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The role for human herpesvirus (HHV)-6A or HHV-6B in multiple sclerosis (MS)
pathogenesis has been controversial. Possibly because the damage of the virus
infection may occur before onset of clinical symptoms and because it has been difficult
to detect active infection and separate serological responses to HHV-6A or 6B. Recent
studies report that in MS patients the serological response against HHV-6A is increased
whereas it is decreased against HHV-6B. This effect seems to be even more pronounced
in MS patients prior to diagnosis and supports previous studies postulating a
predomination for HHV-6A in MS disease and suggests that the infection is important
at early stages of the disease. Furthermore, HHV-6A infection interacts with other factors
suspected of modulating MS susceptibility and progression such as infection with
Epstein-Barr virus (EBV) and Cytomegalovirus (CMV), tobacco smoking, HLA alleles,
UV irradiation and vitamin D levels. The multifactorial nature of MS and pathophysiological
role for HHV-6A in inflammation and autoimmunity are discussed.

Keywords: human herpesvirus 6A, HHV-6A, HHV-6, infection, multiple sclerosis, environment, epidemiology,
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INTRODUCTION

Multiple Sclerosis
Multiple Sclerosis (MS) typically presents with alternating bouts of disability and recovery. Over
time this pattern often transitions into a more continuous, progressive increase in disability and
neurological degeneration. Typical symptoms of MS include sensory and motoric ailments but vary
greatly depending on what part of the CNS is targeted. Inflammatory events induce demyelination
of neuronal axons reducing signaling capacity that induce disability (1).

The exact pathogenesis of MS is not understood, but epidemiological approaches including twin-
and family studies define a complex interplay between genes and environment. For example,
concordance rate among monozygotic twins is 25% and 3% for dizygotic twins (2, 3).

Several theories on the pathophysiological origin exist, but autoimmune events, whether primary
triggers or secondary drivers, play a central role from disease onset and onwards.

Genetic Risk Factors
Genome wide association studies (GWAS) have provided a fruitful approach in defining genetic
associations to susceptibility (4). Prior to the GWAS era the only bona fide genetic risk factors were
in the HLA region, underlining autoimmunity as a central player. The associations within the HLA
region remain the strongest genetic risk factors. Furthermore, the ~100 loci associated with MS
org February 2022 | Volume 13 | Article 8407531
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susceptibility outside HLA, almost entirely exist of genes
encoding immune regulating proteins, further underlining that
interplay (5).

Environmental Risk Factors
Several environmental risk factors have been identified over the
years. These include high latitude, Vitamin D deficiency and
smoking. High latitude and Vitamin D deficiency are
complicated to separate as discrete risk factors. Studies of
migrants between low and high prevalence areas suggest the
MS risk is affected by such migration (moving to a lower risk area
reduces risk and vice versa), indicating the latitude effect may
have more to do with sun light exposure than ethnicity (6).
Vitamin D is known to regulate T-cells (7), which could explain
the mechanics of the effect.

Tobacco smoking is associated with a plethora of disease
risks, including inflammatory diseases. MS susceptibility
increases in a dose dependent fashion by smoking.
Interestingly, a gene-environment interaction seems to occur
such that smoking combined with certain HLA genotypes
renders larger cumulative risk than the additive risk of both
factors by themselves (8).

Herpes Viruses as Risk Factors
Human herpesvirus (HHV)-6A joins a group of herpesviruses
suspected of modulating MS susceptibility and progression, most
notably Epstein Barr Virus (EBV) and Cytomegalovirus (CMV)
(9). HHV-6 (10) belongs to the b-herpesvirus subfamily of
Herpesviridae that can establish lifelong latent infections in the
host. HHV-6 isolates are classified as two distinct virus species,
HHV-6A and 6B (11). Given their high degree homology it has
been difficult to separate the viruses serologically. Therefore, in
this review, HHV-6 will be used where no distinction has been
made. Their genomes are constituted by double stranded DNA
and contains hundreds of open reading frames (12). CD46 is a
common cellular receptor (13) and CD134 for HHV-6B (14). T
cell lines are commonly used for HHV-6 propagation. At one
year of age, most individuals have acquired HHV-6 (15, 16).
HHV-6A seems the predominant variant in sub-Saharan Africa
(17), and HHV-6B in Europe, Japan and USA (18–20). Whereas
HHV-6B is the causative agent of exanthema subitum (21), no
disease has been clearly linked to HHV-6A but multiple sclerosis
(MS) is a candidate (22, 23).

