
cardioprotective effect of miR-21 was likely mediated by targeting the PDCD4 gene and its downstream
molecule, AP-1 [62]. Adenovirus miR-21 also improved LV remodeling and decreased the apoptosis
of myocardial cells in a rat model of myocardial I/R injury [67]. Transfection of miR-21 expressing
lentivirus into the left ventricular cavity of mice induced cardioprotection against I/R injury manifested
by decreased infarct size, fibrosis, and apoptosis [64]. In human cardiac myocytes transfected with
the miR-21 mimic short hairpin RNA (shRNA), the apoptosis rates were down-regulated compared
with control cells, and this was associated with down-regulated protein expression of p-JNK, p-p38
MAPK, and caspase-3, suggesting that miR-21 inhibits tumor necrosis factor-alpha (TNF-α)-induced
apoptosis by activating the JNK/p38-MAPK/caspase-3 signaling pathway [68]. The cardioprotective
effect of miR-21 was proved also in the recent study by Chen et al. [69] where depletion of exosomal
miR-21 from cardiomyocyte-derived conditioned medium (CM) reduced the protective effect of CM on
cardiomyocytes against H2O2-induced oxidative stress, enhanced fibroblast activation, and reduced
angiogenesis in endothelial cells. Depletion of miR-21 also reduced the effect of CM on rat hearts
exposed to AMI, manifested by attenuation of CM-induced reduction of infarct size and immune cell
infiltration [69]. The role of exosomal miR-21 was documented also in the study by Xiao et al. [70] where
miR-21 was significantly up-regulated in oxidative stress-induced cardiac progenitor cell (CPC)-derived
exosomes, and these exosomes prevented cardiomyocytes apoptosis in H9c2 cells, likely via inhibition
of PDCD4.

Post-MI cardiac remodeling is associated with the development of fibrosis in the heart tissue,
and miR-21 has been documented to be involved in this process. Yuan et al. [71] documented that
miR-21 is elevated in the infarct zone in mouse hearts exposed to AMI and promotes myocardial
fibrosis post-MI. In the same study, transforming growth factor-beta 1 (TGF-β1) treatment enhanced
miR-21 expression in cardiac fibroblasts, and overexpression of miR-21 promoted the TGF-β1-induced
fibroblast activation evidenced by increased expression of Collagen-1, alpha-smooth muscle actin
(α-SMA), and F-actin, whereas inhibition of miR-21 attenuated fibrotic process. Finally, they detected
Smad7 as a direct target of miR-21, altogether suggesting that miR-21 may play a key role in cardiac
fibrosis post-MI via TGF-β/Smad7 signaling [71]. The important role of miR-21 in the pathogenesis
of cardiac fibrosis has been shown also in heart atria from patients with atrial fibrillation likely via
targeting its downstream target Sprouty 1 (Spry1) [72]. In the study, miR-21 expression in heart atria
was significantly increased in these patients compared to patients with sinus rhythm, and this increase
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positively correlated with atrial collagen content and was associated with reduced protein expression
of Spry1. Further, a decrease of miR-21 by antagomir-21 prevented fibrosis of the atrial myocardium
post-myocardial infarction, altogether indicating the critical role of miR-21 in atrial fibrosis post-MI [72].
Very similar results confirming the pro-fibrotic role of miR-21 in atrial fibrillation via targeting Spry1
have been obtained in a rat experimental model of AMI [73]. Another mechanism involved in the
miR-21 mediated development of cardiac fibrosis is targeting Jagged1 [74]. Recently, nanoparticle
delivery of miR-21 mimics to cardiac macrophages post-MI has been shown to promote angiogenesis
and reduce hypertrophy, fibrosis, and cell apoptosis in the remote myocardium, suggesting a new
therapeutic strategy using nanoparticle delivery of miR-21 to attenuate post-MI remodeling and
heart failure [75].

In addition to altered tissue expression of miR-21 due to I/R or AMI, circulating levels of miR-21
were also found to be changed in MI. For example, diverse changes in circulating miR-21 levels
have been found in 12 post-MI patients; miR-21 initially decreased two days post-MI, increased five
days post-MI, and returned to values of age-matched referent controls later post-MI time points [76].
Circulating miR-21 levels were found elevated also in patients with coronary artery disease in response
to cardiac stress, concretely at 24 h after dobutamine stress echocardiography [77]. Further, miR-21
expression in the serum of elderly patients (>65 years) with AMI was up-regulated compared to healthy
controls, and levels of this miR were positively correlated with serum levels of CK-MB and cTnI [68].
On the other hand, unchanged concentrations of circulating miR-21 were found in patients undergoing
transcoronary ablation of septal hypertrophy (TASH), a procedure mimicking AMI [78]. Importantly,
detected levels of (not only) miR-21 may depend on the method of miR measurement. For instance,
miR-1 levels statistically differed between STEMI patients and patients with stable coronary artery
disease when quantified using novel chip-based digital PCR whereas classical qRT-PCR was unable to
reach significance [79]. Another novel method, droplet digital PCR, detected no association between
miR-21 levels and ischemia-reperfusion injury in STEMI patients [80], and also did not find miR-21 as
a potentially relevant marker of coronary artery disease [81].

In conclusion, miR-21 seems to play an important regulatory role in the pathophysiology of MI
despite the changes in its expression in MI may differ depending on the time and area within the heart
tissue. In general, miR-21 exerts cardioprotective effects in MI likely via decreasing apoptosis induction.
On the other hand, the role of miR-21 in post-MI cardiac remodeling seems controversial. While some
studies found miR-21 to prevent fibrosis, the majority of studies suggested that miR-21 may contribute
to the development of post-MI fibrosis in the infarcted heart tissue. Finally, data documenting the
release of miR-21 into circulation post-MI are inconclusive, thus miR-21 would not be suggested as
a potential biomarker of AMI. Findings documenting roles of miR-1 and miR-21 in I/R injury and other
types of CVD are summarized in Table 1.
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Table 1. Role of miR-1 and miR-21 in different types of CVD.

