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ABSTRACT Matrices representing genetic relatedness among individuals (i.e., Genomic Relationship Ma-
trices, GRMs) play a central role in genetic analysis. The eigen-decomposition of GRMs (or its alternative
that generates fewer top singular values using genotype matrices) is a necessary step for many analyses
including estimation of SNP-heritability, Principal Component Analysis (PCA), and genomic prediction.
However, the GRMs and genotype matrices provided by modern biobanks are too large to be stored
in active memory. To accommodate the current and future “bigger-data”, we develop a disk-based tool,
Out-of-Core Matrices Analyzer (OCMA), using state-of-the-art computational techniques that can nimbly
perform eigen and Singular Value Decomposition (SVD) analyses. By integrating memory mapping (mmap)
and the latest matrix factorization libraries, our tool is fast and memory-efficient. To demonstrate the
impressive performance of OCMA, we test it on a personal computer. For full eigen-decomposition, it
solves an ordinary GRM (N = 10,000) in 55 sec. For SVD, a commonly used faster alternative of full
eigen-decomposition in genomic analyses, OCMA solves the top 200 singular values (SVs) in half an hour,
top 2,000 SVs in 0.95 hr, and all 5,000 SVs in 1.77 hr based on a very large genotype matrix (N = 1,000,000,
M = 5,000) on the same personal computer. OCMA also supports multi-threading when running in a
desktop or HPC cluster. Our OCMA tool can thus alleviate the computing bottleneck of classical analyses
on large genomic matrices, and make it possible to scale up current and emerging analytical methods to big
genomics data using lightweight computing resources.
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Supported by recent advancements of high-throughput sequencing
technology, several organizations have developed very large biobanks
comprisingDNAsequence linked tophenotypic anddemographic data,

e.g., Genomics England The 100,000 Genomes Project (Peplow 2016).
Some of these resources have been shared to worldwide scientists and
practitioners (Collins 2012). This abundance of data brings unprece-
dented opportunities to develop a broad range of applications in pre-
cision medicine such as predicting drug response and disease risk for
new patients. The same trend is evident in agriculture, especially with
the recent trend of “high-throughput phenotyping” that generates high
dimensional phenotypes. However, on the way to enacting this vision, a
pressing roadblock is that the datasets are typically too large to be
analyzed in the main memory of many existing computing infrastruc-
ture, including some High-Performance Computing (HPC) clusters or
Cloud computing. As such, effective use of these biobanks is being
relegated to the use of HPCs or computing nodes equipped with huge
amount of memory (at the level of terabytes). To pave the path to the
routine use of precision genomics in all clinics in the near future, it is
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preferable to carry out most statistical inferences of large genomic
matrices involving hundreds of thousands individuals on personal
computers, HPC or Cloud computing nodes of limited memory within
tens of GB.

Previously, we have developed JAWAmix5, a hard disk-based so-
lution to largedataproblems toallow forquickanalyses of biobank-sized
genotype data on computers with limited memory (Long et al. 2013).
JAWAmix5 offers scalable functions for genotype-phenotype associa-
tion mappings by storing the genotype data in disk using HDF5-based
data structure. However, the continued growth of biobanks has given
rise to new challenges that require further development and exten-
sion of these memory-efficient approaches. Now, in addition to large
amounts of genomic data, the matrix that represents pair-wise genetic
similarities between all the participants in a cohort of a biobank (the
Genetic Relationship Matrix, or GRM) may require tens of billions of
entries, becoming as sizable as the genotype data itself. These GRMs
often play central roles in genomic analyses (Speed and Balding 2015;
Kim et al. 2017). In particular, the eigen-decomposition of GRMs is the
most time-consuming step that is required in many routine analyses
such as Principal Component Analysis (PCA), a default model for
high-dimensional data visualization (Ringnér 2008) and gene expres-
sion analyses (Stegle et al. 2012); estimation of genomic-heritability
using seemingly unrelated subjects (Yang et al. 2011; de los Campos
et al. 2015), a first step to understand the genetic architecture of a trait;
linear mixed models (LMM) (Kang et al. 2010), a popular approach
in genotype-phenotype association mapping; Genomic Best Linear
Unbiased Predictors (Clark and van der Werf 2013), and phenotype
predictions (de los Campos et al. 2013; Pérez and de los Campos 2014).
Although some of the methods such as SNP-BLUP can avoid explicitly
factorizing a GRM (Koivula et al. 2012), factorizing a matrix is still a
main technique needed by most analytic models.

