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Cervical cancer is one of the most common gynecological malignancies and is related to
human papillomavirus (HPV) infection, especially high-risk type HPV16 and HPV18.
Aberrantly expressed genes are involved in the development of cervical cancer, which
set a genetic basis for patient prognosis. In this study, we identified a set of aberrantly
expressed key genes from The Cancer Genome Atlas (TCGA) database, which could be
used to accurately predict the survival rate of patients with cervical squamous cell
carcinoma (CESC). A total of 3,570 genes that are differentially expressed between
normal and cancerous samples were analyzed by the algorithm of weighted gene co-
expression network analysis (WGCNA): 1,606 differentially expressed genes (DEGs) were
upregulated, while 1,964 DEGs were downregulated. Analysis of these DEGs divided
them into 7 modules including 76 hub genes. Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment analysis revealed a significant increase of
genes related to cell cycle, DNA replication, p53 signaling pathway, cGMP-PKG signaling
pathway, and Fanconi anemia (FA) pathway in CESC. These biological activities are
previously reported to associate with cervical cancer or/and HPV infection. Finally, we
highlighted 5 key genes (EMEMP2, GIMAP4, DYNC2I2, FGF13-AS1, and GIMAP1) as
robust prognostic markers to predict patient’s survival rate (p = 3.706e-05) through
univariate and multivariate regression analyses. Thus, our study provides a novel option to
set up several biomarkers for cervical cancer prognosis and anticancer drug targets.

Keywords: bioinformatics analysis, cervical cancer, DEGs, prognosis, anticancer drug
INTRODUCTION

Cervical cancer is one of the most common gynecological malignancies (Small et al., 2017), of which
cervical squamous cell carcinoma (CESC) accounts for more than 80% of total cases (Cheng et al.,
2020). Cervical cancer has become one of the most susceptible and fatal cancers in women, mainly
through sexual contact (Ojesina et al., 2014; Szymonowicz and Chen, 2020). According to the latest
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data from the International Cancer Center, about 600,000 new
cases of cervical cancer have been reported worldwide in 2020;
the reported death cases were more than 340,000 (Sung et al.,
2021). Earlier studies have shown that the occurrence of cervical
cancer is directly related to the persistent infection of high-risk
human papillomavirus (HPV) (Schiffman et al., 2016); more
than 99.7% of cervical cancer patients were infected by high-risk
HPVs. High-risk subtype HPV16 and HPV18 are the most
prevalent types (Walboomers et al., 1999). High-risk HPVs
generate E6 and E7 oncoproteins. The E6 protein binds to the
cellular factor p53, causing p53 degradation, thereby disrupting
cellular apoptosis. The E7 protein interacts with pRB, causing
pRB inactivation and altering the cell cycle regulatory pathways.
Together, the E6 and E7 oncoproteins cause the transformation
of infected cells and finally accumulate mutations to further
develop into cancer cells (Burd, 2003).

As themost efficient screeningmethodsPap test andHPV test are
widely used for cervical cancer diagnosis in the clinic (Kessler, 2017),
most of the patients can be diagnosed and treated at an early stage of
cervical cancer progression. Unfortunately, there is no efficient
treatment for advanced or recurrent cervical cancer (Wang et al.,
2014; Yang et al., 2020). To date, the common treatment of cervical
cancer includes surgical resection, radiotherapy, and chemotherapy
(Ellenson and Wu, 2004; Hazell et al., 2018), but the prognosis of
patients does not meet expectations. Especially, the 5-year survival
rate of patients is even less than 10% (Eskander and Tewari, 2014).
Therefore, it is important to identify novel anticancer drug targets to
improve therapy efficiency. Moreover, novel prognostic biomarkers
are needed to promote the survival rate of cervical cancer patients.

Recent studies focus on screening differentially expressed genes
(DEGs) but ignore the complex networks among genes and the
gene-related clinical phenotypes (Liu et al., 2019). However, more
and more evidence suggests that the arising of cervical cancer
involves multiple abnormally expressed genes (Zhou and Wang,
2015; Bahrami et al., 2018). The high-throughput data mining
algorithm weighted gene co-expression network analysis
(WGCNA) identifies biological key modules by using high-
throughput gene expression data (Langfelder and Horvath, 2008).
In recent years,WGCNAhas been increasingly used in the research
of tumormarkers. For example, Xing et al. (2020) usedWGCNA to
find PHY906 and CPT11 as key genes for colon cancer.

