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ABSTRACT
Objective The spread of caseecontrol genome-wide
association studies (GWASs) has stimulated the
development of new variable selection methods and
predictive models. We introduce a novel Bayesian model
search algorithm, Binary Outcome Stochastic Search
(BOSS), which addresses the model selection problem
when the number of predictors far exceeds the number
of binary responses.
Materials and methods Our method is based on
a latent variable model that links the observed outcomes
to the underlying genetic variables. A Markov Chain
Monte Carlo approach is used for model search and to
evaluate the posterior probability of each predictor.
Results BOSS is compared with three established
methods (stepwise regression, logistic lasso, and elastic
net) in a simulated benchmark. Two real case studies are
also investigated: a GWAS on the genetic bases of
longevity, and the type 2 diabetes study from the
Wellcome Trust Case Control Consortium. Simulations
show that BOSS achieves higher precisions than the
reference methods while preserving good recall rates. In
both experimental studies, BOSS successfully detects
genetic polymorphisms previously reported to be
associated with the analyzed phenotypes.
Discussion BOSS outperforms the other methods in
terms of F-measure on simulated data. In the two real
studies, BOSS successfully detects biologically relevant
features, some of which are missed by univariate
analysis and the three reference techniques.
Conclusion The proposed algorithm is an advance in the
methodology for model selection with a large number of
features. Our simulated and experimental results showed
that BOSS proves effective in detecting relevant markers
while providing a parsimonious model.

INTRODUCTION AND BACKGROUND
Many of the advances in genome-wide association
studies (GWASs) are based on the analysis of casee
control data. The goal of such studies is usually to
correlate a phenotype, often coded as a binary
variable, with genetic markers such as single
nucleotide polymorphisms (SNPs). The outcomes
of GWASs are increasingly integrated with next-
generation sequencing results for SNP validation
and disease marker extraction. Therefore, GWASs
are powerful tools for the identification of inter-
esting regions at the genome-wide level for further
investigation by high-definition procedures.1

Regrettably, achieving the promising goals
mentioned above is hindered by the technical
difficulties accompanying GWASs. Recent geno-
typing technologies allow the extraction of millions
of genetic measurements, but the number of
subjects is smaller by several orders of magnitude.

In the literature, this is known as a ‘p>n’ problem.
The key task is to reduce the dimensionality of the
problem by identifying the optimal subset of
predictors that are informative with respect to the
outcome variable. Widely used techniques such as
univariate or stepwise regression, are recognized as
insufficient to fully address the above issues.
Advanced multivariate methods are therefore
required in order to determine the biological
truth.2e4

Recently, a number of model search algorithms
have been proposed, with particular emphasis on
sparse linear models based on regularization
methods5 6 and naive-Bayes techniques.7 Further-
more, Bottolo and Richardson designed a new
method for Bayesian model selection for linear
regression with continuous outcomes.8 Unlike
regularization analysis, this method performs
a model search by sampling the predictors on the
basis of a general and efficient Markov Chain
Monte Carlo (MCMC) technique that exploits the
conjugacy structure of data and parameters.
In the case of binary outcomes, however, easy

analytical tractability is only partially possible,
mainly because of the non-linear link between the
observed variables and the underlying predictors.
Although a detailed Bayesian analysis for binary
and categorical responses is available,9 model search
techniques for binary data have only been explored
in a limited number of cases.10e12

Objective
In the present paper, we propose an innovative
stochastic model search technique for binary
outcomes. The relationship between the observed
responses and the available predictors is described
by a latent variable model with a probit link,9

rather than resorting to Gaussian approxima-
tions.12 Prior distributions are assigned both to
the regression coefficients and the model size,
therefore allowing the user to specify a prior
belief on the model complexity. A computationally
efficient Metropolis-Hastings sampling algorithm8

is adopted. Our method extensively explores
the model space to identify the important
predictors.

MATERIALS AND METHODS
Latent variable model for binary data
Denote with Y the vector of the observed indi-
vidual binary responses Yi, where i¼1.n and n is
the number of subjects. The Yi are assumed to be
the results of independent Bernoulli trials with
success probability pi. Let xi¼(xi1, ., xip)T be the
covariate vector associated with response Yi, where
p is the total number of predictors. Additionally, let
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b¼(b1, ., bp)T be the vector of regression coefficients for the p
predictors.