Type of CVD miR Findings Reference

Ischemia-reperfusion
(I/R) injury

miR-1

↓miR-1 in heart tissue in response to I/R in rats, mice,
and infarcted human hearts [48–50,52,53]

↓miR-1 in H9c2 cells and neonatal cardiac myocytes in
response to H/R [48,51]

↑miR-1 in remote myocardium compared to infarcted zone or
healthy hearts in infarcted human hearts [54]

↑levels of circulating miR-1 after AMI in pigs and humans [58,59]

miR-1 overexpression exacerbated cardiac I/R injury in
transgenic mice [55]

miR-1 inhibition protects against I/R (H/R) injury in rats, mice,
and H9c2 cells [48,55,56]

miR-21

↓miR-21 in in infarct areas, ↑miR-21 in borderline areas in I/R
model in rats [62]

↑miR-21 in infarct zone of mouse hearts on days two and
seven post-MI [63]

↓miR-21 in heart tissue in the first and second week but
unchanged in the fourth week post-AMI in mice [64]

↑miR-21 in mouse neonatal cardiomyocytes, H9c2, HL-1,
and HCM cells exposed to H/R [65]

diverse time-dependent changes in circulating miR-21 in
post-MI patients [76]

↑circulating miR-21 in patients with CAD undergoing
dobutamine stress echocardiography [82]

↑miR-21 in serum of elderly patients with AMI correlated with
levels of CK-MB and cTnI [68]

↓miR-21 in rat neonatal cardiomyocytes exposed to OGD and
↑PDCD4, ↑apoptosis, ↑ROS [66]

miR-21 protected cultured cardiac myocytes against
H/R-induced apoptosis via ↓PDCD4 [83]

↑miR-21 in the infarct zone promoted myocardial fibrosis
post-MI in mice [71]

↑miR-21 in heart atria was associated with ↑atrial collagen
content in patients with AF [72]

Cardiac arrhythmias

miR-1

↑miR-1 expression in the heart associated with
↑arrhythmogenesis in rodents, dogs, and humans [84–87]

↓miR-1 expression in heart tissue in patients with
age-associated AF and in patients with permanent AF

undergoing heart surgery
[88,89]

miR-21

↑miR-21 in heart tissue in patients with AF [90]

↓plasma levels of miR-1 in patients with AF [91]

↑miR-21 promote fibrosis in AF in rodents [92–94]

Non-ischemic
cardiomyopathy miR-21

↑miR-21 expression in mice heart with transverse aortic
constriction, ↓PDCD4 [95]

↑miR-21 expression in NRCM with Ang II [95]

Dilated cardiomyopathy

miR-1
unchanged miR-1-3p expression in left ventricles in humans

with dilated cardiomyopathy [10]

↓miR-1 in heart of (miR-1 dKO) mice [96]

miR-21 ↑miR-21 in left ventricles in patients with
dilated cardiomyopathy [10]
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Table 1. Cont.

Type of CVD miR Findings Reference

Hypertrophic
cardiomyopathy

miR-1 ↓miR-1-3p in human left ventricles [10]

miR-21

unchanged miR-21 in left ventricles in patients with
hypertrophic cardiomyopathy [10]

↑miR-21 in fibroblasts of the pressure-overloaded heart [97]

unchanged miR-21 in cardiomyocytes of the
pressure-overloaded heart [97]

Diabetic cardiomyopathy
miR-1

↑miR-1 regulation in H9C2 in high glucose [98]

↓miR-1 in cardiomyocytes treated with high glucose [99]

miR-21 ↑miR-21 in high glucose-treated cardiac fibroblasts [100]

Viral myocarditis miR-21 ↑miR-21 in human and murine coxsakcie B3 myocarditis [101,102]

Radiation-induced
heart disease

miR-1 ↓miR-1 in left ventricle six weeks after 25 Gy and 10 Gy
irradiation of mediastinum area [103,104]

miR-21 ↑miR-21 in left ventricle six weeks after 25 Gy and 10 Gy
irradiation of mediastinum area [103,104]

Anthracyclines-induced
cardiomyopathy

miR-1

↑miR-1 in blood plasma of rats after doxorubicin treatment [105]

↑miR-1 in blood plasma of cancer patients after
doxorubicin treatment [106]

↓miR-1 in blood plasma of rats after
doxorubicin-induced injury [107]

↑miR-1 in heart tissue of rats after doxorubicin treatment [108]

↓miR-1 in blood plasma of cancer child and young adult
patients after anthracycline treatment [109]

↓miR-1 in blood plasma of breast cancer patients after
doxorubicin treatment [110]

miR-21 ↑miR-21 in mice hearts after doxorubicin treatment [108,111,112]

Abbreviations: CVD: cardiovascular disease; I/R: ischemia/reperfusion; H/R: hypoxia/reoxygenation; AMI/MI:
(acute) myocardial infarction; STEMI: ST elevation myocardial infarction; PCI: percutaneous coronary intervention;
CM: cardiac myocytes; HCM: human cardiomyocyte cell line; PDCD4: programmed cell death protein 4; AP-1:
activator protein 1 (downstream molecule of PDCD4); ROS: reactive oxygen species; IS: infarct size; LV: left ventricle;
CPC: cardiac progenitor cell; AF: atrial fibrillation; CAD: coronary artery disease; TASH: transcoronary ablation of
septal hypertrophy; OGD: oxygen-glucose deprivation (simulated ischemia).

4. Role of miR-1 and miR-21 in Cardiac Arrhythmias

Cardiac arrhythmias belong to the most frequent heart pathologies that can happen at any
age. They are characterized by irregular heart rhythm, either too fast (>100 beats/min) or too slow
(<60 beats/min). There are different types of cardiac arrhythmias or abnormal heart beating, such as
tachycardia, bradycardia, premature atrial or ventricular contractions, as well as the atrial or ventricular
fibrillations. While most types of arrhythmia are not serious, some may lead to stroke or heart failure,
or even result in sudden death. The pathogenesis of arrhythmias includes altered heart automaticity,
triggered heart activity, or re-entry (electric signal does not complete the normal circuit). Various factors
may influence heart automaticity and induce arrhythmias including ischemia, scarring, electrolyte
disturbance, some medications, and old age [113]. Recently, it has been documented that several miRs
including miR-1 and miR-21 may be involved in the pathogenesis of cardiac arrhythmias.

4.1. Role of miR-1 in Cardiac Arrhythmias

The potential role of miR-1 in arrhythmogenesis was firstly revealed by Yang et al. in 2007 [84],
where authors documented that miR-1 is overexpressed in patients with ischemic heart disease
and that overexpression of miR-1 in normal or infarcted rat hearts exacerbates arrhythmogenesis.
Moreover, the down-regulation of miR-1 in infarcted rat hearts reduced arrhythmogenesis in the same
study. Association between miR-1 up-regulation and the development of cardiac arrhythmias have
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since been later documented in other studies both in animals [85,86] and humans [87]. Mechanisms
potentially involved in miR-1-mediated arrhythmogenesis include processes such as enhanced Ca2+

release [114], dissociation of phosphatase activity from RyR2 complex [85], altered expression of K+

channels [84,115], disturbed intracellular trafficking system [116], or altered expression of connexin-43
(Cx43) [84]. However, the exact mechanism by which miR-1 contributes to arrhythmogenesis is still to
be elucidated.

