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Abstract
The pandemic viral illness COVID-19 is especially life-threatening in the elderly and in those with any of a variety of chronic 
medical conditions. This essay explores the possibility that the heightened risk may involve activation of the “extended 
autonomic system” (EAS). Traditionally, the autonomic nervous system has been viewed as consisting of the sympathetic 
nervous system, the parasympathetic nervous system, and the enteric nervous system. Over the past century, however, neu-
roendocrine and neuroimmune systems have come to the fore, justifying expansion of the meaning of “autonomic.” Additional 
facets include the sympathetic adrenergic system, for which adrenaline is the key effector; the hypothalamic-pituitary-adren-
ocortical axis; arginine vasopressin (synonymous with anti-diuretic hormone); the renin-angiotensin-aldosterone system, 
with angiotensin II and aldosterone the main effectors; and cholinergic anti-inflammatory and sympathetic inflammasomal 
pathways. A hierarchical brain network—the “central autonomic network”—regulates these systems; embedded within it are 
components of the Chrousos/Gold “stress system.” Acute, coordinated alterations in homeostatic settings (allostasis) can be 
crucial for surviving stressors such as traumatic hemorrhage, asphyxiation, and sepsis, which throughout human evolution 
have threatened homeostasis; however, intense or long-term EAS activation may cause harm. While required for appropriate 
responses in emergencies, EAS activation in the setting of chronically decreased homeostatic efficiencies (dyshomeostasis) 
may reduce thresholds for induction of destabilizing, lethal vicious cycles. Testable hypotheses derived from these concepts 
are that biomarkers of EAS activation correlate with clinical and pathophysiologic data and predict outcome in COVID-19 
and that treatments targeting specific abnormalities identified in individual patients may be beneficial.
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Introduction

Coronavirus disease-2019 (COVID-19), the acute illness 
caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), is now pandemic, so far without effective 
treatments or vaccines. Biomedical researchers worldwide 
have shifted their focus urgently to COVID-19.

One of the major challenges posed by COVID-19 is that 
the disease is much more likely to be lethal in the elderly 
and in people with pre-existing chronic disorders such as 
diabetes, coronary artery disease, and obesity than in other 
populations. No conceptual framework has been offered to 
account for this phenomenon.

Pneumonitis and pulmonary dysfunction usually domi-
nate the clinical picture, but it is by now clear that COVID-
19 importantly involves other body organs and systems, 
including the heart, gut, kidneys, and brain. The purpose 
of this essay is to convey a perspective that can account 
for the age-relatedness of COVID-19 mortality and the 
multi-organ—and therefore multi-disciplinary—aspects of 
the disease. The thesis is that both of these aspects may 
reflect dysautonomia, broadly defined as a condition where 
changes in functioning of one or more components of the 
autonomic nervous system adversely affect health.

The presentation begins with some integrative physi-
ologic concepts—homeostasis, allostasis, dyshomeostasis, 
and stress—and introduces the notion of the “extended” 
autonomic system (EAS). The main take-home message 
is that biomarkers of EAS activation might predict out-
come in COVID-19, and treatments targeting specific EAS 
abnormalities in individual patients might be more effec-
tive than one-size-fits-all approaches.

Homeostasis

The term “homeostasis” refers to the stability of the body’s 
“inner world.” In systems biology, homeostasis is an emer-
gent phenomenon, but in integrative physiology homeo-
stasis is a goal—it is the goal [71]. Thus, Claude Bernard, 
the founding father of integrative physiology, wrote, “The 
constancy of the internal environment is the condition for 
free and independent life…All the vital mechanisms, how-
ever varied they might be, always have one purpose, that 
of maintaining the integrity of the conditions of life within 
the internal environment” [12]. And Walter B. Cannon, 
who coined the word, homeostasis, wrote, “My first article 
of belief is based on the observation, almost universally 
confirmed in present knowledge, that what happens in our 
bodies is directed toward a useful end” [26].