The relationship between observed binary responses and
covariates is usually modeled with a link function g, which
expresses the dependency of the success probabilities pi on
the linear regressor xi

Tb. Taking g as the standard normal
distribution F yields the probit model:

pi ¼ FðxT
i bÞ ¼

Z xTi b

�N

Nð0;1Þdu (1)

where b, in a Bayesian perspective, can be assigned a multivar-
iate normal prior. Unfortunately, the resulting posterior density
of b is not analytically tractable,9 although approximations are
available in the literature.

In order to circumvent the above issue and obtain the poste-
rior of b, one can resort to a data augmentation approach as
described by Albert and Chib.9 The idea is to introduce n inde-
pendent latent variables Z¼(Z1, ., Zn)T such that each Zi w N
(xiTb, 1), letting Yi¼0 if Zi#0 and Yi¼1 if Zi>0. Equation 2
summarizes the latent variable model:

Yi ¼
�
0 Zi#0
1 Zi > 0 Z ¼ Xb þ 3 (2)

where X is the n3p design matrix with i-th row equal to xiTand
3 is a vector of independent normal errors with zero mean and
unit variance.

Of course, if the Zi were known, and if b were assigned
a multivariate normal prior, the posterior of bwould be obtained
through usual Bayesian linear regression results. Although the Zi

are actually not known, their distribution conditional on the
data Yi is a truncated normal with mean xiTb and unit variance,
the side of truncation depending on the value of Yi. One could
therefore resort to Gibbs sampling to iteratively sample Z and b,
thus obtaining the required posteriors.

Variable selection
The goal of variable selection is to model the dependency of Y
(or equivalently Z) on a subset of the predictors x1, ., xp.
However, there is uncertainty about which subset to use. In this
work, we follow the approach of Bottolo and Richardson8 and
introduce a latent binary vector g¼(g1,., gp)T such that gj¼0 if
bj¼0 and gj¼1 if bjs0. The model space is therefore given by the
2p possible combinations of the indicator variables gj. Given g,
the Gaussian linear model in equation 2 can therefore be
modified as:

Z ¼ a1 þ Xgbg þ 3 (3)

that also accounts for the intercept a. The symbol 1 denotes
a column vector of ones. The vector bg includes only the coef-
ficients corresponding to gj¼1. Its length is denoted by pg.
Similarly, the n3pg matrix Xg is obtained from X by taking the
columns for which gj¼1. The columns of the design matrix are
assumed to be centered around zero.

The intercept a is assigned a flat prior, f(a)f1, whereas the
prior distribution for bg is taken as a multivariate normal:

f
�
bg

��g;s2� ¼ N
�
0;s2Sg

�
(4)

Moreover, the error variance s2 is equal to 1 by definition.9

The matrix Sg can be expressed as sI, where s controls the

degree of coefficient shrinkage and I is the identity matrix. Other
specifications of the prior covariance matrix in equation 4 are
covered by Bottolo and Richardson.8 The prior for the indicator
vector g is defined as in Kohn et al13:

f ðgÞ ¼ B
�
pg þ a;p� pg þ b

�
Bða;bÞ (5)

which gives rise to a beta-binomial distribution on the model
size pg. Parameters a and b can be elicited based on prior
knowledge on the model size, for example, expected value and
variance of pg.8 13

In order to obtain g, observe that, if Z were known, one could
write its associated marginal likelihood by integrating out
a and bg:

f ðZjgÞ ¼
Z

f
�
Z
��g;a;bg

�
f
�
bg

��g�f �a�dbgda (6)

where the dependence on s2 has been dropped since it is fixed to
1. The term f(Z | g, a, bg) is the multivariate normal density
arising from the distribution of 3. Note that, up to a normal-
izing factor, equations 5 and 6 together yield the conditional
density f(g | Z). Also observe that such density does not depend
on Y since Z is given. Additionally, observe that, if Z were
known, the posterior of bg would follow from the usual Bayes
formula for linear Gaussian regression.
The model specification is completed by defining the full

conditional for Z. As stated in the previous paragraph, condi-
tional on Yi and bg, the densities of Zi are independent truncated
normals:

f ðZijYi;bgÞ ¼
�
TN��xT

i;gbg;1
�

Yi ¼ 0
TNþ �xT

i;gbg;1
�

Yi ¼ 1
(7)

where TN� and TN+ denote right- and left-truncated normal
densities respectively, and xi,gT is the i-th row of Xg.