The above-presented data indicate that the up-regulation of miR-1 contributes to arrhythmogenesis.
Since miR-1 up-regulation has been shown also in patients with MI, it is suggested that miR-1
up-regulation might be responsible for the higher risk for arrhythmias in these patients [54]. On the
other hand, the up-regulation of miR-1 expression by aldosterone blocker spironolactone was associated
with reduced incidence of MI-associated ventricular arrhythmias in rats [117]. Furthermore, the heart
tissue expression of miR-1was found reduced in patients with age-associated atrial fibrillation (AF) [88]
and in patients with permanent AF undergoing heart surgery [89]. Thus, the role of miR-1 in cardiac
arrhythmogenesis remains controversial.

4.2. Role of miR-21 in Cardiac Arrhythmias

Association of miR-21 and cardiac arrhythmias has been recently documented in several studies.
Barana et al. [90] showed increased miR-21 expression in isolated human atrial myocytes from patients
with chronic atrial fibrillation (CAF) as compared to myocytes from patients with sinus rhythm.
Increased miR-21 expression in CAF was associated with decreased L-type calcium current in the
study [90]. In contrast, lower plasma levels of miR-21 were found in patients with AF as compared to
those without AF. Furthermore, plasma levels of miR-21 were lower in paroxysmal AF as compared to
persistent AF. Atrial tissue expression of miR-21 was lower in patients with AF as compared to those
without AF [91]. MiR-21 has been also shown to be associated with atrial fibrosis and remodeling
during AF, where reduced miR-21 was associated with the prevention of atrial fibrosis and reduced
prevalence of AF in mice [92]. Enhanced miR-21 expression was documented in a tachypaced as
compared to non-paced normal rhythm hearts in a close-chest tachyarrhythmia model in pigs [118].
It was also shown that rapid atrial pacing induces myocardial fibrosis via increased miR-21 through
down-regulating Smad7 in rabbit hearts [93]. MiR-21 was also shown to be involved in AF by promoting
fibrosis in a sterile pericarditis model in rats, where a reciprocal loop between STAT3 and miR-21 was
suggested to contribute to the development of AF [94]. A recent study by Tao et al. [119] documented
that knockdown of miR-21 inhibits cardiac fibroblasts proliferation by inactivating the TGF-β1/Smad2
signaling pathway. Finally, it has been shown that circulating levels of miR-21 correlate with left
atrial low-voltage areas and are associated with procedure outcome in patients with persistent AF
undergoing ablation [74], and that the up-regulation of circulating miR-21 may indicate the presence
of fibrosis in patients with left ventricular non-compaction cardiomyopathy (which symptoms may
include arrhythmias) [120].

Taken together, altered miR-21 expression is associated with cardiac arrhythmias, mainly by
playing a role in the atrial fibrosis development in AF, and circulating miR-21 might serve as a biomarker
of fibrotic processes in arrhythmias-associated heart pathologies.

5. Role of miR-1 and miR-21 in Cardiomyopathies of Different Origin

Cardiomyopathy represents a group of diagnoses characterized by anatomic and functional
changes of the heart associated with muscle and/or electrical dysfunction. They include heterogeneous
cardiac disorders that often lead to advanced heart failure and significantly contribute to overall
morbidity and mortality [121].

5.1. Role of miR-1 and miR-21 in Hypertrophic and Dilated Cardiomyopathy

Hypertrophic cardiomyopathy is defined as a myocardial disease characterized by hypertrophy
of the septum and/or wall of the left ventricle and diastolic dysfunction of the left ventricle [10].
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The complex roles of a single miR in different cell types in the heart have been uncovered. It was
documented that miR-21 can promote cardiac fibrosis and cardiac hypertrophy in fibroblasts. On the
other hand, miR-21 can protect cardiomyocytes against hypertrophy and apoptosis [97,122]. It was
demonstrated that different cardiomyopathies had unique miR expression patterns. The expression of
miR-21 and miR-1-3p showed disease specificity, which may provide new avenues for differentiating the
hypertrophic and dilated cardiomyopathy. For example, the expression level of miR-1-3p had disease
specificity and sensitivity in hypertrophic cardiomyopathy, whereas only miR-1-3p was associated
with human left ventricular function in hypertrophic cardiomyopathy, suggesting it as a potential
target for improvement of cardiac function in end-stage of this disease. The direct target of miR-1-3p
is probably chloride voltage-gated channel 3 (Clcn3), which clarifies the mechanism of hypertrophic
cardiomyopathy. The expression of miR-21 was up-regulated in dilated cardiomyopathy compared
with control human hearts and no difference was found between hypertrophic cardiomyopathy and
the control [10].

The latest research suggests that miR-21 could be the therapeutic target in non-ischemic
cardiomyopathy. Mice hearts with transverse aortic constriction were accompanied by the increase
of miR-21 levels while PDCD4 was lower. In neonatal rats, cardiomyocytes were AP-1-activated by
angiotensin 2 (Ang2) stimulation, which conduced to an increase of miR-21 expression. In this study,
the use of a miR-21-specific inhibitor was accompanied by increased levels of PDCD4, decreased AP-1
activity, and decreased expression of collagen type I and α-smooth muscle actin. These results indicate
the important role of miR-21/PDCD4/AP-1 in the process of left ventricular remodeling in non-ischemic
conditions [95]. It is interesting to note that miR-21 is differently expressed in the cardiomyocytes
and cardiac fibroblasts of pressure-overloaded hearts. Upon overloading, no significant change in
expression of miR-21 was observed in cardiomyocytes, while in fibroblasts, miR-21 was up-regulated.
Increased levels of miR-21 target Spry1 resulting in increased activity of the MAPK/ERK signaling
pathway, followed by fibroblast survival and growth factors release. In addition, fibroblast secretion of
growth factors and increased fibrosis promote cardiomyocyte hypertrophy. [97].

Dilated cardiomyopathy belongs to the most common types of cardiac muscle disease in children
leading to a significant number of pediatric heart transplantations. This disease is characterized
by systolic dysfunction caused by the enlargement of the left ventricular chamber but normal wall
thickness. Dilated cardiomyopathy accompanied by cardiomyocyte apoptosis leads to left ventricular
remodeling and dysfunction [96,123,124]. One of the available biological models for the study of
dilated cardiomyopathy is miR-1 double knockout mice. These modified animals are accompanied by
the development of dilated cardiomyopathy and survive at the most to 17 postnatal days. In the heart
of these animals was observed a decrease of miR-1 expression with the increase of fetal sarcomeric
protein expression, which could change the stoichiometric composition of the sarcomere and decrease
myocardial performance [96]. In addition, miR-1 targets the nuclear receptor gene estrogen-related
receptor β, which is connected with fetal sarcomere-associated genes that commonly down-grade
during adolescence [96,125].