EBV-infection has long been suspected to increase MS risk
(24) and EBV transformed B cells and formation of ectopic
germinal centers have been seen in MS brains (25). Hence, EBV
may be a driver of inflammation and autoimmunity after a
primary injury in the CNS. EBV infection is typically
asymptomatic during childhood, but generally leads to
infectious mononucleosis (IM) in adolescents or adults. The
chance (or risk) of avoiding childhood infection is greatest in
countries with a high living standard; hence the epidemiological
map of IM (implying a person was not exposed to EBV during
childhood) correlates with MS prevalence. Furthermore, the risk
of several autoimmune diseases (including MS) in developed
countries has steadily increased over the last decades whereas the
risk for infections has declined. One possible explanation is the
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“hygiene hypothesis” which proposes that lack of exposure to
common pathogens causes increased risk of allergy and
autoimmunity. This would explain the link between MS and
IM without necessarily providing a direct link between the
two (26).

In contrast to EBV, CMV seropositivity protect against MS.
As for EBV and HHV-6A (and indeed all herpesviruses), CMV
can go into latency after infection. Why CMV seropositivity
diverges from EBV and HHV-6A in terms of risk effect is not
understood. However, albeit asymptomatic in most infected
hosts, CMV occupies large proportions of the adaptive
immune system’s cellular antigen specificity (27). It has been
speculated that competition between herpes viruses can
modulate the immune system’s adaptation, i.e. latent CMV
infection could affect the response to subsequent EBV or
HHV-6A infection.
IN VITRO DIAGNOSIS OF HHV-6A
OR 6B INFECTION

For in vitro diagnostics correct sample materials and accurate
methods for analyses are vital to achieve adequate data for
reasonable interpretations. The best indication of active
infection is isolation of the virus by inoculating susceptible
cells with the biological specimen. Active infection is indicated
when cells show signs of infection and/or supported viral
replication. However, HHV-6 isolation is very challenging.
Alternative approaches include screening plasma for cell free
HHV-6A DNA by PCR. Plasma should be used (28) as latent
infection may occur in blood cells. However, viral DNA in
plasma may origin from latently infected and dying cells, and
not necessarily from cell free virions (29, 30). Also, HHV-6 is
chromosomally integrated (ciHHV-6) in roughly 1% of the
population where all cells in the body contains viral DNA and
viral DNA loads are typically high (31). Hence, ciHHV-6
infections may be mistaken for active infections. Also, active
HHV-6 infection is highly transient and cell free viral DNA
rarely detectable (32), possibly because HHV-6 spreads largely
via cell-to-cell contact (33, 34). Therefore, reverse transcription
(RT) PCR of HHV-6 mRNAs is more specific. Transcripts of the
late genes U31 and U39 were found in 91-96% of samples from
children with acute exanthema subitum (caused by HHV-6B),
and in non during in the convalescent phase (35). Given that
HHV-6A and HHV-6B are distinct species the PCR approach of
choice should be able to discriminate between the two viruses
(36). Antiviral IgM (37) represent an alternative measure that
offers larger time windows. In primary HHV-6B infection virus
specific IgM were detected five to seven days after onset of
exanthema subitum and lasted for up to two months (38).
However, IgM production requires a relatively strong
inflammatory response and is not always detectable upon
HHV-6 reactivation (39).