A classic example of homeostasis is regulation of 
core temperature (Fig.  1, left). In response to cold 

exposure, sympathetic noradrenergic system (SNS) out-
flows increase, resulting in cutaneous vasoconstriction, 
shivering, and piloerection, all of which tend to maintain 
the core temperature. In response to heat exposure, sympa-
thetic cholinergic system (SCS) outflows increase, evoking 
diaphoresis that tends to maintain the core temperature by 
evaporative heat loss.

Allostasis

Allostasis, from the Greek words for “other” and “standing 
still,” refers to a shift in input-output curves (Fig. 1, right). 
A low-grade fever when an individual has a viral disease 
is an example of allostasis. The temperature is regulated, 
but at an altered thermostatic setting.

Allostatic adjustments use up more energy than do 
homeostatic adjustments, but normally allostatic states 
are temporary and beneficial (whether a fever is helpful 
in fighting off a viral illness has been debated for dec-
ades [130]). Once the individual recovers, the input-output 
curves revert to those before the acute illness, with no 
apparent harm done.

Allostatic states, however, also increase wear and tear 
on both the effectors and the target organs—allostatic load 
[74]. Declining homeostatic efficiencies (dyshomeostasis) 
associated with aging and chronic disorders can prolong or 
intensify the accumulation of allostatic load and eventually 
decrease thresholds for a variety of vicious cycles (positive 
feedback loops) that can be lethal.

Temperature

Homeostasis 

Temperature

Allostasis 

Healthy Flu

SCSSNS SCSSNS

Fig. 1   From homeostasis to allostasis. In allostasis there is a shift in 
input-output curves for oppositely acting effectors (yellow and white), 
resulting in regulation of the monitored variable (in this case body 
temperature) at a different level. The acceptable bounds are the verti-
cal dashed lines. A low-grade fever associated with a flu-like illness is 
an example of an allostatic state
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Dyshomeostasis in the elderly

That resilience declines with aging is part of humankind’s 
evolutionary heritage. In his The Wisdom of the Body Walter 
B. Cannon devoted an entire chapter to this phenomenon. 
Cannon summarized already substantial literature that with 
aging the abilities to maintain body temperature, glucose, 
blood pH, and circulatory-respiratory delivery of oxygenated 
blood under baseline conditions are preserved, but for each 
of these vital functions there are decreased abilities to keep 
appropriate levels during stress—e.g., heat or cold exposure, 
glucose ingestion, and exercise.

This viewpoint from about a century ago still applies. 
For instance, during cooling by intravenous infusion of cold 
saline, older people 55–72 years old have larger decreases 
in core temperature and smaller increments in plasma nor-
epinephrine (NE) levels, systemic vascular resistance, and 
heat generation than younger people 18–23 years old [58].

After taking a high carbohydrate diet, in young adults 
postprandial plasma adrenaline (epinephrine, EPI) levels 
follow a biphasic diurnal pattern that is inversely related 
to glucose and insulin levels. Aging is associated with a 
dysregulation of this response [139], and insulin sensitivity 
declines with aging [171].

Baroreflex sensitivity, and consequently the ability to 
keep blood pressure within bounds, also decreases as a 
function of age, in a manner associated with hypertension 
[16]. The rate of pulse-synchronous bursts of skeletal muscle 
sympathetic nerve traffic increases with aging [170]; how-
ever, arterial baroreflex control of muscle sympathetic nerve 
traffic [117] and of cardiovagal outflow is decreased in the 
elderly [16].

Plasma NE levels, NE responses to stress, skeletal muscle 
sympathetic outflow, and cardiac NE spillover all increase 
with aging [44, 54, 134], probably from a combination of 
decreased neuronal reuptake of NE and increased sym-
pathetic nerve traffic. For a given amount of reflexively 
increased sympathetic outflow, however, there is a blunted 
vasoconstrictor response [44]. Responses of cardiac NE 
spillover to exercise are similar in elderly vs. young men, 
but this is due to an aging-related decline in neuronal reup-
take of released NE, meaning that the increment in cardiac 
sympathetic outflow probably is blunted [54].