Sampling algorithm: Binary Outcome Stochastic Search (BOSS)
Equations 4e7 allow devising a sampling scheme to obtain the
posterior density of the latent binary vector g, which is the main
goal of the model search procedure. Our algorithm is based on an
efficient Fast Scan Metropolis-Hastings (FSMH) sampler intro-
duced by Bottolo and Richardson8 and generalized here to
account for binary responses.
The key idea of our algorithm is that, if Z is assumed known,

the variable selection problem for binary outcomes reduces to
one for continuous outcomes. In such a case, efficient algorithms
are available to sample from the conditional density of g.8 12 As
shown by Bottolo and Richardson,8 sampling g can be achieved
through the FSMH sampler using equations 5 and 6. Once
a sample of g is available, a new value of Z is then sampled from
its full conditional distribution and the process is iterated.
The sampling scheme, depicted in figure 1, is implemented as

follows:
1. Choose a random initialization for Z (positive or negative

according to its corresponding Yi, see equation 7);
2. Sample g through the FSMH sampler, using the prior model

size in equation 5 and the marginal likelihood of Z in
equation 6;

3. Given Z and g, sample bg through the standard Bayesian
linear regression. Note that, given Z, such density does not
depend on Y;

4. Given bg and Y, sample Z from equation 7;
5. Restart from step 2 until a pre-determined number of

iterations is reached.
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Experimental data and software implementation
The proposed approach has been applied to a first GWAS on the
genetic bases of longevity,14 and a second GWAS aimed at the
genetic dissection of the type 2 diabetes (T2D) trait.15 The latter
dataset has been provided by the Wellcome Trust Case Control
Consortium (WTCCC) after data access approval.

Individual and marker-level data quality control, inbred
patients, and genetic outliers removal have been described by
Malovini et al14 and the WTCCC.15 A preliminary feature
selection has been performed based on the results from univar-
iate Pearson’s c2 tests with 2 degrees of freedom comparing

genotype distributions between cases and controls. Only SNPs
characterized by complete genotype data, passing the signifi-
cance threshold (p<0.40 for the longevity dataset and p<0.01
for the T2D dataset) and featuring at least five counts per cell
have been retained. Missing values in the T2D dataset were
imputed to the modal value for each SNP. The above statistical
analyses have been performed with PLINK.16 BOSS was imple-
mented in MATLAB 7.5.0 R2007b17 together with the
RANDRAW routine18 to sample from the truncated normal
density.

RESULTS
Simulated benchmark
A simulation study was performed to assess the performances of
BOSS, stepwise regression (stepwisefit function in MATLAB17),
and two state-of-the-art methods, logistic lasso and elastic net11

(package glmnet in R V.2.13.119). Our benchmark featured
simulated scenarios of varying complexity, according to the
following characteristics of the design matrix X:
< Uncorrelated or correlated columns (pairwise correlation of

0.5);

Figure 1 Relationships among the stochastic nodes sampled by BOSS.
Squares denote constants (eg, the design matrix), and circles denote
random variables.
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Figure 2 Prior density of model size pg used for BOSS in the simulation
benchmark.

Figure 3 F-measure comparison in
scenarios A90, A70, and A50

(uncorrelated predictors). EN, elastic
net; LL, logistic lasso; SW, stepwise
regression.
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< Percentage of explained variance (ie, proportion of variance of
Z explained by the predictors).
Therefore, we simulated 233¼6 scenarios, labeled as follows:

< A90: uncorrelated X, 90% explained variance;
< A70: uncorrelated X, 70% explained variance;
< A50: uncorrelated X, 50% explained variance;
< B90: correlated X, 90% explained variance;
< B70: correlated X, 70% explained variance;
< B50: correlated X, 50% explained variance.