5.2. Role of miR-1 and miR-21 in Diabetic Cardiomyopathy

Diabetic cardiomyopathy is defined as a chronic and irreversible cardiac complication in diabetic
patients characterized by early diastolic dysfunction, cardiac hypertrophy, ventricular dilation,
and systolic dysfunction, ultimately resulting in heart failure [126,127]. Among the miRs, miR-21 has
often been found to be up-regulated, whereas miR-1 has been found to be mainly down-regulated
under diabetic conditions in rodents [99,128]. Diabetes mellitus is accompanied by high glucose
levels that could stimulate miR-1 expression in H9c2 cells through the MEK1/2 pathway and SRF,
and the up-regulation of miR-1 suppresses Hsp60 expression, contributing to high glucose-mediated
cardiomyocyte apoptosis [98]. Accordingly, miR-1 was assigned as a muscle-specific miR that impacts
cardiomyocyte growth by negatively regulating calmodulin and nuclear factor in activated T cells
(NFAT) signaling. In the diabetic heart, a target protein for miR-1 is the ryanodine receptor Ca2+
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release channel complex (RyR2), which is located on the sarcoplasmic reticulum and is substantially
important for Ca2+ transport and cardiomyocyte contraction. MiR-1 was found remarkably decreased
in cardiomyocytes treated with high glucose, demonstrating that the down-regulation of miR-1 in
diabetic heart is oxidative stress-dependent [99]. Silencing of miR-1 significantly inhibits apoptosis
via the mitochondrial signaling pathway by regulating LXRα (liver X receptor, a key regulator of
cholesterol homeostasis), the activation of which attenuates apoptosis in H9c2 cells. These results
indicate that miR-1 represents an important player in the development of diabetic cardiomyopathy
and provide novel insights into understanding the complex mechanisms involved in the pathogenesis
of diabetic cardiomyopathy [129]. On the other hand, miR-21 levels were significantly augmented in
high glucose-treated cardiac fibroblasts, which led to an increase in collagen synthesis and cardiac
fibrosis through the JNK/SAPK and p38 signaling pathways by suppressing the expression of dual
specific phosphatase 8 (DUSP8), which is involved in the proliferation and pro-collagen synthesis
in cardiac fibroblasts. Moreover, inhibition of miR-21 reduced fibrosis via blocking the activation
of the p38 signaling pathway, pointing to a crucial role of miR-21 in diabetic cardiomyopathy [100].
The analysis (GSE4745, microarray dataset) showed the down-regulation of Hk2 mRNA associated
with high expression of its regulatory miRs (among other miR-21) in the left ventricles of rats exposed
to a high glucose concentration, suggesting the important role of miR-21 in the pathophysiology of
diabetic cardiomyopathy. Therefore, the up-regulation of rno-miR-21 and down-regulation of the Hk2
mRNA target could abolish cardioprotection and consequently lead to the development of cardiac
complications, particularly those associated with hyperglycemia [130]. Additionally, miR-21 is also
involved in neurohormone signaling in diabetic subjects, probably via the direct or indirect interaction
with the 3′UTR of the atrial natriuretic peptide, which contributes to both cardiac hypertrophy
and fibrosis resulting in diabetic cardiomyopathy [131]. Dai et al. [132] observed down-regulated
heart tissue miR-21 in db/db mice, which contributed to diabetic cardiomyopathy. MiR-21 was also
able to suppress gelsolin (GSN, an actin-binding protein that is a key regulator of actin filament),
an important transcriptional cofactor in signal transduction in CVD. Moreover, gelsolin was referred to
as a direct target of miR-21. Besides, exogenous miR-21 protected hearts against diastolic dysfunction.
Thus attenuation of cardiac hypertrophy by decreased ROS production and improved NO release via
gelsolin represent a new therapeutic strategy to treat diabetic cardiomyopathy [132].

5.3. Role of miR-1 and miR-21 in Viral Myocarditis

Viral myocarditis is defined as viral infection (mainly with the Coxsackie virus, adenovirus hepatitis
virus, and HIV) of myocardial tissue leading to impaired heart function and heart failure [133–135].
MiR-21 has been shown to be altered in patients with acute myocarditis [133]. In the heart, during acute
human and murine coxsackie B3 (CVB3) myocarditis, the up-regulation of miR-21 was detected [101].
For example, CVB3 infection decreased the expression of Cx43 by elevating the miR-1 level in mice with
viral myocarditis [135]. In viral myocarditis was documented as highly expressed miR-21 in mice hearts.
In vivo silencing of miR-21 was found to reduce inflammatory lesions and suppress T helper 17 cells
(TH-17) differentiation in viral myocarditis in mice. Histological analysis of heart sections revealed
that miR-21 inhibition using its inhibitors attenuated the severity of myocarditis. Expression of miR-21
transcripts correlated with IL-17 and RAR-related orphan receptor gamma (t) (RORγt) expression,
suggesting that they may influence TH-17 transcription factor expression. Altogether, the data indicate
that suppression of miR-21 could rescue hearts from CVB3 infection-caused myocarditis in mice [102].

In conclusion, miR-1 and miR-21 have different roles in different types of cells and their expression
has unique patterns in the dependence on types of cardiomyopathy (Figure 3). Moreover, as was
mentioned in [10], miR-1-3p correlates with the left ventricular function of hypertrophic cardiomyopathy
and can serve as a potential target for identifying the characteristics between hypertrophic and dilated
cardiomyopathy. Findings documenting roles of miR-1 and miR-21 in different cardiomyopathies and
other types of CVD are summarized in Table 1.
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Figure 3. Cell-specific microRNA-21 (miR-21) expression in cardiomyopathies. In fibroblasts (a), miR-21
can promote cardiac fibrosis and cardiac hypertrophy. In cardiomyocytes (b), miR-21 can protect against
hypertrophy and apoptosis. In fibroblasts of the pressure-overloaded heart (a), miR-21 is up-regulated,
but not in cardiomyocytes (b). MiR-21 is involved in heart remodeling in non-ischemic and diabetic
cardiomyopathy by promoting cardiac fibrosis. Figure assembled according to [95,97,100,122].

6. Role of miR-1 and miR-21 in Cardiotoxicity Induced by Cancer Treatment

Cancer is one of the leading causes of death worldwide and is usually treated by surgical
intervention in combination with chemotherapy and/or radiotherapy. Despite the progress in the
treatment methods, cancer treatment is also accompanied by several side effects, e.g., normal tissue
toxicity such as cardiotoxicity. Several miRs including miR-1 and miR-21 have been shown to be
implicated in cancer treatment-related cardiotoxicity [8,136].

6.1. Role of miR-1 and miR-21 in the Heart Injury Caused by Anthracyclines

Doxorubicin represents one of the most important anticancer drugs in the clinic. It is a member
of the anthracyclines family. One of the principles of their antitumor action is the ability to inhibit
topoisomerase II, which leads to double-stranded DNA breaks and thus hampers both cellular
replication and transcription. Anthracyclines can directly intercalate into DNA, leading to the disruption
of physiological protein/DNA interactions, and have been shown to produce ROS. As a result, exposed
cells undergo DNA damage what potentially leads to cell death [137].