In this study, we obtained the DEG expression profiles from the
public database The Cancer Genome Atlas (TCGA) to construct a
co-expression network to identify cervical cancer progression-
related hub genes. These highlighted hub genes can be applied to
predict the 3- and/or 5-year survival rates of cervical cancer
patients. The potential role of these genes as biomarkers needs to
be further studied, and itmay also provide a theoretical basis for the
prognosis assessment of cervical cancer patients.
MATERIALS AND METHODS

The Cancer Genome Atlas
Data Preprocessing
The plan of the study is shown in Figure S1. The original cervical
cancer expression data (Htseq-counts), standardized data
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(Htseq-FPKM), and clinical data were obtained from TCGA
database (https://cancergenome.nih.gov/), including three
normal cervix tissue samples and 304 cervix cancer tissue
samples. The clinical data contain information of phenotypes,
including the age (20–88 years), gender (men, women), clinical
stage (stage IV, stage III, stage II, stage I), neoplasm histologic
grade (G4, G3, G2, G1, GX), survival time (0–6,408 days), body
mass index (13–70), HPV status (positive, negative), smoking
history grade (1–3), and vital status (alive, dead). Low-expression
samples in raw data were excluded using the filterByExpr in the
edgeR package (Law et al., 2016).

Analysis of Differentially Expressed Genes
The edgeR package, DESeq2 package, and limma package are
used to analyze gene expression differences between normal
cervical tissue samples and cancer samples (Robinson et al.,
2010; Anders and Huber, 2010; Law et al., 2014). The analyzed
genes with threshold p value <0.05 and |log2fold change (FC)| >1
were selected as the final DEGs of cervical cancer.

Gene Function Enrichment Analysis
Gene function enrichment analysis is adopted to compare genes or
genomes with functional databases for overexpression analysis and
functional annotation. GO database is mainly for the study of
cellular component (CC), molecular function (MF), and biological
process (BP) (The Gene Ontology Consortium, 2019). KEGG
database is for understanding the functions and applications of
biological systems according to genomics or the information at the
molecular level (Kanehisa et al., 2017). In this study, the enrichGO
and enrichKEGG functions in software R package cluster profile
(Yu et al., 2012) were used to conduct enrichment analysis and
pathway analysis of the DEGs to identify the BP of significant GO
(p < 0.05) and the significant KEGG pathways (p < 0.05).

Weighted Gene Co-Expression
Network Analysis
The WGCNA package in R software was selected to conduct the
process of WGCNA (Langfelder and Horvath, 2008). The
construction steps of the network mainly include the gene co-
expression similarity matrix calculation, the adjacency function
of the gene network calculation, the soft threshold selection, the
topological overlap matrix (TOM), the dissimilarity matrix
calculation, the gene module by dynamic branch cut method
calculation, and the correlation analysis between the gene
module and external information.

Core Gene Screening
We use Cytoscape software to visualize the gene network in the
module (Doncheva et al., 2019); the highest connectivity genes
are identified as hub genes according to the connectivity between
genes in the module.

Survival Analysis
The survival package of R software is used for survival analysis of
hub genes. According to the median value of the gene expression
level, cervical cancer samples were divided into two groups. The
survival curves of each group were generated.
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Construction of Prognostic Markers of
Cervical Cancer Based on Key Genes
Univariate Cox proportional hazards regression analysis was
adopted to assess the relationship between hub genes and
survival rate. The estimation of the prognostic risk score of
each cervical cancer patient was analyzed by multivariate Cox
regression analysis. The risk score model was built using the
coxph function of the R software survival package. According to
the risk score, patients can be divided into low-risk and high-risk
groups. The software R survival package generated the survival
curves of the two groups.
RESULTS