The frequently used matrix-factorization as an alternative to eigen-
decomposition is the Singular Value Decomposition (SVD) of a
rectangular matrix (e.g., a genotype matrix) which avoids heavy com-
putations but approximately achieves similar precision. For instance,
in the setting of a LMM, David Heckerman’s group has developed a
method that selects only a subset of genomic variants to form a ge-
notype low-rank matrix that can be solved faster and lead to fewer
false positives (Lippert et al. 2011; Listgarten et al. 2012; 2013). Many
tools have soon adopted this approach as an alternative of solving
eigen-decomposition of a full GRM.

Additionally, many emerging novel analytical procedures, such as a
recent proposal for correcting the confounding effects of cell-type
compositions (Rahmani et al. 2016) in epigenome-wide association
studies and the correction of confounding effects in the analysis of
single-cell RNA-Seq data (Buettner et al. 2015), need factorization of
large matrices.

Researchers have also resorted to approximations to evade the
computational burden of calculating very large matrices. For PCA
analyses, Alkes Price’s group developed an approximate algorithm us-
ing only the top few PCAs (Galinsky et al. 2016). For calculating the
inverse of a GRM of many related animals, one may start with “Core
Animals” to approximately solve the whole matrix (Masuda et al.
2016). In the R statistical programming language community, chunk-
ing algorithms andmemory-mapping techniques are utilized to reduce
the memory use for simple functions such as reading data and con-
ducting linear regression (e.g., The Bigmemory Project, http://www.
bigmemory.org). Parallelization strategies using “split-apply-combine”
have also been implemented such as in the BGData suite of packages
(de los Campos and Grueneberg 2017). There are many efforts using
Graphics Processing Units (GPUs) to speed up computations, for

instance BLASX (Wang et al. 2016) for numerical computations. Ad-
ditionally, some researchers used distributedmemory to solve the prob-
lem of limited memory on a single server, such as Elemental (Poulson
et al. 2013). Although these approaches address individual problems on
a case-by-case basis, researchers need universal and exact solutions for
eigen-decomposition as well as singular value decomposition of very
large GRMs and genotype matrices for various existing and future
applications.

The above applications are evidences that the eigen-decomposition
(and its alternative, SVD) in genomic studies is indeed the first-line
characterization of the relationship between participating individuals
andthe solution implementing theseonubiquitouslyavailablecomputer
hardware is needed. In this work, we present a novel tool, OCMA, to
factorize very large matrices using disk-based solutions. This tool, in
conjunction with the other tools developed by us (Long et al. 2013) and
others, will allow researcher to carry out association mapping and
phenotype predictions nimbly using limited computational resources.

In computer science, “mmap” (Figure 1) is a function (or, precisely,
a “system-call”) that maps files or devices intomemory (precisely, maps
to the virtual address space of a computing process). “mmap” was
originally designed as part of Berkeley Software Distribution version
of Unix (McKusick et al. 2014) and is now universally supported by all
major operating systems (i.e., Mac OS, Windows and Linux). This
function efficiently handles data exchange between memory and disk,
allowing program developers to carry out computational tasks as
though the data in the disk were in memory without taking care of
implementation details such as allocating memory, looking up ad-
dresses, reading data, writing used data, and de-allocating the memory
again when it is no longer needed (Song et al. 2016). As a result, it
appears that the calculations happen “out of the memory”, a technique
called “out-of-core” in computer science. Mmap has been extensively
used in many computing fields such as high-performance computing
(Van Essen et al. 2013; Song et al. 2016), graph computation (Lin et al.
2014), system virtual machine (Wang et al. 2015), and databases (Lou
and Ludewigt 2015). Mmap has also been used in bioinformatics in
recent years, including the indexing of next-generating sequencing
reads (Salavert et al. 2016) and tree-based backward search (Salavert
et al. 2015).

METHODS
The Intel Math Kernel Library (Wang et al. 2014) is a collection of
optimized functions that represent the state-of-the-art for numerical
computation. Using the core algorithm supplied by the Intel MKL
and the memory-disk mapping enabled by mmap, here, we develop a
tool called Out-of-Core Matrices Analyzer (OCMA) that solves eigen-
decomposition of GRMs and SVD in the disk (i.e., out-of-core).