Unfortunately, the application of doxorubicin is connected to the disruption of cardiac activity,
ranging from serious ventricular dysfunction to cardiomyopathies, and can develop into heart
failure [138]. Cardiotoxicity develops either acutely or several years after anthracycline therapy.
The incidence of acute cardiotoxicity is approximately 11%, while in the case of chronic doxorubicin
cardiotoxicity, it is much lower at approximately 1.7%. The incidence of doxorubicin cardiomyopathy
is primarily related to its dose. The incidence is about 4–5% when the cumulative dose of doxorubicin
is 450–500 mg/m2, and 18% when the dose is 550–600 mg/m2 [139].

Many studies are aimed at investigating the mechanisms and identifying suitable biomarkers for
early diagnosis of doxorubicin cardiotoxicity. Among them, miRs have been studied to be involved in
doxorubicin-induced toxicity, including miR-1 and miR-21 [8]. Most of the studies have been performed on
animal models. Desai et al. [111] studied the expression profiling of several miRs in a chronic doxorubicin
cardiotoxicity mouse model. Cardiac injury was detected in mice exposed to an 18 mg/kg or higher
cumulative doxorubicin dose, whereas investigation of hearts by light microscopy revealed cardiac lesions
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at 24 mg/kg of doxorubicin. In this study, the significant up-regulation of miR-21 in hearts correlated
with a significant increase in plasma cTnT concentration at an 18 mg/kg cumulative dose or higher.
Tong et al. [112] found that miR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by
targeting B-cell translocation gene 2 (BTG2), which belongs to the anti-proliferative gene family. Authors
detected that the exposure of cardiac myocytes to doxorubicin at doses ranging from 0 to 4 µM for 24 h
resulted in a significant dose-dependent increase in miR-21 expression level in H9C2 cells. Nishimura and
his group [105] administered rats with a single intravenous dose of doxorubicin (30 mg/kg). MiR-1 showed
up-regulation in rats’ plasma after doxorubicin treatment. However, plasma cardiac troponin-I and cTnT
did not increase in doxorubicin rats, which points out to the fact that cardiac toxicity was not detected.
The lack of histopathological findings in acute doxorubicin treatment is not surprising, as it would be
expected in a chronic setting [8]. Razavi-Azarkhiavi et al. [108] explored the involvement of selected
miRs in cardiotoxicity induced by doxorubicin. The results showed that doxorubicin down-regulated
the expression of Bcl2 and PDCD4, and up-regulated Bax, caspase-3, and caspase-8 in mouse heart.
Exposure of mice with 9 mg/kg of doxorubicin resulted in a significant increase in cardiac miR-1 expression.
The expression level of miR-21 in mouse heart was also up-regulated due to doxorubicin (6 and 9 mg/kg).
The study by Ruggeri et al. [107] concluded that the expression of specific plasma miRs reflects the
presence of cardiac dysfunction in response to doxorubicin-induced injury. Among them, miR-1 was
found down-regulated in comparison to controls treated with saline.

Several studies also focused on the investigation of the role of miRs in doxorubicin-induced
cardiotoxicity in cancer patients. Rigaud et al. [106] evaluated circulating levels of miRs in breast
cancer patients receiving doxorubicin treatment. They found that circulating levels of miR-1,
as well as cTnI, increased during the treatment while overall left ventricular ejection fraction (LVEF)
tended to decrease over 12 months. MiR-1 was associated with changes in LVEF. In another study,
Leger and colleagues [109] investigated plasma miRs as potential biomarkers of cardiotoxicity in
children and young adults treated with anthracycline chemotherapy. They screened 24 miRs in
24 anthracycline-based and nine non-cardiotoxic-agents-based chemotherapy cancer patients. MiR-1
was identified to be significantly up-regulated in anthracycline patients during experiment duration
(24 h). MiR-1 expression correlated with the degree of anthracycline-induced injury as measured by
cTnT. Breast cancer patients who developed abnormal LVEF after the completion of chemotherapy
(doxorubicin) revealed the down-regulation of miR-1 in plasma [110].

In summary, most of the animal, as well as human, studies detected the up-regulation of miR-1 and
miR-21 after doxorubicin treatment. Some studies have shown the opposite trend in miR-1 expression.
The differences may be caused by different experimental conditions (dose, time, tissue vs. plasma).

6.2. Role of miR-1 and miR-21 in the Heart Injury Caused by Radiotherapy

Radiotherapy is another commonly used method for the treatment of oncological diseases.
Radiation beams composed of gamma rays affect the cells by direct damaging of DNA, or indirectly
through water hydrolysis. This indirect process leads to the formation of huge amounts of free radicals
that are able to affect DNA and other important biological macromolecules in the cells. Both of these
mechanisms of radiation action result in significant changes in the cells and may lead to its death.
Unfortunately, despite a lot of very sophisticated techniques for the protection of tissues and cells
surrounding tumorous cells, healthy uncancerous cells often receive some dose of radiation, leading to
cardiomyopathies commonly called radiation-induced heart disease (RIHD) [140,141].

In the cardiovascular system, the main detrimental effect of radiation starts with the production
of free radicals leading to the development of inflammatory processes [140]. Radiation exposure of the
heart causes significant changes in the expression of many proteins like prostaglandins, prostacyclins,
thromboxanes, and leukotrienes responsible for vasodilatation, vasoconstriction, and increasing
microvascular permeability, as well as thrombosis [142]. It was demonstrated that irradiation also
damages capillary endothelium, which results in the reduction of perfusion and ischemization of the
myocardium [143,144]. Oncological patients treated by radiotherapy targeted into the mediastinum
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area (Hodgkin’s disease, breast cancer, or esophageal cancer) could receive an unwanted dose of
radiation to the heart. These patients suffer from pericarditis, collagen, and fibrin deposition and the
presence of exudate [145,146]. In the study by Barancik et al. [147], changes in the activation of MMP-2
in the irradiated rats were shown. Significant up-regulation of Cx43 is another change caused by
irradiation [148] and cardiac hypertrophy as a compensatory mechanism that occurs [149].

Surova et al. [150] found up-regulated the overall expression of miRs in the cells by a higher
expression of DROSHA and DICER enzymes. They revealed that these cells were more radioresistant
compared to the cells with a lower expression of miRs. In the study by Kraemer et al. [151], global
down-regulation of miRs by the inhibition of AGO2 and DICER enzymes was performed. The authors
observed increased endothelial cell death after the exposure of cells with down-regulated miRs to
gamma radiation. These data point to the conclusion that miRs have a significant impact on cellular
response to irradiation.