We set n¼200 and p¼300, so that p>n. Synthetic datasets
were generated by simulating a design matrix X according to the
characteristics described above, and a vector of independent
normally distributed errors 3 with zero mean and unit variance.
Only the first 10 parameters of the vector b were set to a non-
zero value, so as to yield 10 true predictors. The module of such
parameters was set so as to obtain the given percentage of
explained variance. The 10 true parameters were assigned
alternating signs. The values of Zi so generated were then
binarized according to their sign to obtain Yi (equation 2). Each
dataset featured an approximately equal number of cases
and controls. For each scenario, 50 simulated datasets were
generated.

BOSS was run for 6000 iterations (first 1000 of burn-in). The
prior model size pg was specified by E[pg]¼20 and Var[pg]¼100,
which elicited the values a¼4.52 and b¼63.26. Parameter s was
fixed to 1, as done by Bottolo and Richardson8 and Hans et al,12

except in scenarios A50 and B50 where a value of 0.1 proved more
suitable. In principle, one could additionally sample s to actually

optimize the algorithm performances. The prior mean and
variance were chosen so as to cover a reasonable range of plau-
sible model sizes. The resulting prior density for pg is depicted in
figure 2.
Logistic lasso and elastic net were run with the ‘one-standard-

error rule’ to choose the penalty parameter.11 The elastic net
method was executed with equal lasso and ridge-regression
penalties. Stepwise regression was performed using the default
settings of the stepwisefit function.
The goal of the simulated benchmark was to assess the

capabilities of BOSS, logistic lasso, elastic net, and stepwise
regression to capture the true predictors used to generate the
data, while discarding useless predictors. For this purpose, we
evaluated precision, recall, and F-measure relative to the number
of predictors correctly/incorrectly identified as true/false. In the
case of BOSS, a predictor was deemed ‘true’ if its marginal
posterior probability of inclusion8 12 was at least 50%.
Results of the comparison are reported in figure 3 for uncor-

related predictors (A90, A70, and A50) and in figure 4 for corre-
lated predictors (B90, B70, and B50). The two figures show the
distribution of F-measure values obtained with BOSS, logistic
lasso, elastic net, and stepwise regression in each scenario.
Average numerical values are also reported in table 1 for
precision and recall.
In most scenarios considered here, BOSS outperformed the

three reference methods in terms of F-measure. Although BOSS
achieved generally lower recall rates, it attained higher values of
precision and a better overall tradeoff. Larger priors on the model

Figure 4 F-measure comparison in
scenarios B90, B70, and B50 (correlated
predictors). EN, elastic net; LL, logistic
lasso; SW, stepwise regression.
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Table 1 Comparison of precision, recall, and F-measure obtained with stepwise regression (SW), elastic net (EN), logistic lasso (LL) and BOSS

Scenario

Average precision Average recall Average F-measure

SW EN LL BOSS SW EN LL BOSS SW EN LL BOSS

A90 0.29 0.26 0.33 0.93 1 0.99 0.99 1 0.44 0.40 0.49 0.96

A70 0.28 0.35 0.45 0.78 0.93 0.89 0.89 0.80 0.42 0.48 0.57 0.75

A50 0.23 0.40 0.52 0.68 0.73 0.54 0.50 0.46 0.34 0.44 0.46 0.53

B90 0.35 0.28 0.39 0.95 1 1 1 0.98 0.52 0.43 0.56 0.96

B70 0.31 0.35 0.44 0.78 0.82 0.95 0.93 0.77 0.45 0.50 0.59 0.76

B50 0.26 0.48 0.59 0.83 0.63 0.68 0.61 0.47 0.36 0.49 0.52 0.58

Each value is the average across the 50 datasets simulated in each scenario. In terms of F-measure, BOSS performed better than the three reference methods (p<0.01, one-sided paired t test).
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size and a larger number of iterations did not substantially affect
the results obtained with BOSS.