In order to integrate Intel MKL with mmap, we have thoroughly
assessedvariousoptionsof implementation tooptimize theperformance
of OCMA. In the current version, OCMA adopts the ILP64 library that
needs the supportof 64-bitmachines toaccommodatevery large indexes
of matrices.We have selected the “ssyevd” subroutine that computes all
eigenvalues and, optionally, all eigenvectors of a real symmetric matrix,
using divide and conquer algorithm. We have re-engineered the in-
terface of “ssyevd” so that the largematrices used in it can be disk-based
using mmap (Supplementary Note I). Similarly, we have identified
“sgesdd” that computes the SVD of a general rectangular matrix using
a divide and conquer method. Additionally, to meet many applications
that one only needs a small number of singular values and eigenvectors,
we have also implemented a function that calculates the top k singular-
values (k,min (N,M) whereN andM are the dimensions of a matrix,
typically standing for the number of individuals and the number of

14 | Z. Xiong et al.

http://www.bigmemory.org
http://www.bigmemory.org


genetic markers in a genotype matrix). This function is supported by
the “sgesvdx” in Intel MKL. These subroutines require more workspace
but are faster in some cases, especially for large matrices. Intel MKL
provides a two-level C interface to LAPACK, consisting of a high-level
interface and a middle-level interface. The high-level interface handles
all workspace memory allocation internally, while the middle-level in-
terface requires the user to provide workspace arrays as in the original
FORTRAN interface. To facilitatemmap-based solutions, we have used
the middle-level interface that is similar to its original FORTRAN in-
terface. The details of the implementation are presented in Supplemen-
tary Note I.

OCMA supports parallel computing. By default, OCMA will auto-
matically decide how many threads to use based on the available
hardware. (In our tests to be presented in Results, the OCMA process
uses four threads, which is based on the hardware of the desktop
computer we use.) Additionally, the users can also utilize environment
variable (MKL_NUM_THREADS) to specify the number of threads
(OCMA Users’ Manual).

Data Availability
Weused theUKBiobankdata that is available throughapplication to the
data generator (https://www.ukbiobank.ac.uk). Supplemental material
available at Figshare: https://doi.org/10.25387/g3.7384973.

RESULTS
OCMA provides two main functions: eigen-decomposition for square
symmetric matrices (e.g., GRMs) and singular value decomposition
(SVD) for rectangular matrices (e.g., genotype matrices). The users
can also select to calculate a subset of top singular values/vectors.
The input files can be prepared using plain text or the mainstream
binary format (detailed in the Users Manual). OCMA also supports
the format transformation between text and binary files. The output
files will be the eigenvalues/vectors (or singular values/vectors) in the
same format as the input. All three operating systems (Linux, Mac OS,
and Windows) are fully supported.

An example command using OCMA may be:
$. ocma eigen single disk n A E Q

where ‘ocma’ is the name of the executable; ‘eigen’ stands for eigen-
decomposition (alternatively one may use ‘singular’ for SVD); ‘single’
stands for single-precision (alternatively one may use ‘double’ for dou-
ble precision); ‘disk’ specifies the function that uses disk-based solution
(alternatively one may use ‘memory’ for smaller matrices); ‘n’ is the
dimension of thematrix; ‘A’ is the filename of the inputmatrix; ‘E’ is the
filename of the output file that stores the eigenvalues of matrix A; and

n Table 1 The algorithm of OCMA calculates the right outcome. Eigenvectors (or singular vectors) are compared using Infinite norm�
k�kN ¼ max

��x1��;:::; ��xn��n o�
, Taxicab norm

�
k�k1 ¼

Pn
i¼1

jxij
�
, and Euclidean norm

 
k�k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi2

s !
. We use locma and Socma to denote the

vectors calculated by OCMA and lmatlab and Smatlab to denote the vectors calculated by MATLAB (version 2012b). The comparison for eigen-
decomposition is presented in the upper table, and the comparison for singular-value decomposition is presented in the lower one. In
the upper table, N denotes the number of individuals. In lower table, N = 1,000,000, and M denotes the number of genetic markers. The
configuration of the personal computer: Intel Core i7-6700 CPU (4 cores), Memory = 24GB. Disk = Samsung SSD 850 EVO 250GB. The
operating system is Windows 7. Time is measured by wall-clock (instead of CPU time)