Differential Analysis Selected 1,606
Upregulated Genes and 1,964
Downregulated Differentially
Expressed Genes
The cervical cancer gene expression profile was collected from
TCGA database, including 304 cervical cancer tumor tissues and
three normal tissues. EdgeR, DESeq2, and Limma analysis were
applied to obtain theDEGs between the normal and cervical cancer
groups. The batch information was successively added into the
constructedmodel (George et al., 2014;Nygaard et al., 2016). EdgeR
identified 2,146 upregulated genes and 2,478 downregulated genes.
DESeq2 identified 3,013 upregulated genes and 2,125
downregulated genes. Limma identified 1,779 upregulated genes
and 2,758downregulated genes (Figure 1A). The heatmap ofDEGs
was generated according to the results from EdgeR, DESeq, and
Limma analysis (Figure S2). We integrated the results of the three
methods to reduce the error, and the resultswere visualizedbyVenn
diagram (Stupnikov et al., 2021). As shown, 1,606 upregulated and
1,964 downregulated genes were identified (Figures 1B, C). To
narrowdown the sample size, we selected 50 highly expressed genes
and 50 reduced genes according to the value of |logFC| to generate
the heatmap as shown in Figure 1D.

To further expand the understanding of the role of all DEGs in
the occurrence and progression of cervical cancer, KEGG and GO
enrichment analyses were applied. KEGG analysis showed that the
selected DEGs were significantly gathered in DNA replication, p53
signaling pathway, and cell cycle (Figure 1E). GO enrichment
analysis was divided into three groups: BP, CC, andMF. The results
of theGOenrichment analysis showed that all of theDEGs in theBP
groupwere enriched inDNAreplication, chromosome segregation,
and organelle fission. In group CC, these DEGs were highly
gathered in cell–cell junction, chromosomal region, actin-
binding, single-stranded DNA helicase activity, and catalytic
activity were significantly enriched in group MF (Figure 1F).

Weighted Gene Co-Expression Network
Analysis Highlighted Seven Key Hub
Modules Associated With Clinical
Phenotypes of Cervical Cancer
The weighted gene co-expression network was established by the
DEGs abovemethods screened tocorrelatewithclinical phenotypes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
of cervical cancer. The outlier sample TCGA-LP-A4AV-01A was
excluded in subsequent analysis (Figure S3). The selected samples
were grouped in different clusters to form the distribution map of
the clinical feature data, including the age of patients with cervical
cancer, clinical stage (stage I–stage IV), histological tumor grade
(G1–G3), HPV infection status (negative, positive), body mass
index (BMI), patient smoking history, survival status (alive,
dead), and survival time (Figure 2A). Next, to identify the
optimal value of the threshold power from 1 to 30, we conducted
network topology analysis todetermine the relatively balanced scale
independence and mean connectivity of the WGCNA. When the
threshold power of b = 4 (scale-free R2 = 0.88) and cutoff modules
size,more than30were set as the soft threshold to ensurea scale-free
network (Figure 2B). The tree was grouped into 17 modules by a
dynamic tree cut algorithm. All the selected genes were clustered
using a TOM-based dissimilarity measurement (Figure 2C). Each
module was represented by different colors, and the number of
genes was concluded and shown inTable 1. The genes that did not
belong to any of the modules were marked as a gray module.
Therefore, this gray module was not included in the subsequent
analysis. We analyzed the 16modules to investigate the interaction
between modules, and the heatmap of the network was created
(Figure 2D). The results indicated that each module was highly
independent, but the gene expression in each module was less
independent. WGCNA further established the correlation of each
module according todifferent phenotypic traits of cervical cancerby
calculating the module significance of correlation of each module-
trait (Figure 2E). Next, we investigated if each module was
positively or negatively correlated, indicating the negatively
correlated modules as the following: green-yellow vs. HPV
infection status (r = -0.47, p = 8e-18), midnight-blue vs. survival
status (r= -0.16, p=0.005), blue vs. clinical stage (r= -0.12, p=0.04),
and survival time vs. smoking history (r = 0.13, p = 0.02); and the
positively correlated modules as the following: tan vs. patient’s age
(r = 0.19, p = 7e-04), brown vs. histological grade of cervical cancer
(r = 0.15, p = 0.01), pink blue vs. BMI (r = 0.14, p = 0.01), and light
cyan vs. survival time (r = 0.14, p = 0.02). Taken together, we
selected these seven modules as the most clinical phenotype-
associated key hub modules.