Interestingly, the performances of the four methods did not
degrade if predictors were correlated. Overall, logistic lasso
proved superior to the traditional stepwise regression and
comparable to the elastic net.

Furthermore, we assessed the ability of the four methods to
correctly predict newly observed binary responses that were not
used for parameter estimation. For this purpose, 50 additional
datasets-per-scenario were simulated. The new outcomes were
then predicted using the features selected by each method.
Prediction performances were evaluated in terms of correctly/
incorrectly predicted positive/negative responses. A new
outcome was predicted as positive (y¼1) if the corresponding
probability, reconstructed with the selected features, was greater
than a given threshold. We then evaluated specificity, sensitivity,
and prediction accuracy for thresholds from 0.05 to 0.95, with
steps of 0.05. In order to obtain summary statistics, we
computed the area under the receiver operating characteristic
(ROC AUC) using mean specificity and sensitivity for a given
threshold. Additionally, we calculated the average prediction
accuracy across all thresholds.

Table 2 shows the results of our predictive analysis. In most
cases, the AUC obtained with BOSS is only slightly greater than
with the other three methods. In terms of accuracy, however,
BOSS achieves a substantial improvement.

Experimental case studies
This section reports the results obtained by BOSS and the three
reference methods on the two experimental GWASs.

GWAS on exceptional longevity
A total of 410 long aged individuals (cases), 553 average living
controls and 290 364 autosomal SNPs passing data quality
control underwent a feature selection pre-processing phase. A
subset of 5707 SNPs, selected according to the inclusion criteria
reported in the Materials and methods section, were then
considered for subsequent analyses. BOSS was run for 20 000
iterations (first 5000 of burn-in; running time of about 4.5 days).
The prior model size pg was specified by E[pg]¼20 and Var[pg]¼
100, so as to encompass a range of plausible model sizes without
being overly restrictive.
Our analysis allowed the identification of several relevant

markers. In particular, the intergenic SNP rs2147556 achieved
a 100% probability of inclusion, while rs10491334, mapping to
CAMK4 and previously identified as strongly associated,14

achieved a probability of about 76%. Moreover, BOSS was able
to identify rs522796 (KL gene) as mildly associated with the
outcome (probability of 14%). This SNP was reported to be
related to non-diabetic end-stage renal disease20 and preterm
birth.21 SNP rs800292, mapping to CFH and known to be
associated with age-related macular degeneration,22 was also
identified, although with a relatively low probability of inclusion
(10%). Posterior probabilities of SNPs obtained with BOSS are
shown in figure 5. We limited the plot to the top 10 SNPs in
order to summarize the most relevant findings only.
In order to further evaluate the results obtained by the

proposed model search technique, we additionally fitted
a multivariate logistic regression model on the top 10 predictors
of figure 5. Results are summarized in table 3.
It is interesting to observe that the minor allele of rs800292

has a predisposing additive impact on longevity (OR¼1.53): this
is in accordance with the results obtained by Yang et al, who
showed a significant association of rs800292 with a reduced risk
for exudative age-related macular degeneration.22

As a further step, we ran logistic lasso, elastic net, and step-
wise regression on the longevity data to assess possible differ-
ences with the results obtained by BOSS. The three algorithms
were run with the same settings described in the Simulated
benchmark section of the Results section. In our analysis, the
logistic lasso included most of the features reported in figure 5,
but failed to detect rs800292. The elastic net yielded a more
parsimonious model, which included four SNPs (rs2147556,
rs10491334, rs621011, and rs522796). Stepwise regression
selected a large number of features (891): all SNPs in figure 5
were included except rs522796.

Table 2 Comparison of prediction performances on new data using the
selected features

Scenario

ROC AUC Average accuracy

SW EN LL BOSS SW EN LL BOSS

A90 0.86 0.92 0.93 0.96 0.60 0.66 0.71 0.85

A70 0.78 0.82* 0.82* 0.82 0.59 0.60 0.61 0.70

A50 0.64 0.65 0.66 0.67 0.54 0.53 0.53 0.57

B90 0.87 0.92 0.93 0.94 0.60 0.68 0.71 0.80

B70 0.70 0.77* 0.78* 0.77 0.54 0.57 0.58 0.64

B50 0.64 0.68* 0.67* 0.68 0.54 0.54 0.54 0.56

Except where indicated (*), BOSS improved on the three reference methods (p<0.05, one-
sided paired t test).
EN, elastic net; LL, logistic lasso; ROC AUC, area under the receiver operating
characteristic; SW, stepwise regression.