N
klocma 2lmatlabk=klmatlabk Computation time (s)

k�kN k�k1 k�k2 OCMA MATLAB

1000 5.2�1027 7.6�1028 1.1�1027 0.1 0.4
2000 2.8�1027 8.1�1028 1.0�1027 0.5 2.8
5000 4.3�1027 2.1�1027 2.4�1027 6.4 35.5
10000 1.6�1026 5.7�1027 6.3�1027 46.2 294.0
20000 3.3�1026 4.4�1026 4.3�1026 246.4 2905.1

M
ksocma 2 smatlabk=ksmatlabk Computation time (s)

k�kN k�k1 k�k2 OCMA MATLAB

100 2.9�1025 1.2�1024 8.9�1025 10.2 12.3
200 2.1�1025 9.2�1025 6.6�1025 14.8 29.6
500 1.9�1025 7.7�1025 5.6�1025 47.5 90.4
1000 1.6�1025 1.3�1024 8.5�1025 89.5 206.4
2000 1.2�1025 1.1�1024 7.1�1025 226.1 726.9

Figure 1 Illustrating schema of mmap. The horizontal bar represents
the physical address in the disk and the vertical bar represents the
virtual address from the perspective of a computing process in the
memory.
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‘Q’ is the filename of the output file that stores the eigenvectors of
matrix A.

Wefirst compared the results of aneigenvaluedecomposition andan
SVD computed using OCMA with the same factorization carried out
usingMATLAB functions “eig” and “svd” (version 2012b) (Table 1). As
expected, the outcome of OCMA and MATLAB is highly consistent as
quantified by the three standard distances (that is called norm) used in
numerical computing (Table 1). Additionally, these initial comparisons
also show that, for relatively small matrices that MATLAB can handle,
OCMA is 4 – 11 times faster than MATLAB for the computation of
eigen-decomposition and around 2 – 3 times faster than MATLAB for
the SVD (Table 1).

To assess memory usage and computational time for analyses
involving genomic big-data we used GRM describing additive genetic
relationships among 100,000 distantly related (GRM between pairs
of individuals smaller than 0.03) from the interim release of the
UK-Biobank. This GRM was computed using 589,028 SNP genotypes
from the Affymetrix UK BiLEVE Axiom and Affymetrix UK Biobank
Axiom arrays (Collins 2012). The GRM was computed using the
BGData R-package (de los Campos and Grueneberg 2017). Further
details about the criteria used for subject and SNP inclusion can be
found in (Kim et al. 2017) and the procedure to compute GRM is in
Supplementary Note III.

When theGRMis small enough tobe fully loaded inmemory,we can
directly compare the disk-based solution to the memory-based one
(Table 2,N = 10,000 to 50,000). Inmost cases, the overhead incurred by
disk-memory mapping only causes a modest slow-down in the disk-
based solution compared to the memory-based one. Notably, taking
advantage of the efficient implementation offered by Intel MKL,
OCMA can decompose a regular matrix of N = 10,000 in less than
a minute. More importantly, OCMA rapidly solves much larger GRMs
that are impossible to load inmemory (Table 2,N = 60,000 to 100,000).
In particular, it solves a GRM of 100,000·100,000 in only 5 days in our
personal computer that has only a memory of 24GB (Supplementary
Table S4).

Although the core innovation here is that OCMA can handle very
large arrays in disk without the needs of large memory, OCMA’s mem-
ory-based algorithm by-itself is at least up-to-date with, if not faster
than, state-of-the-art GRManalysis tools. Two of themost notable tools

using GRM for associationmapping and heritability analysis are GCTA
(Yang et al. 2011) and EMMAX (Kang et al. 2010). EMMAX is not
actively maintained and is orders of magnitude slower than OCMA.
The most recent release of GCTA (1.9x.beta) is much faster and less
resource intensive than its previous versions, but doesn’t provide a
single function for only solving eigen-decomposition for the purpose
of a comparison. However, the GREML (genomic-relatedness-based
restricted maximum-likelihood) function that involves matrix inverse
is a frequently used function estimating heritability etc. in genetic anal-
yses, which provides a benchmark for comparison, albeit indirect.
While the runtime and memory usage of GREML are higher than
the use of matrix-factorization alone, we have derived formulas to
use these results to estimate the actual use of resources (detailed and
justified in the Supplementary Note II) in matrix-factorization.
These estimates (Table 1, N = 10,000 to 50,000) show that OCMA
is more efficient than GCTA when the memory is sufficient for
GCTA to perform.