The ability of catecholamines to break down triglycerides 
to free fatty acids decreases with aging. This may increase 
susceptibilities to exercise intolerance, decrease ability to 
maintain core body temperature during cold exposure, and 
reduce ability to survive starvation, as well as increase vis-
ceral adiposity and indolence.

As people age the efficiency of immune responsiveness 
also generally declines. Depending on genetics, epigenet-
ics, and life experiences, “immune age” can be estimated 
and is correlated with all-cause mortality [3]. Unbiased 

whole-transcriptome analysis of adipose macrophages has 
revealed that aging upregulates the gene encoding mono-
amine oxidase-A (MAO-A) in an NLRP3 inflammasome-
dependent manner, and MAO-A inhibition restores NE-
induced lipolysis [22].

The extended autonomic system (EAS)

Autonomic neuroendocrine systems

The autonomic nervous system conceptualized by Lang-
ley in the early 20th century has three components—the 
sympathetic nervous system, the parasympathetic nervous 
system, and the enteric nervous system [102]. Walter B. 
Cannon added a neuroendocrine component, here called 
the sympathetic adrenergic system (SAS), in which EPI is 
the hormonal chemical messenger [27, 28]. Cannon taught 
that the sympathetic nervous system and adrenal gland act 
together in emergencies to maintain homeostasis [23, 24]. 
This view is still widely held, although by now there is abun-
dant evidence that the neuronal component, here called the 
sympathetic noradrenergic system (SNS), and the hormonal 
component, the SAS, are constitutively active [101] and par-
ticipate in even the mundane aspects of daily life.

Neuroendocrine systems expand the meaning of “auto-
nomic.” Modern neuroendocrinology refers specifically 
to peptides secreted by hypothalamic neurons into the cir-
culation. Even in this sense the neuroendocrine and auto-
nomic systems interact. For instance, thyroidectomy, which 
increases thyrotropin secretion, also increases plasma lev-
els of the SNS neurotransmitter NE [61]. Release of cor-
ticotropin-releasing hormone (CRH) in the brain concur-
rently increases SNS and SAS outflows [18, 91]. Infusion 
of the beta-adrenoceptor agonist isoproterenol into humans 
decreases plasma levels of both corticotropin (ACTH) and 
EPI [52]; subacute glucocorticoid treatment with prednisone 
decreases directly recorded skeletal muscle sympathetic out-
flow [68]. Both hypopituitarism and adrenocortical failure 
decrease plasma EPI and increase plasma NE levels [152, 
172]. Arginine vasopressin (AVP) inhibits SNS responses 
to hemorrhage [85]. Corticosteroid synthesis by cultured 
adrenocortical cells is increased ten-fold by co-culture with 
adrenomedullary chromaffin cells [82]. In general, across a 
variety of stressors, plasma EPI responses are more closely 
tied to ACTH responses than to NE responses [73].

Autonomic neuroimmunology

Another extension of the concept of autonomic relates to the 
immune system. The field of neuroimmunology focuses on 
interactions between the nervous system and immune func-
tions. Anti-inflammation exerted by adrenocortical steroids 
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was fundamental in Selye’s stress theory [159], discussed 
below. A much more modern example of autonomic-immune 
interactions is regulation of cytokines and the “inflamma-
some” by the vagus nerve [97, 191]. The inflammasome 
concept is based on the NOD-, LRR-, and pyrin domain-con-
taining protein 3, or NLPR3 [173]. NLPR3 is conceptualized 
to be an intracellular sensor that can detect a wide variety of 
microbes, including RNA viruses. NLRP3 inflammasome 
formation leads to release of the proinflammatory cytokines 
IL-1beta and IL-18 and to cell death by pyroptosis. Pyrop-
tosis is a form of programmed cell death that may remove 
intracellular viral replication niches in the tissue.

The cytokine IL-6 not only activates the HPA axis but 
also directly stimulates production of aldosterone, cortisol, 
and androgenic steroids [137]. In conscious, unrestrained 
rats, TNFα administration increases plasma levels of gluca-
gon, corticosterone, ACTH, NE, and 3,4-dihydroxyphenyl-
glycol (DHPG, the main neuronal metabolite of NE) [43].