Functional Enrichment Analysis Identified
76 Hub Genes From the Hub Modules
We imported the hub modules into Cytoscape software to screen
the hub genes. According to the connectivity between genes in the
module, we selected the highest connectivity genes in the modules
as hub genes. A total of 76 hub genes were screened from 7 hub
modules (Figure 3A). The KEGG enrichment analysis indicated
that hub genes were gathered in “vascular smooth muscle
contraction, gap junction, and prostate cancer” (Figure 3B). The
GO enrichment analysis showed that “extracellular structure
organization, extracellular matrix organization, and camera-type
eye development” were significantly gathered in the BP group;
“collagen-containing extracellular matrix, nucleosome and DNA
packaging complex” were significantly enriched in the CC group;
and “collagen binding, GTP binding, and extracellular matrix
structural constituent” were significantly enriched in the MF
group (Figure 3C).
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FIGURE 1 | Bioinformatics analysis of all DEGs from cervical cancer tissue samples. (A) Volcano plots of DEGs screened by three methods. “Down” refers to the
genes that were downregulated. “Up” refers to the genes that were upregulated. “Stable” refers to the genes that have no difference in expression between tumor
groups and normal groups. (B) Upregulated genes. (C) Downregulated genes. (D) The heatmap of the top 200 DEGs according to the value of |logFC|. (E, F) KEGG
pathway enrichment and GO enrichment of DEGs. Each column bar on the y-axis represents an enrichment pathway, and the x-axis is the number of genes that
were enriched in this pathway. DEGs, differentially expressed genes; logFC, log fold change; BP, biological process; CC, cellular component; MF, molecular function.
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FIGURE 2 | (A) The clinical trait heatmap and tree dendrogram. (B) Determination of soft-threshold power in the WGCNA. (C) Clustering dendrogram of DEGs with
assigned module colors. (D) Visualization of gene network using heatmap plot. (E) Heatmap of the correlation between module eigengenes and phenotype of CESC.
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Five Prognostic Markers for Cervical
Cancer Were Highlighted by Cox
Regression Analysis
We performed a prognostic analysis on the above 76 hub genes to
predict the probable prognostic markers. Univariate Cox
proportional hazards regression analysis demonstrated that the
most significant prognostic factors were EFEMP2, GIMAP4,
DYNC2I2, ITM2A, GIMAP7, FGF13-AS1, H1-3, LTA, GIMAP1,
and GIMAP5. Multivariate Cox proportional hazards regression
analysis was performed to analyze these 10 prognostic factors.
GIMAP4, DYNC2I2, EFEMP2, FGF13-AS1, and GIMAP1
showed significant prognostic values, as shown in Table 2. Risk
values for each patient were obtained from the survival packages.
Based on the median risk score, patients with cervical cancer were
divided into high-risk and low-risk group. TheKaplan-Meier (KM)
survival curve compares the survival time of the high- and low-risk
group. As shown, the survival time of the high-risk group was
significantly lower than that of the low-risk group (p < 0.0001,
Figure 4A). To further verify the accuracy of the predicting model
of the cervical cancer patient’s survival time, we calculated the area
under the curve (AUC) values of Receiver Operating Characteristic
Curve (ROC) curves, which is normally adopted to reflect the
reliability of themodel (AUC>0.7). TheAUC value of 1-, 3-, and 5-
year survival time prediction model in this study was 0.712, 0.723,
and0.761, respectively, indicating that thismodelpossessedoptimal
performance in predicting the survival time of cervical cancer
patients at 1, 3, and 5 year (Figure 4B). We also analyzed the
distribution of risk scores and survival status among cervical cancer
patients to further confirm the accuracy of our model in predicting
cervical cancer patients’ survival time (Figures 4C, D).
DISCUSSION