Following the natural course of a viral infection and
inflammation, the antibody repertoire switches to IgG classes.
Children seroconvert upon primary HHV-6 exposure (40), and
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as most people over two years old has been exposed discrete data
on seroprevalence is not very informative. Instead, assessing
titers of antiviral antibodies give a hint on how strong a primary
infection has been; or how strongly and/or frequently the virus
has reactivated. This is seen for infection with Varicella-Zoster
virus (VZV) where the antiviral IgG titers increase during the
convalescent phase. For CMV reactivation is associated with
increased anti-CMV IgG titers (41). Therefore, the antiviral IgG
titer seems to reflect the number and/or magnitude of
reactivations and serve as a robust proxy indication of HHV-6
infection history.
HHV-6 IN MS

HHV-6 in MS Brains and Increased
Infection Rates During Relapse
HHV-6 has been associated to MS in numerous reports. A
selection of these findings includes increased prevalence of
HHV-6 DNA (42), mRNA (43) and protein expression (43–
45) in MS plaques compared to in normal appearing white
matter. A role for HHV-6 on MS pathogenesis in the brain is
supported by increased frequencies and titers of anti-HHV-6 IgG
(46, 47) and IgM (48) in cerebrospinal fluids of MS patients
compared to controls; and oligoclonal band specificity against
HHV-6 (49, 50). In the periphery HHV-6 mRNA and DNA is
more frequent in peripheral blood mononuclear cells and serum
from MS patients than in controls (51). Even though most
studies show a positive association between HHV-6 and MS
several conflicting reports exists where no association could be
shown. A meta-analysis on the literature published between 1966
and 2009 (52) showed that 60% of the top ranked studies
regarding study design, according to pre-determined criteria
(53), showed significant differences between MS patients and
controls in terms of HHV-6 mRNA, DNA or antibody titers.
Active HHV-6 infection is significantly more frequent in MS
patients during relapse than during remission (32, 54, 55) and
increased titers of serum IgG antibodies against HHV-6
positively associate with relapse risk (56). It is tempting to
conclude that these findings support an increased frequency of
HHV-6 reactivation as a mechanism of disease activity.
However, it is possible that they rather reflect a locally
increased general immune activity in the CNS during relapses
and that this sets of reactivation of latent viral infections, such as
HHV-6, as CNS is a site of latency for HHV-6 from where the
virus may reactivate (57).

Role for HHV-6 in MS Onset, and
HHV-6A Predomination
Several findings indicate that HHV-6 play a role in MS disease
onset and that HHV-6A is predominant over HHV-6B. Serum
IgM are detectable in the early events of an infection and
increased frequency of anti-HHV-6 IgM have been detected in
early stages of MS (58, 59). Marmosets challenged with HHV-6A
but not those challenged with HHV-6B gave clinical MS like
symptoms and lesions seen by MRI (60). This suggests a role for
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HHV-6 in disease onset and/or periods of active MS disease and
that HHV-6A is predominant over HHV-6B. In humans, this is
further supported by that HHV-6A is more neurotropic than
HHV-6B and increased cellular immune response against HHV-
6A, but not against HHV-6B, has been reported in MS patients
compared to controls (22), and increased frequencies of HHV-
6A and 6B coinfection in MS patients compared to controls (36).
Also, MS serum exhibit increased seroreactivity against HHV-6A
compared to HHV-6B infected cells (47) and increased detection
of HHV-6A DNA in MS serum and cerebrospinal fluids
compared to HHV-6B (61) has been reported.