It has been proposed that overactivity of myocardial 
beta-adrenoceptors by SNS activation exerts proinflamma-
tory effects [94]. There actually are three types of peripheral 
catecholamine system in humans—the SNS, where NE is the 
locally acting neurotransmitter, the SAS, where EPI is the 
hormone, and the DOPA-dopamine (DA) autocrine-parac-
rine system [75], in which DA is produced in, released from, 
and acts locally on parenchymal cells that take up DOPA 
from the circulation and decarboxylate the amino acid to 
form the catecholamine. The latter mechanism is by defini-
tion an activity of “APUD” cells (APUD standing for amine 
precursor uptake and decarboxylation) that release polypep-
tide hormones in a diffuse neuroendocrine system [124].

In primary human monocytes, alpha-1 adrenoceptor 
stimulation by phenylephrine has been reported to suppress 
the NLPR3 inflammasome [87]; however, the same drug has 
been reported to induce cardiac dysfunction and inflamma-
tion in vivo as evidenced by increased expression of IL-6 
and NLRP3 [195]. Across a variety of stressful situations, 
increases in EPI levels are associated with elevations of the 
proinflammatory cytokine IL-6 [41, 84, 90, 96, 100, 135, 
141]; however, bases for this relationship have not been sys-
temically studied.

The sources of endogenous DA outside the brain are rela-
tively poorly understood. In the kidneys DA is formed from 
uptake and decarboxylation of circulating DOPA [190] by 
proximal tubular cells and acts as an autocrine-paracrine 
substance [75] that promotes natriuresis [8]. In patients with 
decompensated congestive heart failure, levodopa treatment 
increases urinary sodium excretion [77]. Whether intra-
venously administered DOPA or DA affects the NLRP3 
inflammasome is unknown.

Proinflammatory cytokines increase expression of CRH and 
AVP in the hypothalamus [34], probably via vagal afferents 
[64]. In critically ill patients, non-survivors have been reported 
to have higher ACTH levels in response to exogenously admin-
istered CRH and longer release of cortisol, associated with 
higher levels of IL-6 and IL-8 [46].

In the cholinergic anti-inflammatory pathway [182], effer-
ent nerve traffic from the dorsal motor nucleus of the vagus 
nerve increases delivery of acetylcholine to α7 nicotinic recep-
tor subunits on celiac-superior mesenteric post-ganglionic neu-
rons that terminate in the spleen and act on splenic immune 
cells to decrease TNFα generation [97, 150].

Stress and the “stress system”

Hans Selye defined stress as the non-specific response of 
the body to any demand imposed upon it [161]. In line with 
Selye’s conceptualization, in the 1990s George Chrousos 
and Philip Gold at the NIH proposed the existence of a cen-
tral stress system, activation of which would elicit a “stress 
syndrome” [36, 168]. Key elements of the stress system as 
originally proposed were the paraventricular nucleus (PVN) of 
the hypothalamus, from which CRH is derived, and the locus 
ceruleus (LC) of the pons, from which NE in most of the brain 
is derived (Fig. 2, left panel). CRH drives pituitary release of 
ACTH in the HPA axis.

The original Chrousos/Gold stress system has required 
modification. For one thing, arginine vasopressin (AVP, syn-
onymous with anti-diuretic hormone, ADH) is another neu-
roendocrine factor derived from the PVN. For another, the 
LC does not directly drive SNS or SAS outflows; several other 
brainstem sites do [40, 48, 49, 79, 125]. A more complex 
schema embeds the stress system within the “central auto-
nomic network” [10] (Fig. 2, right panel). The central auto-
nomic network is the source of outflows to components of the 
autonomic nervous system, including the SNS, for which NE 
is the neurotransmitter, the SAS, for which EPI is the hormone, 
and the parasympathetic nervous system (PNS), for which ace-
tylcholine is the neurotransmitter [70].