Cervical cancer is one of the most common tumors among
women globally. More than 600,000 new cases are diagnosed
by the end of 2020; the death rate of HPV-related cervical cancer
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
in Asia is more than 50%. Low- and middle-income countries
have higher mortality rates due to poor medical conditions
(Daniyal et al., 2015; Denny, 2015; Vu et al., 2018). The
occurrence and progression of cervical cancer are highly
associated with the infection of high-risk HPV (Walboomers
et al., 1999; Schiffman et al., 2016). In addition, increasing
evidence suggested that many DEGs are expressed by cancer
cells (van Wieringen and van der Vaart, 2015). Aberrant gene
expression levels in the cancer cell may lead to the dysregulation
of cell signaling pathways by inhibiting or stimulating
(Vogelstein and Kinzler, 2004). Therefore, we detected
abnormally expressed genes of CESC from TCGA database.
EdgeR, DESeq2, and Limma were applied to reduce errors. A
total of 3,570 DEGs were obtained (1,606 were upregulated and
1,964 were downregulated). To further investigate the role of
these DEGs in cervical cancer, KEGG analysis and GO
enrichment analysis was performed. We observed that these
DEGs were significantly enriched in DNA replication, cell
cycle, cGMP-PKG signaling pathway, p53 signaling pathway,
and Fanconi anemia (FA) pathway. The high-risk E6
oncoprotein has been shown to degrade p53, resulting in the
inhibition of apoptosis, which is a key step to progress to cervical
cancer (Howie et al., 2009; Kajitani et al., 2012; Zheng et al.,
2020). Previous studies demonstrated that the E7 oncoprotein
affects cell cycle progression by preventing the binding of the
tumor suppressor protein pRB and E2F or degrading pRB and
the pocket proteins, which together contribute to cervical cancer
progression (Roman and Munger, 2013). Enriched DEGs in the
p53 signaling pathway and cell cycle that were highlighted in this
study are meaningful to future studies to reveal the mechanism
of oncoproteins E6 and E7 in the occurrence of cervical cancer.
Plenty of reports have shown that the cGMP/PKG pathway is
involved in the proliferation, differentiation, and apoptosis of
cancer cells (Fajardo et al., 2014). Furthermore, HPV infection
highly depends on cell proliferation and differentiation; a
previous study indicated that the cGMP/PKG pathway plays a
key role in the malignant phenotype of cervical cancer cells
(Gong et al., 2019), and our data are also in agreement with the
role of the cGMP/PKG pathway in the development of cervical
cancer. The disruption of the FA pathway has been shown to
increase HPV16 E7 protein levels and viral genome amplification
(Hoskins et al., 2012). Unfortunately, due to the insufficient
number of normal samples in TCGA database, there will be a
certain amount of errors in screening the DEGs. Even though the
DEGs highlighted by our bioinformatics analysis need to be
further investigated, the role of these DEGs may provide chances
to develop novel drug targets or diagnostic markers.

WGCNA is a co-expression network algorithm, which is
widely used in the research of cancer markers. Although a
previous study identified many prognostic markers in cervical
cancer using WGCNA, they mainly focus on DEGs between
groups (tumor vs. normal) (Liu et al., 2019). Still, the clinical
phenotype of patients has not been taken into consideration. In
addition to HPV infection, previous studies have shown that age,
smoking, and obesity are also associated with cervical cancer
(Waggoner et al., 2006; Gu et al., 2013; Su et al., 2018; Zhang
TABLE 1 | The number of genes in each module.

Module Genes

Brown 279
midnightblue 41
turquoise 844
Pink 143
lightcyan 40
Tan 77
magenta 140
greenyellow 112
salmon 72
Purple 129
Red 167
Cyan 63
Black 158
Green 179
Blue 716
Yellow 218
grey 192
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FIGURE 3 | (A) The hub genes of each module. (B, C) KEGG and GO enrichment analyses of hub genes.
TABLE 2 | The significantly prognostic genes revealed by univariate and multivariate Cox proportional hazards regression analysis.