Among the miRs connected with radiation-induced heart disease are also miR-1 and miR-21.
Kura et al. [103] reported the down-regulation of miR-1 and the up-regulation of miR-21 in the
rat myocardium six weeks after single irradiation of the mediastinum area with a total dose
of 25 Gy. These results were confirmed in their next study in 2019 when RT-qPCR proved the
down-regulation of miR-1 and the up-regulation of miR-21 in rats’ left ventricle after 10 Gy of
irradiation in the mediastinal area. Slezak et al. [140] observed the up-regulation of miR-21 in rat
hearts after irradiation of the mediastinum area with a single dose of 25 Gy. Similar results were
measured by Viczenczova et al. [148] where the increased expression of miR-21 was associated with
the up-regulation of total Cx43 protein expression in irradiated rat’s heart. The increased expression
level of miR-21 was measured also in various oxidative stress-inducing conditions in human fibroblast
cells [152] and this correlated with further findings [27,153,154].

To conclude, there are only a few studies dealing with the association of miR-1 and miR-21 with
RIHD. In these, miR-1 was found down-regulated and miR-21 was up-regulated mainly due to the
progression of oxidative stress-related damage. Radiotherapy and chemotherapy give cancer patients
a significantly improved chance of survival. Unfortunately, these methods have a huge impact on
the cardiovascular system. MiRs, as recently discovered potential key players in the regulation of
cardiotoxicity, including miR-1 and miR-21, may have a role in managing undesired harmful effects of
chemotherapy and radiotherapy on the heart. Findings documenting the roles of miR-1 and miR-21 in
heart injury due to cancer treatment, as well as in other types of CVD, are summarized in Table 1.

7. Role of miR-1 and miR-21 in Cardioprotection

Extensive research has been performed to search for different cardioprotective interventions aimed
to prevent or treat major types of CVD, mainly cardiac I/R injury associated with coronary artery
disease and myocardial infarction, but also non-ischemic cardiac pathologies such as inflammatory,
diabetic, and other cardiomyopathies, as well as cardiac injury due to other types of triggers
such as anthracycline- or radiation-induced heart injury as a consequences of cancer treatments.
Uncovering molecular mechanisms of particular CVD revealed molecular targets for potential
cardioprotective interventions. Several ncRNAs, including miRs, were identified as potential molecular
targets/mediators of cardioprotection induced by either endogenous or exogenous cardioprotective
interventions, such as ischemic conditioning and pharmacological or non-pharmacological treatments.
MiR-1 and miR-21 are two miRs detected to be involved in cardioprotection, mainly in I/R injury,
but also in diabetic cardiomyopathy or viral myocarditis. The aim of this part of the paper is to briefly
outline the potential roles of miR-1 and miR-21 in various cardioprotective approaches.

7.1. Role of miR-1 and miR-21 in Ischemic Conditioning

Ischemic conditioning is a powerful adaptive mechanism of the heart to I/R injury induced by cycles
of brief ischemia of the coronary artery applied before (preconditioning) or after (postconditioning) the
long-term ischemia. The conditioning stimuli can be applied also on the remote vessel or even remote
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organ to the heart called remote conditioning (pre-, per-, post-). Several miRs, including miR-1 and
miR-21, have been proposed to be involved in ischemic conditioning either as mediators or targets
for cardioprotection [155]. For instance, expression of both miR-1 and miR-21 were up-regulated
in the heart tissue following ischemic preconditioning (IPC) in a mouse [156] as well as rat [157]
Langendorff model of IPC. When the extracted and purified miRs from mouse IPC-hearts were injected
in vivo into the left ventricular wall of intact mouse hearts, and 48 h later the hearts were subjected to
a 30-min regional I/R by ligation of coronary artery followed by a 24-h reperfusion, the hearts were
protected against I/R injury as manifested by the reduction of infarct size as compared with non-treated
controls. This miR-induced protection was accompanied by up-regulated eNOS (endothelial nitric oxide
synthase) and HSP70 (heat shock protein 70), suggesting that IPC-induced miRs (including miR-1 and
miR-21) may trigger cardioprotection similar to the late IPC, possibly through eNOS and HSP70 [156].
However, a particular contribution of miR-1 and miR-21 to the effect of miR “cocktail” injected into
hearts is impossible to detect from this study. MiR-21 was found to be up-regulated after IPC also in rats
in vivo, and IPC-mediated cardiac protection against I/R injury was abolished by knockdown of cardiac
miR-21 [83]. miR-21 also had a protective effect on hypoxia/reoxygenation-induced cell apoptosis in
cultured cardiac myocytes, likely via inhibition of its target gene PDCD4 [83]. MiR-1, down-regulated
due to I/R, has been shown up-regulated by ischemic postconditioning (IPostC) evoked by three cycles
of 30/30s ischemia/reperfusion in an in vivo rat model of cardiac I/R. IPostC also up-regulated the
expression of Bcl-2, down-regulated Bax, and caspase-9. The up-regulation of miR-1 (and miR-133a) in
the study was also associated with decreased apoptosis of cardiomyocytes, altogether suggesting that
miR-1 (and/or miR-133a) may play an important role in IPostC-induced cardioprotection by regulating
apoptosis-related genes [158]. A very recent study in pigs revealed that IPostC induced by six cycles of
30/30s I/R immediately after a 90 min occlusion of coronary artery significantly down-regulated the
plasma levels of miR-1 as compared to animals with IPC-AMI or AMI only [159]. IPostC in human
patients undergoing double valve replacement also led to down-regulated miR-1 and up-regulated
miR-21 in the right atrial muscle, and these changes were associated with up-regulated Bcl-2 mRNA
and unchanged mRNAs for Bax and PDCD4, suggesting miR-1 and/or miR-21 to be involved in
reducing apoptosis by IPostC in valve replacement surgery [160]. MiR-21 was found up-regulated in
IPostC-induced cardioprotection in mice, while knockdown of miR-21 with antago-miR-21 abolished
the protective effects of IPost. The protective effect of miR-21 in mouse IPostC cardioprotection
was probably via activation of the PTEN/Akt pathway [161]. In remote ischemic preconditioning
(RIPC), miR-1 was down-regulated in rat hearts following RIPC evoked by three cycles of 5/5 min
occlusion/reperfusion of the femoral artery [157]. RIPC also prevented the up-regulation of miR-1 in
the right atrium and preserved mitochondrial respiration during coronary bypass surgery in human
patients [162]. In a study exploring time-dependent RIPC-affected expression of miR-1 following I/R
in rats, miR-1 was down-regulated by RIPC maintained by four cycles of 5 min bilateral hind-limb
ischemia without the following ischemia, as well as after I/R and RIPC followed by I/R after 2 h of
reperfusion. After 6 h of reperfusion, RIPC led to the up-regulation of miR-1, but ischemia itself had
no effect on miR-1 expression [163]. In cardioprotection by remote ischemic perconditioning (RIPerC)
in patients with rheumatic valvular disease undergoing double valve replacement surgery, miR-1
was down-regulated and its putative target gene Bcl-2 was up-regulated due to RIPerC, while miR-21
and its target gene PDCD4 were unchanged, suggesting miR-1 rather than miR-21 to be involved in
mechanism of RIPerC-induced cardioprotection [164].