Figure 5 Marginal posterior
probabilities of the 10 top single
nucleotide polymorphisms (SNPs)
identified by BOSS in the longevity
dataset. Darker bars denote SNPs
previously reported in the literature.
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GWAS on T2D
A total of 1924 T2D patients, 1458 UK Blood Service (UKBS)
controls and 456 856 autosomal SNPs (mapping to chromo-
somes 1e22) passing data quality control15 underwent
a features selection phase (see Materials and methods section). A
total of 4102 markers were then considered for subsequent
analyses. We ran BOSS for 700 iterations (first 200 of burn-in;
running time of about 1 day). Increasing the number of itera-
tions did not yield appreciably different results. The prior model
size pg was specified by E[pg]¼4 and Var[pg]¼4, in order to allow
BOSS identify only the most relevant genetic features.

Our analysis detected several SNPs mapping to gene regions
which have been previously associated with metabolic
syndromes or other disease classes. In particular, the top ranked
SNP rs7193144 is an intronic marker mapping to FTO, a gene
that has been already associated with T2D and obesity condi-
tions in several European cohorts.15 23e25 Moreover, rs4132670
and rs10885409 map to TCF7L2, previously reported to be
associated with T2D.15 26 27 Last, rs11693602 is localized within
the RBMS1 gene, which has been associated with T2D by Qi
et al.28 Posterior probabilities of SNPs obtained with BOSS are
shown in figure 6. We limited the plot to the top 20 SNPs in
order to summarize the most relevant findings only.

Additionally, we performed further model evaluation by
fitting a multivariate logistic regression on the genetic markers
reported in figure 6. Results are reported in table 4.

We also performed logistic lasso, elastic net, and stepwise
regression on the T2D data. All three algorithms identified more

than 600 features each. However, stepwise regression and
logistic lasso detected none of the four SNPs introduced above.
The elastic net missed rs10885409, but captured rs7193144,
rs11693602, and rs4132670.

DISCUSSION
The results obtained offer an interesting insight into our new
model search technique and its performances relative to three
established methods for feature selection.
In the simulated benchmark, stepwise regression captured

many features, including important ones, although at the cost of
reduced precision. Logistic lasso performed better than stepwise
regression and comparably to the elastic net, although both
techniques attained relatively low precisions (0.26e0.59; see
table 1). By contrast, as far as this simulation study is concerned,
BOSS was able to discover true signals even in difficult scenarios
with as low as 50% of explained variance. Note that, even if the
prior model size allowed for possibly large models (up to about
60 predictors, see figure 2), BOSS was able to identify a small
subset of key features that correlated well with the data, while
discarding unimportant predictors. Interestingly, BOSS
compared favorably with the reference methods in terms of
prediction performances. Our analysis suggests that the greater
ability of BOSS to detect the true predictors entails increased
prediction accuracy on newly observed data.
It is worth remarking that, in principle, BOSS is also capable

of handling interactions between features. Although this was
not extensively explored, a preliminary simulated analysis
(similar to the A90 scenario) showed that BOSS successfully
captured both the main and interaction effects between pairs of
features.
In the longevity study, BOSS effectively accomplished variable

selection with many possible predictors (about 5700 SNPs) and
a smaller number of observations (n¼963). BOSS successfully
identified relevant genetic markers and yielded a parsimonious
model, which can be used for predictive purposes. In particular,
rs10491334 has been previously associated with longevity in the
same population,14 while rs800292 has been previously associ-
ated with age-related macular degeneration in a cohort of Han
Chinese individuals.22 Moreover, rs522796 has been reported
both in relation to non-diabetic end-stage renal disease20 and
preterm birth.21

The results from logistic lasso, elastic net, and stepwise
regression obtained on the longevity data were comparable,