characteristic Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

EFEMP2 1.055 (1.015,1.097) 0.007 1.045 (1.005,1.088) 0.028
GIMAP4 0.941 (0.899,0.984) 0.008 0.829 (0.727,0.945) 0.005
DYNC2I2 0.989 (0.980,0.997) 0.008 0.986 (0.977,0.994 0.001
ITM2A 0.886 (0.808,0.970) 0.009 – – –

GIMAP7 0.931 (0.881,0.984) 0.012 – – –

FGF13-AS1 8.432 (1.506,47.224) 0.015 13.504 (2.161,84.378) 0.005
H1-3 0.623 (0.423,0.917) 0.016 – – –

LTA 0.548 (0.328,0.914) 0.021 – – –

GIMAP1 0.652 (0.453,0.939) 0.021 2.545 (0.980,6.614) 0.055
GIMAP5 0.111 (0.017,0.735) 0.023 – – –
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et al., 2019). Moreover, we also considered that clinical indicators
may associate with cervical cancer patients. Therefore, in this
study, we firstly screened DEGs between normal tissues and
tumor tissues, then carried out WGCNA by considering eight
clinical phenotypes of the cervical cancer patient, including the
age, clinical stage, tumor histology grade, vital status, BMI, HPV
infection status, smoking history, and survival time of cervical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
cancer patients. Finally, a total of 7 modules were associated with
these clinical traits. From the module–trait relationship in
WGCNA, HPV infection is the most relevant phenotype.
Normally, the HPV infection will be cleared by the host
immune system within a year or two. In some rare cases, the
HPV may develop into persistent infection, after several years,
sometimes decades, may progress to cervical cancer (Hu and
A B

C

D

FIGURE 4 | (A) Kaplan–Meier survival curve of overall survival between the high‐risk group and low‐risk group. (B) The 1-, 3-, 5‐year survival time‐dependent ROC
curve. (C, D) The distributions of the risk score and survival status for each patient.
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Ma, 2018). Interestingly, in our study, WGCNA indicated that
older age is positively related to cervical cancer. Considering that
about 99.7% of cervical cancer cases are related to high-risk HPV
infection, we suspected that older age that positively related to
the occurrence of cervical cancer may be due to high-risk HPV
persistent infection.

Currently, the prognosis of patients with cervical cancer is not
ideal, and the survival rate of patients is too low (Eskander and
Tewari, 2014). Therefore, prognostic markers are of great
significance to enhance the overall survival rate of patients. To
establish a reliable prognostic model, we performed a prognostic
analysis of all key genes from the above seven modules. Finally, we
identified that the model constructed by GIMAP4, GIMAP1,
FGF13-AS1, EFEMP2, and DYNC2I2 could be used as the
prediction model for the prognosis of cervical cancer. GIMAP1
and GIMAP4 are proteins of the GIMAP members (GTPase
immune-associated proteins) family. GIMAP4 plays a key role in
cellular apoptosis and T-cell development, which can be used as a
prognostic marker of cervical cancer (Schnell et al., 2006; Heinonen
et al., 2015; Xu et al., 2021). GIMAP1 is crucial for the survival of B
cells used as the major marker of endometrial cancer (Krucken
et al., 1999; Webb et al., 2016; Guo et al., 2021). The human
EFEMP2 gene is located near the centromere of chromosome
11q13 and plays a role in the invasion and metastasis of tumors
(Obaya et al., 2012; Papke and Yanagisawa, 2014). EFEMP2 has
been found related to survival rate; downregulation of EFEMP2
leads to a higher death rate in bladder cancer (Zhou et al., 2019).
FGF13-AS1 is a long-chain non-coding RNA (lncRNA); studies
have shown that FGF13-AS1 inhibits the proliferation and
migration of breast cancer by impairing glycolysis and dry
properties. Reduction of FGF13-AS1 is associated with poor
prognosis (Ma et al., 2019). DYNC2I2 is involved in cell cycle
progression, apoptosis, and gene regulation [provided by RefSeq,
March 2014], but this gene was not reported in the literature.
Considering the features of DEGs in the expression, clinical
phenotypes, and survival time of cervical cancer patients, we
concluded that these five hub genes are likely to play a role in
cervical cancer, which can be considered as potential biomarkers.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
However, the function of these five genes needs further
experimental verification.
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