Selye also conceptualized the “General Adaptation Syn-
drome” [160]. By this he was referring to three stages. The 
stages were alarm, resistance, and exhaustion, and the three 
pathologic consequences were adrenal enlargement, gastric 
bleeding, and “involution of the thymico-lymphatic appara-
tus.” The alarm stage is acute and in the present vocabulary 
would include HPA, SNS, and SAS activation. The resistance 
stage, which Selye theorized can go on for variable periods 
of time, is adaptive and may correspond to an allostatic state. 
Accumulation of allostatic load decreases thresholds for induc-
tion of vicious cycles that usher in the exhaustion stage, the 
harbinger of imminent organismic death.
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Effects of EAS activation

The sympathetic adrenergic system (SAS)

EPI is a remarkably potent hormone that exerts numerous 
bodily effects. Most of these are well known, and so only 
aspects potentially relevant to COVID-19 are noted here. 
EPI-induced vasoconstriction in the splanchnic bed and 
kidneys decreases gastrointestinal and renal perfusion. EPI 
increases sweating [132], and the combination of cutane-
ous vasoconstriction and adrenergic sweating may explain 
the “cold sweat” that characterizes people in shock. EPI 
increases cardiac rate and contractility [121], increasing 
cardiac output, and increases spontaneous electrical depo-
larization and the electrocardiographic QTc interval [169].

EPI also increases serum glucose levels [42] by multiple 
mechanisms, including anti-insulin effects, breakdown of 
hepatic glycogen, stimulation of hepatic gluconeogenesis 
[163], and stimulation of pancreatic secretion of glucagon 
[83].

EPI increases hepatic breakdown of lipids to free fatty 
acids, generating heat, and evokes thermogenesis via uncou-
pling protein-1 in brown adipose tissue [179].

EPI activates platelets [122], via occupation of alpha-2 
adrenoceptors [103, 104].

EPI stimulates the renin-angiotensin-aldosterone system 
(RAS) [76]. Angiotensin II is a potent vasoconstrictor and in 
concert with EPI would be expected to augment splanchnic 
and renal vascular resistance. Aldosterone, the body’s main 
mineralocorticoid, promotes sodium reabsorption and renal 
potassium loss.

EPI decreases serum potassium and magnesium levels 
[42, 129] via augmentation of Na/K ATPases that mediate 
transmembrane cation influx [9]. The fall in serum potas-
sium may help to explain a dissociation of stimulated plasma 
renin activity and less clear effects on plasma aldosterone 
[99].

Finally, EPI intensifies the negative emotional experi-
ence of fear [167], probably via afferent information to the 
brain from physiologic changes exerted by occupation of 
adrenoceptors.

SNS PNS 

NTS RPG DMNX 
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Fig. 2   Central stress systems. The concept diagram on the left (repro-
duced with permission of the American College of Physicians) shows 
the Chrousos and Gold model of “the central stress system.” The 
concept diagram on the right relates the central stress system to the 
central autonomic network. CING cingulate cortex, AMY amygdala, 
Hippo hippocampus, PVN paraventricular nucleus of the hypothala-
mus, HACER hypothalamic area controlling emotional responses, 
AVP arginine vasopressin (same as anti), CRH corticotropin-releasing 
hormone, VTA ventral tegmental area, PAG periaqueductal gray, LC 

locus ceruleus, A5 A5 noradrenergic cell group, RTN retrotrapezoid 
nucleus, RVLM rostral ventrolateral medulla, AP area postrema, PBN 
parabrachial nucleus, Pre-Botz. pre-Botzinger complex, NTS nucleus 
of the solitary tract, CVLM caudal ventrolateral medulla, NA nucleus 
ambiguus, DMNX dorsal motor nucleus of the vagus nerve, RPG res-
piratory pattern generator, ACTH adrenocorticotrophic hormone (cor-
ticotropin), ANS autonomic nervous system, SNS sympathetic noradr-
energic system (norepinephrine), SAS sympathetic adrenergic system 
(adrenaline), PNS parasympathetic nervous system (acetylcholine)



304	 Clinical Autonomic Research (2020) 30:299–315

1 3

The sympathetic noradrenergic system (SNS)

The SNS is tonically active [101] and plays key roles in pat-
terned alterations in the distribution of the cardiac output 
among the vascular beds during activities of daily life such 
as standing up [101], eating a meal, mild exercise [158], the 
Valsalva maneuver, and adjustments to altered environmen-
tal temperatures. In addition to the cardiovascular system, 
SNS outflows to the irises, sweat glands, gastrointestinal 
tract, and pancreas, and kidneys play important “housekeep-
ing” roles.