Table 3 Summary of results from logistic regression on the top 10
predictors identified by BOSS in the longevity dataset

SNP Chr Position (bp) Gene OR (95% CI) p Value

rs2147556 13 72010472 0.58 (0.46 to 0.72) 1.8310�6

rs10491334 5 110800303 CAMK4 0.58 (0.45 to 0.76) 5.3310�5

rs621011 11 78294837 1.52 (1.24 to 1.87) 7.4310�5

rs1570383 6 126241555 0.61 (0.47 to 0.78) 1.1310�4

rs1158408 4 67799134 1.55 (1.21 to 1.99) 5.0310�4

rs9613094 22 24788388 0.58 (0.44 to 0.75) 6.0310�5

rs522796 13 32528055 KL 1.36 (1.12 to 1.67) 2.5310�3

rs4869566 5 38165184 0.67 (0.54 to 0.84) 4.5310�4

rs800292 1 194908856 CFH 1.53 (1.19 to 1.97) 9.7310�4

rs7567687 2 129750796 0.69 (0.56 to 0.85) 4.1310�4

Chr, chromosome; Position (bp), physical position on the chromosome expressed in terms
of base pairs; SNP, single nucleotide polymorphism.

Figure 6 Marginal posterior
probabilities of the 20 top single
nucleotide polymorphisms (SNPs)
identified by BOSS in the type 2
diabetes (T2D) dataset. Darker bars
denote SNPs previously reported in the
literature.
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although neither the lasso nor the elastic net were able to detect
rs800292. Stepwise regression yielded an overly parametrized
model, with almost as many features (891) as subjects (963), but
missed the association of rs522796.

In the T2D study, BOSS identified SNPs mapping to genes
known to be associated with diabetes or other metabolic
syndromes.15 23e28 Further, BOSS identified functionally rele-
vant variants that would have been discarded by standard
univariate association tests: for example, the top SNP detected
by BOSS, rs7193144, achieved a univariate p value of 2.61310�5

(c2 distribution with 2 degrees of freedom), which is greater
than usual significance thresholds, for example, 1310�5 or less.
A direct comparison of our findings with those reported by the
WTCCC15 is only partially feasible, since our research group has
no access to the WTCCC 1958 British Birth Cohort, which was
included in the original analyses as the control group. Locus-
based analyses will allow identification of structural correlations
and/or potential interactions between the selected SNPs and
other functionally relevant unobserved variants.

Interestingly, stepwise regression and logistic lasso were able
to detect a large set of features, but failed to identify the four
SNPs reported in the Results section. This may be explained by
convergence to a local optimum for the stepwise regression, and
excessive coefficient shrinkage for the lasso. The elastic net did
not detect rs10885409 but found the other three markers
described above.

The computational efficiency of our approach deserves one
last remark. It is a known in the literature that advanced
sampling-based techniques for model selection may be compu-
tationally demanding (see, for example, O’Hara and Sillanpää29),
especially if compared to lasso-based methods.11 In the two
experimental studies, we preliminarily filtered the genetic
features to approximately the same number (about 4000 and
6000), so as to demonstrate the effectiveness of our approach
while keeping the computational complexity reasonable.
Nonetheless, our results showed that the detection of relevant
makers was not hindered. Of note, variational Bayes approaches
(see, for example, Girolami et al30) could be adapted for model
selection to further speed up the model search.

CONCLUSION
The algorithm presented in this paper represents a step forward
in the statistical methodology for variable selection. Binary
outcomes have traditionally received less attention than
continuous outcomes, mainly because of their lower analytical
tractability. Moreover, the ‘p>n’ problem requires advanced
techniques that allow discovery of important features without
yielding overparametrized models. We tackled such challenges
using a Bayesian paradigm and developed a general MCMC
framework for variable selection in the presence of binary
responses. The exact formulation of the likelihood paves the
way to generalizations such as multinomial responses that
cannot be handled simply by Gaussian approximation. The
results obtained from our simulated benchmark and the two
experimental case studies suggest that BOSS is an effective and
reliable tool for model selection when the number of features is
very large.
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