The abovecomparisons arebasedon theLinuxversionofOCMA.As
mmap is a call at the level of operating system, the implementations of
OCMA are quite different under different platforms. We have imple-
mented theMacOS andWindows version of OCMA. The performance
of OCMA in the Windows system is presented in Table 3. The perfor-
mance onMac OS is similar to that on Linux. This is to be expected due
to their shared Unix kernel. The performance on Windows is even
faster than the Linux version, presumably due to the extra optimization
by the operating system.

The performance of OCMA calculating SVDs (using the options
“single” and “singular”) for very large genotype matrices (1 million
simulated individuals times thousands of markers) is presented in
Table 4. Evidently, the calculation of SVD is much faster and even
less memory-intensive. Further, the performance of OCMA calcu-
lating a subset of SVs is displayed in Table 5. The runtime of cal-
culating a small subset of SVs is not significantly faster than
calculating all the SVs. This is because, for SVD computations, a
significant proportion of runtime is spent on calculating the product
of the matrix and its transpose (i.e., A’ · A, where A is the N · M
matrix). As this is a necessary step in the “sgesvdx” function of Intel
MKL, calculating a subset of SVDs doesn’t save much time in this
implementation.

n Table 2 Runtime and memory consumption of OCMA in a Linux personal computer for eigen decomposition. The same hardware in
Table 1 is used. Operating system is CentOS Linux release 7.3.1611. Four threads are used for the test. The three columns in the
“Calculation time” stand for the runtime for three tools: GCTA (Yang et al. 2011), OCMA using memory only, and OCMA using disk
(based on mmap technique). The careful interpretation of the comparison between GCTA and OCMA is explained in the main text and
Supplementary Notes II. �The usage is slightly larger than the physical memory because of the swapping by the operating system. ��GCTA
was tested in an HPC cluster when the memory of a personal computer is insufficient. Time is measured by wall-clock (instead of CPU time).
Memory consumption is estimated using the formula on the GCTA website and the Intel MKL specification (detailed in the Supplementary
Notes). The sign “/” indicates that the system does not allow the calculation to happen due to limited memory and swap spaces or it
exceeds the maximal runtime in the HPC

N

Computation time Memory usage

GCTA (GREML) OCMA (Memory) OCMA (Disk) GCTA OCMA (Memory)

10000 286.0 s 41.6 s 55.0 s 1.6 GB 1.1 GB
20000 2988 s 214.5 s 231.8 s 6.4 GB 4.5 GB
30000 14760 s 690.1 s 889.0 s 14.4 GB 10.1 GB
40000 8.4 h 0.44 h 1.13 h 25.6 GB 17.9 GB
50000 14.2 h 0.94 h 4.20 h 40.0 GB�� 27.9 GB�

60000 27.3 h / 8.61 h 57.6 GB�� /
70000 50.3 h / 14.85 h / /
80000 91.3 h / 40.90 h / /
90000 / / 84.89 h / /
100000 / / 127.91 h / /
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In addition to laptop/desktop-based data analyses, OCMA also
supports HPC-based parallel computations that use many threads.
We have tested OCMA on an HPC server and the results are presented
in Table 6. As a comparison of the effectiveness of parallelization, we
also have tested OpenBLAS, an optimized BLAS library using multi-
thread. The same method, “ssyevd” in OpenBLAS is used for this test.
Evidently, the parallelization in Intel MKL, which is adopted by
OCMA, is more effective than the OpenBLAS alternative (Table 6).

As mmap involves complicated disk-memory data exchange, the
memoryusageofOCMAinpractice is adynamic functiondependingon
the system status.However, based on the specification of IntelMKL and
our implementation, we can provide a static analysis of thememory and
diskusage.Quantitative analyses of thememory anddiskusage ofmmap
are discussed and presented in Supplementary Tables 1-3. Intuitively
there is an additional overhead incurred in the operating system, as the
CPU must wait for data exchange between memory and disk. Under
the desktop with Windows system, we monitored the CPU usage dur-
ing the test and find this effect does exist but falls in a reasonable
range. Supplementary Figures 1 and 2 show this effect for Eigen-
decomposition and SVD respectively.

Software Availability
The source code and executable are freely available at GitHub: https://
github.com/precisionomics/OCMA. The repository provides OCMA
for Windows (ocma-0.1.zip) and Linux/Unix systems (ocma-0.1.tar.
gz). Upon decompression, one will see two folders: src and bin. The
folder src contains all the source code, and the folder bin contains the
compiled binary executable. Under the folder bin, two small matrices,
SM10 and M3_4 for testing purpose are also provided.