In our lab we investigated this further in a large clinical
material with well characterized MS patients (n=8,742) and
closely matched controls (n=7,215) (23) and found that in MS
patients the antibody response against HHV-6A was increased
(OR=1.55; p=9*10-22) and decreased against HHV-6B (OR=0.74;
p=6*10-11), compared to controls. This effect was even more
pronounced in samples drawn from MS patients prior to
diagnosis, in median 8.3 years (n=478) and closely matched
controls (n=476), where people who developed MS later in life
exhibited increased anti-HHV-6A antibody levels (OR=2.22;
p=2*10-5) compared to controls. No difference was seen for
HHV-6B. The serological measurements were performed with
a novel bead-based multiplex serology assay that can measure
antibodies against the immediate early proteins IE1A (HHV-6A)
and IE1B (HHV-6B) encoded by the open reading frame (ORF)
U90-U89, the most divergent between the viral species with 62%
homology. To conclude, in MS HHV-6 seems important in early
stages of the disease, to have a direct effect on the CNS and HHV-
6A seems more prominent than HHV-6B. Even though most
studies show a positive association the concept is still
controversial. Therefore, additional carefully performed studies
that can distinguish between HHV-6A and HHV-6B are needed.

Genetic and Environmental Risk Factors
for MS, and HHV-6A Infection
To investigate how history of infection (antiviral antibodies) for
HHV-6A and HHV-6B correlates with host genetics the
serologically characterized MS and control cohort described above
were genotyped (23). Most associated single nucleotide
polymorphisms (SNP) were found within the HLA region.
Interestingly, while 191 SNP were associated with anti-HHV-6A
antibody levels only two SNPs were associated with anti-HHV-6B
levels. To speculate, as HHV-6 is ubiquitous (15) and as HHV-6B is
more common thanHHV-6A (18–20) it is possible that HHV-6B has
coevolved with the human species to a larger extent thanHHV-6A. A
similar pattern is seen for CMV, also reaching 100% seroprevalence,
and where GWAS data could not be associated to serology (62).

For MS, the major risk HLA haplotype DRB1*15:01 (63) is
not associated with anti-HHV-6A levels (23), indicating the
serological response could not explain this previously known
risk gene. However, presence of DRB1*15:01 in combination
with absence of the protective allele HLA-A*02:01 aggravated the
MS risk in people with high anti-HHV-6A antibody levels (23).
Analogous for EBV, MS patients with DRB1*15:01 and without
A*02 had lower serum viral DNA loads compared to those
February 2022 | Volume 13 | Article 840753
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without DRB1*15:01 and with A*02 (24). Other known MS risk
factors such as smoking, low ultraviolet radiation and low
vitamin D levels all aggravated the MS risk in people with high
anti-HHV-6A antibody levels (64). Similar interaction analyses
were performed between anti-HHV-6A and anti-EBV (risk
factor) and anti-CMV (protective) antibody levels in plasma
from people who developed MS 8 years after the sampling date.
High anti-HHV-6A levels interacted with high anti-EBV levels
and aggravated the MS risk (65). When adding CMV to the
model people with high levels of anti-HHV-6A and anti-EBV
antibodies, and low levels of anti-CMV antibodies had 15 times
higher risk of developing MS later in life compared to people
with low levels of IE1A and EBV antibodies and high levels of
CMV (66).

Together these data suggests that HHV-6A represents a risk
factor by itself and that interaction with other factors suspected
of modulating MS disease further impacts the risk for developing
MS (Figure 1).