In conclusion, miR-1 and miR-21 seem to be associated with different types of ischemic
conditioning since their levels in both heart tissue and circulation were changed due to conditioning
protocols; however, their exact roles in conditioning cardioprotection are not clear. It seems that while
miR-21 exclusively plays a positive role in ischemic conditioning and contributes to cardioprotection
(Figure 4), data documenting the role of miR-1 are controversial since this miR was found either
up-regulated or down-regulated due to different conditioning protocols. Thus, further studies are
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needed to explore the biological significance of changes in miR-1 and miR-21 expression in ischemic
conditioning-induced cardioprotection.

7.2. Role of miR-1 and miR-21 in Cardioprotection Other Than Ischemic Conditioning

In this part, we focus on the potential role of miR-1 and miR-21 in cardioprotective interventions
other than ischemic conditioning, such as heat shock-induced cardioprotection, pharmacological
cardioprotection, natural molecules-induced cardioprotection, as well as cardioprotection by delivery
of miRs mimics.

It has been found that heat shock (HS) maintained by increasing the body temperature of mice
to 42 ◦C for 15 min up-regulated the expression of several miRs including miR-1 and miR-21 in
the tissue. When the miRs mixture isolated from HS hearts was intraperitoneally injected into the
non-heat-shocked mice, it exerted cardioprotection against I/R manifested by a reduced infarct size.
Moreover, chemically synthesized exogenous miR-21 also reduced infarct size, and miR-21-induced
protection was abolished with miR-21 inhibitor co-treatment [165]. The potential role of miR-21
was suggested also in cardioprotection induced by anesthetic isoflurane. It was documented that
isoflurane induced the up-regulation of miR-21 in both in vivo rat hearts and in vitro neonatal rat
cardiomyocytes. The miR-21 increase was associated with the protection of cardiomyocytes against
H2O2-induced oxidative stress-induced injury and the down-regulation of PDCD4 mRNA, suggesting
the inhibition of PDCD4 to be involved in miR-21-induced cardioprotection [166]. Isoflurane protected
via a miR-21-dependent mechanism mouse hearts exposed to I/R, potentially via the Akt/NOS/mPTP
pathway [167]. The up-regulation of miR-21 expression was found also after chronic resveratrol
treatment in rats, which was associated with cardioprotection against I/R [168]. The important role of
miR-21 was suggested also in cardioprotection against cardiac I/R in vivo conferred by trimetazidine,
a piperazine-derived metabolic agent. Trimetazidine exerted a protective effect against I/R injury
accompanied by the up-regulation of miR-21, enhanced p-Akt, and improved Bcl-2/Bax ratio in rat
hearts. Further, trimetazidine-induced cardioprotection against cardiac I/R injury was reversed by
knockdown of miR-21 using anti-miR-21 plasmids. Thus, trimetazidine-induced cardioprotection
against cardiac I/R might be mediated via miR-21, and PI3K/Akt and Bcl-2/Bax pathways [169].
Very recently, miR-21 was found to enhance the protective effect of loperamide, a drug used in
diarrhea treatment, against hypoxia/reoxygenation injury in rat cardiomyocytes, associated with the
reduction of ROS production and apoptosis, likely via regulating the A-kinase anchoring protein 8
(Akap8) and BRCA1-associated RING domain 1 (Bard1) expression [170]. MiR-21 up-regulation was
found also in cardioprotection induced by thintra-myocardial adenovirus-mediated transplantation
of extracellular superoxide dismutase (SOD) gene-modified bone marrow mesenchymal stromal
cells into infarcted mouse hearts [171]. The nanoparticle delivery of miR-21 mimic to cardiac
macrophages has been found to improve myocardial remodeling after MI demonstrated by enhanced
angiogenesis and reduced hypertrophy, fibrosis, and apoptosis [75]. MiR-21 was documented to
mediate also cardioprotection against diabetic cardiomyopathy-induced diastolic dysfunction, likely
via targeting gelsolin, an actin-binding protein that is a key regulator of actin filament assembly and
disassembly [132]. MiR-21 was found to play a protective role also against coxsackievirus B3 (CVB3)
infection-induced heart infection, likely via targeting the MAP2K3/p-38 MAPK signaling pathway.
In a mouse model of CVB3 infection, miR-21 pretreatment inactivated MAP2K3/p-38 MAPK signaling
and exerted cardioprotection manifested by alleviated cell apoptosis and reduced necrosis in the heart,
accompanied by reduced viral titers and the remarkably prolonged survival time of animals [172].
The overall picture of the cardioprotective action of miR-21 is outlined in Figure 4.
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Figure 4. Role of miR-21 in cardioprotection. Up-regulation of miR-21 due to various interventions
(e.g., ischemic conditioning, pharmacological and non-pharmacological, or miR-21 mimics) seems to
serve cardioprotection mainly against I/R injury of the heart via inhibition of apoptosis and oxidative
stress, and promoting angiogenesis.

Regarding the role of miR-1 in cardioprotection, it was documented that daily administration of
the traditional Chinese medicine tanshinone IIA for seven days led to cardioprotection associated with
the down-regulation of miR-1, likely via inhibition of I/R-induced p-38 MAPK activation in an in vivo
rat MI model [173]. The high glucose-induced down-regulation of Cx43 in neonatal cardiomyocytes
was associated with the up-regulation of miR-1, and this was abolished with epigallocatechin-3-gallate
(EGCG), thus suggesting that miR-1 suppression is involved in the cardioprotective effect conferred
by EGCG [174]. Further, elevated expression of miR-1 due to H2O2-induced injury in H9c2 cells was
down-regulated and cells were protected by insulin treatment. Since insulin abolished the detrimental
effect of inhibition of the PI3K/Akt pathway, which further exacerbated miR-1-induced cell injury, it is
suggested that PI3K/Akt is involved in the protective effect of insulin against miR-1-mediated injury
under oxidative stress [175]. On the other hand, epirubicin-induced cardiotoxicity was associated with
the down-regulation of miR-1, and phenolic compound paeonol up-regulated miR-1 expression and
exerted the cardioprotective effect against epirubicin-induced heart injury manifested by improved
cardiac dysfunction, abolished histopathological changes, alleviated inflammation, reduced apoptosis,
and increased autophagy, likely via miR-1-mediated inhibition of PI3K/AKT/mTOR and nuclear factor
kappa B (NF-κB) pathways activation [176]. Findings documenting roles of miR-1 and miR-21 in
cardioprotection are summarized in Table 2.
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Table 2. Role of miR-1 and miR-21 in cardioprotection.