The users can also build their own binary executable. The program
is written in the C language, and it uses Intel MKL. Thus, in order
to compile the source code, one needs to install C compiler, e.g., the Intel
C/C++ Compilers, the GNU C Compiler or Visual Studio C Compiler.
Additionally, one needs to install Intel MKL. When C compiler and
Intel MKL are available in the system, one can enter the src folder and
modify the makefile based on the C compiler and the Intel MKL paths;
then type make or nmake to compile. After that, the ocma executable
will be generated in the bin folder.

DISCUSSION
OCMAallows researchers to factorize symmetric andnon-symmetric of
very large real-valuedmatrices, includingGRMs, genotypematrices and

any other real-valued matrices. Thus, OCMA enables many Big-Data
applications that use distance and similarity matrices that do not use
GRMs. Furthermore, the recent trend of analyzing multiple traits
together in association mapping (Korte et al. 2012; Casale et al. 2015)
and genomic selection (Tsuruta et al. 2011; Jia and Jannink 2012; Chen
et al. 2016; 2017) involves matrices yet larger. The OCMA algorithm
will be helpful in solving such larger matrices. Moreover, the study of
Gene-Environment Interaction (GxE) in both health and agriculture
also involves large matrices (Montesinos-López et al. 2016; Moore et al.
2018), which can be solved nimbly by OCMA.

As one may figure out from Figure S1, from the perspective of CPU
usage, the swap within the operating system outperforms mmap for a
matrix that is a littlebit larger than thephysicalmemory, especially in the
caseof calculating SVD.Thismight be because of the fact that the swap is
supportedby continuous anddedicateddisk spacesdesigned tomeet the
specific requirements ofmemory virtualization. In contrast, mmap uses
generalfile systemthatusuallydoesnotprovide continuous space. So the
mmap may consume more time than swap when the space for swap is
sufficient. However, swap cannot meet the requirements of analyzing
very largefiles. This is because (1) the performance of swapheavily relies
on the setting of the operating systemandhowmanyother processes are
sharing it; (2) swaprequires administrators toset theparameterswhich is
not available for the end users of an HPC; and (3) swap cannot be very
large as it requires continuous and dedicated spaces in the disk. In
contrast, mmap offers a scalable and flexible file mapping between the
memory and the general file system, which does not suffer from the
above limitations, therefore can be applied to very large files.

A trade-off in the design of OCMA is how to strike a good balance
between space/speed and the nature of its memory visit. For instance,
based on the Intel MKL website, it is recommended to use “ssyevr” for
eigenvalue problems because “its underlying algorithm is fast and uses
less workspace”. We have tested the function “ssyevr” against “ssyevd”
(the function we adopted), and indeed we find that “ssyevr” uses
around 65% memory that is required by “ssyevd”. However, “ssyevr”
is slower when solving large matrices sized at the level of tens of thou-
sands. In case of a very large matrix for which mmap is needed, the
performance of “ssyevr” decreased dramatically. For instance, for a
GRM of 80,000 that “ssyevd” can solve in 18.31 hr using a desktop
with 24GBmemory and 4 threads, “ssyevr” cannot be finished in 5 days.
We expect this is because of the pattern of memory visit of “ssyevr”,
which requires intensive workspace visits that needsmore frequent data
exchange between memory and disk. So although “ssyevr” needs less
workspace (in terms of either memory or disk), its more frequent

n Table 3 Comparison of the runtime of OCMA under the Windows
and Linux operating systems for eigen decomposition. The same
machine described in the Table 1 and 2 was used. Four threads
are used in the test. Time is measured by wall-clock (instead of
CPU time). The sign “/” indicates that the system does not allow
the calculation to happen due to limited memory and swap spaces

N

Windows Linux

Memory Disk Memory Disk

10000 46.2 s 46.2 s 41.6 s 55.0 s
20000 246.4 s 252.6 s 214.5 s 231.8 s
30000 760.7 s 775.3 s 690.1 s 889.0 s
40000 0.50 h 0.51 h 0.44 h 1.13 h
50000 1.02 h 1.05 h 0.94 h 4.20 h
60000 1.96 h 2.25 h / 8.61 h
70000 / 3.43 h / 14.85 h
80000 / 18.31 h / 40.90 h
90000 / 52.53 h / 84.89 h
100000 / 132.91 h / 127.91 h

n Table 4 Runtime of OCMA for Singular Value Decomposition
(SVD). Sample size N = 1 million. M is the number of selected
genetic markers. The same machine described in the Tables 1
and 2 is used. Four threads are used in the test. Time is
measured by wall-clock (instead of CPU time). The sign “/”
indicates that the system does not allow the calculation to
happen due to limited memory and swap spaces