HHV-6A in MS Pathogenesis
In MS, autoreactive T cells are thought to target the myelin
sheath. Antigen presenting cells (APC) such as dendritic cells
(DC) are the primary conductors of T cell regulation. DCs
mature upon exposure of pathogen-associated molecular
patterns (PAMPs) and thereafter can activate T cells. As
PAMPs are not present in self-tissue they likely need to be
present for breakage of tolerance and autoimmunity. A model
has been proposed where APCs need a danger signal in
combination with the antigen to elicit an immune response
against the antigen (67). An example is the animal model for
MS, experimental autoimmune encephalopathy (EAE). Here, the
adjuvant provides the immune system with a danger signal to
triggering an immune response and the myelin proteins steers
the response against myelin. EAE has striking similarities with
MS with infiltration of lymphocytes in the CNS and
demyelination, as well as clinical symptoms e.g. paralysis (68).
Frontiers in Immunology | www.frontiersin.org 4
Several mechanisms for HHV-6-induced autoimmunity and
myelin breakdown have been suggested. These include molecular
mimicry and host cell incorporation in the virion. The molecular
mimicry model proposes that the virus encodes for a protein with
similar motifs to host cell proteins, and that an immune response
directed against this “virus encoded host-like protein” is cross-
reactive andalso target thehost protein that ismimicked. ForHHV-
6 andMS,molecular mimicry has been shownwith cross-reactivity
between a peptide encoded by the viral gene U24 and myelin basic
protein (MBP) (69). The host cell protein incorporation hypothesis
is based on the well-documented notion that the envelop of
enveloped viruses origin from the host cell, and therefore, that
host cell proteins are present in the viral envelop. When an APC
engulfs a virion containing host cell proteins an immune response
is triggered by the PAMPs of viral motifs and directed against
the host cell proteins contained in the virion (70). Both HHV-6A
andHHV-6B have the capacity to infect oligodendrocytes, which is
a pre-requisite. But the model suffers from studies where release
of cell free virions is not commonly seen during HHV-6 infection
of oligodendrocytes (71–73).

Both the molecular mimicry and the host cell incorporation
model relies on the idea that HHV-6 virion can trigger the T cell
stimulatory capacity of APC. However, we and others have
shown that inoculation of DC with both HHV-6A and HHV-
6B instead hamper the capacity of DC to activate T cells, both in
absence and presence of viral replication, and for both allogenic
and autologous T cells (74–79). Hence, HHV-6 induced
pathogenesis in MS does not seem to occur through neither of
these models.

HHV-6 induces syncytia but also gives semi-lytic infection
with dying cells and cell debris. DC exposure to HHV-6A result
in cell death and release of high mobility group box 1 (HMGB1)
protein (80). This may occur also in the CNS as HHV-6A can
induce vigorous apoptosis of a human oligodendrocytes (81).
HMGB1 can activate DC in the autoimmune disease systemic
lupus erythematosus (82). In MS, HMGB1 has been proposed as
an important driver (83) with HMGB1 expression in MS lesions
(84) and elevated serum levels of HMGB1 in treatment naïve MS
patients, compared to those receiving disease-modifying
treatment (85).

Hence, we propose a model for HHV-6A induced
pathogenesis where HHV-6A infection and/or reactivation (86)
in the CNS gives a primary injury. This in turn gives
inflammatory events, possibly driven by HMGB1, with
upregulation of metalloproteinase and influx of leukocytes
from the periphery which can cause pathological inflammation
and subsequent plaque formation. The inflammation is
aggravated by EBV infection and tobacco smoking; and
hampered if the immune system is occupied by CMV and/or
regulated when vitamin D levels are sufficient.
CONCLUSIONS

Together, the studies compiled in this review suggest a role for
HHV-6A in MS, particularly early in the disease course and/or at
MS onset. This is based on findings of increased anti-HHV-6A
FIGURE 1 | Interaction between HHV-6A and other factors suspected of
modulating MS disease susceptibility susceptibility and progression increasing
(red circles) or decreasing (green boxes) the risk for MS development.
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antibody levels in people who developed MS later in life,
compared to people who do not. HHV-6A infection interacts
with other risk factors such as carriage of HLA-DRB1*15:01,
tobacco smoking, low UV irradiation, low vitamin D levels and
EBV infection; and with protective factors such carriage of the
protective haplotype HLA-A*02:01 and CMV infection. This
shows the multifactorial nature of MS and suggests that
accumulated burden of risk factors increases the risk for
acquiring the disease. We propose a pathophysiological role for
HHV-6A in induction of MS where an infection of the CNS leads
Frontiers in Immunology | www.frontiersin.org 5
to a primary injury and that this in turn leads to inflammatory
events and autoimmunity.
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