Type of Intervention miR Findings Reference

Ischemic conditioning

miR-1

↑miR-1 in heart tissue after IPostC in rats [158]

↓miR-1 in plasma after IPostC in pigs [159]

↓miR-1 in right atria after IPostC in human patients undergoing
cardiac surgery [160]

↓miR-1 in heart tissue after RIPC in rats [157]

↓miR-1 by RIPC in in vivo cardiac I/R model in rats [163]

RIPC prevented up-regulation of miR-1 in right atria and preserved
mitochondrial respiration during heart surgery in humans [162]

↓miR-1 by RIPerC during heart surgery in humans [164]

miR-21

↑miR-21 in heart tissue after IPC and IPostC in animal models
and humans [83,160,161]

knockdown of miR-21 abolished cardioprotective effects of IPost in mice [161]

knockdown of cardiac miR-21 abolished IPC-mediated cardioprotection
against I/R in rats [83]

Pharmacological

miR-1 insulin protected against miR-1-mediated H2O2-induced injury in
H9c2 cells [175]

miR-21

isoflurane-induced up-regulation of miR-21 associated with ↓PDCD4
protected cardiomyocytes against H2O2 injury [166]

isoflurane protected mouse hearts exposed to I/R via miR-21
and Akt/NOS/mPTP [167]

trimetazidine-induced ↑miR-21 accompanied by cardioprotection against
I/R, ↑p-Akt and ↑Bcl-2/Bax in rats. Cardioprotection reversed

by anti-miR-21
[169]

miR-21 enhanced protective effect of loperamide against H/R injury in rat
cardiomyocytes associated with ↓ROS and ↓apoptosis [170]

Non-pharmacological
miR-1

down-regulation of miR-1 by traditional Chinese medicine Tanshinone
IIA led to cardioprotection via inhibition of I/R-induced p-38 MAPK

in rats
[173]

phenolic compound paeonol exerts cardioprotection against
epirubicin-induced heart injury via regulation of miR-1,

PI3K/AKT/mTOR and NF-κB
[176]

miR-21 resveratrol-induced up-regulation of miR-21 associated with protection
against I/R in rats [168]

miR transfection
and delivery miR-21

adenovirus miR-21 transfection decreased IS via targeting PDCD4/AP-1 [62]

adenovirus miR-21 transfection improved LV remodeling & ↓apoptosis in
cardiac I/R in rats [67]

lentivirus miR-21 transfection induced cardioprotection against I/R in
mice manifested by ↓IS, ↓fibrosis and ↓apoptosis [64]

miR-21 transfection to human cardiomyocytes ↓apoptosis
via JNK/p38-MAPK/caspase-3 [68]

chemically synthesized exogenous miR-21 reduced IS in mice,
miR-21-induced protection was abolished with miR-21

inhibitor co-treatment
[165]

nanoparticle delivery of miR-21 to cardiac macrophages post-MI
promoted angiogenesis, reduced hypertrophy, fibrosis, and apoptosis in

the remote myocardium
[75]

miR-21 pretreatment exerted cardioprotection against CVB3 infection via
targeting MAP2K3/p38-MAPK in mice [172]

Exosomal miR miR-21

depletion of exosomal miR-21 reduced protective effect of conditioned
medium in H2O2-induced oxidative stress in cardiomyocytes, and in rat

hearts exposed to AMI
[69]

↑miR-21 in CPC-derived exosomes prevented apoptosis in H9c2 cells via
↓PDCD4 [70]

Abbreviations: I/R: ischemia/reperfusion; H/R: hypoxia/reoxygenation; AMI/MI: (acute) myocardial infarction;
PDCD4: programmed cell death protein 4; AP-1: activator protein 1 (downstream molecule of PDCD4); ROS:
reactive oxygen species; IS: infarct size; LV: left ventricle; CPC: cardiac progenitor cell; AF: atrial fibrillation; IPC:
ischemic preconditioning; IPostC: ischemic postconditioning; RIPC: remote ischemic preconditioning; RIPerC:
remote ischemic preconditioning; CVB3: coxsackievirus B3.
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8. Clinical implications of miR-1 and miR-21

Despite the large amount of recently published investigations showing associations between
levels of ncRNAs and CVD, their potential as biomarkers or therapeutic targets is still a matter of
debate. This appears to be true for the different types of ncRNAs, miRs not escaping the general
rule. MiRs have been very largely investigated; a plethora of brilliant studies have been published,
offering a detailed yet incomplete characterization of their role in CVD. The potential of circulating
miRs to aid in the diagnosis of acute cardiac conditions such as myocardial infarction [177] or cardiac
arrest [178] has been extensively reported. Yet, miRs are still not part of the toolbox of drugs, diagnostic,
or prognostic markers of CVD available to clinicians. This is true for miRs in general, and for miR-1
and miR-21 in particular. The difficulty to translate research findings to clinical application has diverse
and multiple explanations. For instance, novel miRs are not always identified from properly-sized
cohorts of patients. Sample size is a critical determinant of biomarker studies, for which biostatisticians
shall be enrolled from the study design until final data analysis. The reproducibility of findings is often
hampered by the use of different experimental protocols that need to be homogenized. Blood sample
type, storage, and processing are key to reproducible findings. MiR-1 and miR-21 are ubiquitously
expressed, although miR-1 is enriched in muscle, and cardiac-specific miRs or myomiRs [177,179] may
be more prone to reflect cardiac disease progression. However, other miRs not specific to the heart but
strongly associated with inflammation have been reproducibly associated with cardiovascular events
in the heart and the brain [180,181]. Interestingly, a recent study reported earlier rises in circulating
levels of miR-1 after the transcoronary ablation of septal hypertrophy as compared to cardiac-enriched
miRs, supporting its value as an adjunct marker of myocardial injury in predictive models, including
established protein markers such as troponins [182]. It is known that women do not share the same
level of risk for CVD as men, yet few sufficiently-powered studies have reported the capacity of miRs to
be used as sex-specific biomarkers. All these limitations constitute future challenges that will have to be
addressed before miRs can be added to the armada of clinically useful biomarkers of CVD. Ultimately,
it is expected that better diagnostic and prognostic capacities will allow adapting healthcare strategies
for the patient’s benefit. MiRs have the potential to aid in implementing personalized healthcare and
reduce disease burden, in a sex-specific manner; however, the evidence is still missing.

9. Conclusions

The association between miR-1 and miR-21 with CVD has been extensively addressed, both from
a functional angle and for their potential biomarker value. The majority of studies revealed that while
miR-1 plays a potentially detrimental role in cardiac I/R injury, miR-21 seems to be cardioprotective
in I/R-challenged hearts. On the other hand, diverse changes in miR-1 and miR-21 have been found
in other types of heart injury like anthracycline or radiation-induced cardiotoxicity or different
cardiomyopathies. Moreover, changes in these two miRs due to CVD may differ depending on the cell
type within the heart. Thus, a better characterization of the role of these two miRs in CVD development
may open new avenues to design next-generation therapeutic and predictive strategies. Whether miR-1
and miR-21 will soon be translated to clinical application remains uncertain, but the hope is there.
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