M

Windows Linux

Memory Disk Memory Disk

1000 89.5 s 102.5 s 93.6 s 309.9 s
2000 226.1 s 230.9 s 208.0 s 3564 s
3000 450.8 s 523.4 s 391.8 s 11232 s
4000 0.41 h 0.42 h / 4.94 h
5000 1.50 h 1.77 h / 6.58 h
6000 3.21 h 3.38 h / 9.94 h
7000 / 8.95 h / 16.09 h
8000 / 16.40 h / 21.16 h
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workspace visits leads to very poor performance in the context of an
out-of-core implementation.

As an immediate future development, we plan to implement more
factorization functions such as QR decomposition and Cholesky de-
composition. Moreover, we will integrate OCMA with various tools
especially the ones we have developed and maintained for years.
For instance we will integrate OCMA with BGLR, a tool that we have
developed for phenotype predictions using genomics data (de los
Campos et al. 2013; Pérez and de los Campos 2014).

The initial release ofOCMA is basedonC language that is the default
for mmap. We will develop APIs (Application Programming Inter-
faces) for R, Java and Python to accommodate broader communities.
The extremely fast function in Intel MKL is optimized for Intel archi-
tectures that are supporting most current personal computers in the
current market. Therefore, OCMA may be sub-optimal if running on
other machines. However, other vendors, such as AMD, provide sim-
ilar libraries. We are extending OCMA using the AMD Core Math
Library, to cover the non-dominant architectures.

Another non-trivial extensionwill be the integration of OCMAwith
our existing tool JAWAMix5, a tool that enables out-of-core association
mapping at the level of population genotype files (Long et al. 2013). The
JAWAmix5 (Long et al. 2013) package uses HDF5 (https://www.
hdfgroup.org) for accessing genotype data stored in disk. HDF5 builds
indexes of genotype data to allow fast random access to data. JAWA-
mix5 offers scalable functions for the generation of GRM and associ-
ation mappings using standard linear models as well as linear mixed
models (Long et al. 2013). However, HDF5 is not efficient for compli-
cated matrix operations because the index-based techniques are effi-
cient only if the data are in a natural order and not frequently updated.
So, JAWAmix5 loads matrices into the memory and conduct matrix
factorization in memory. This was fine at that time (2013) however
becomes increasingly a bottleneckwhen analyzing a samplewith tens of
thousands individuals. Although mmap is not as efficient as HDF5, it
does allow users use memory mapping without concerning the prop-
erties of the composition of the underlying data.

HDF5andmmapare two fundamentallydifferent techniques.HDF5
facilitates a hierarchical indexing of the data so that they can be stored in
the disk but randomly accessed by the computing processes as though
they are in the main memory. This is convenient for some data that are
naturally straightforward to index. However, if the reading and writing
of the files cannot be well predicted, the HDF5-based solution could be
very slow even if thefile size is small. In contrast,mmap, despite its lower
efficiency for well-formatted data (comparing with HDF5), offers a full
“memory virtualization.” That is, one can just use disk as if it were
memory regardless the type and organization of data, as well as how the

users are going to read and write them. The operating system will
handle which part of the data will be loaded and swapped. In statistical
genomics, the genotype data (e.g., a VCF file) meet the requirements of
HDF5 perfectly because the genomic coordinate system offers a natural
index and it is rarely updated during the statistical analyses. However,
when there are many other intermediate quantities, e.g., metrics to
assist the decomposition of a matrix, for which one needs to generate
and update frequently, the perfect choice may be mmap, which does
not rely on the order of data. HDF5 and mmap nicely complement the
advantages of each other. For the moment, based on JAWAmix5’s
functions of association mapping and calculation of GRM and
OCMA’s function of factorization of matrices, one can carry out
GWAS using our out-of-core technologies. We plan to develop more
functions for genomic predictions, e.g., GBLUP and ssGBLUP (Aguilar
et al. 2014) that have been extensively used in the fields.
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