It is important to keep in mind that NE is a neurotransmit-
ter, not a hormone. Because of this regional heterogeneity 
and different roles, measuring plasma NE levels can be unin-
formative. For instance, in resting humans hypoxia increases 
skeletal muscle sympathetic outflow without increasing 
plasma NE [151].

Increases in renal sympathetic outflow promote sodium 
reabsorption by proximal tubular cells [66]. Both NE and 
EPI increase cellular uptake of potassium and therefore tend 
to decrease serum potassium levels [37].

Arginine vasopressin/anti‑diuretic hormone (AVP/ADH)

AVP acting as ADH promotes renal retention of water. 
In acute illnesses this can manifest with decreased serum 
osmolality and hyponatremia [59]. AVP acting as a pressor 
contributes to vasoconstriction and blood pressure; however, 
the effects may be masked by other determinants of systemic 
vascular resistance. In addition, in the brain AVP shifts the 
arterial baroreflex to lower blood pressures, and the maxi-
mum amount of sympathetic activation for a given decrease 
in blood pressure is reduced [85].

The hypothalamic‑pituitary‑adrenocortical (HPA) axis

As noted above, the HPA axis has been viewed as the main 
effector of the central stress system. Regulation of the HPA 
axis is more complicated than that depicted by Selye’s theory 
or the Chrousos/Gold model. For instance, in critically ill 
patients there is decreased clearance of circulating cortisol 
[14, 138]. This may augment negative feedback regulation 
of CRH and explain attenuated ACTH responses. Studies 
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involving real-time dynamics of glucocorticoid hormones 
and glucocorticoid receptor function indicate pulsatility of 
the HPA axis and a continuous dynamic equilibrium [111].

In patients treated with intravenous methylprednisolone 
for multiple sclerosis flareups, there are diverse acute symp-
tomatic side effects, including abdominal pain, nausea, and 
vomiting, disturbed sleep, and neurobehavioral changes 
such as confusion, irritability, and restlessness [92]. Com-
mon clinical laboratory findings are hyperglycemia, hypoka-
lemia, increased blood pressure, and anti-inflammation. All 
these aspects may be relevant to neurobehavioral and clini-
cal laboratory abnormalities in COVID-19 because of the 
frequent use of high-dose steroids as part of management in 
the intensive care setting.

The parasympathetic nervous system (PNS)

Unlike other autonomic effectors, the PNS is active in situ-
ations that are not distressing and tend to build up rather 
than use up energy [70]. When the central stress system is 
activated, PNS outflows generally decrease (red negative 
sign in Fig. 3). Manifestations of PNS inhibition include 
tachycardia, decreased gastrointestinal motility, decreased 
production of saliva and tears, and decreased urinary bladder 
tone. Vagal stimulation inhibits production of the cytokine 
TNFα [106, 200].

The renin‑angiotensin‑aldosterone system (RAS)

The renin-angiotensin-aldosterone system (RAS) plays 
major roles in homeostasis of extracellular fluid volume, 
blood pressure, electrolytes, and immune functions. The 
main determinants of release of the proteolytic enzyme 
renin are SNS and SAS activation (acting through beta-a 
adrenoceptors), decreased renal perfusion, and decreased 
sodium delivery to the distal tubules of the kidney. Renin 
cleaves the circulating protein angiotensinogen to form 
angiotensin I. Angiotensin I is converted to angiotensin II 
(AII) by angiotensin-converting enzyme (ACE), which is 
especially abundant in vascular endothelium of the lungs. 
AII exerts numerous effects. It is a potent vasoconstrictor 
and augments adrenocortical secretion of aldosterone, the 
body’s main salt-retaining steroid. In adrenomedullary cells 
AII stimulates secretion of catecholamines via increased 
cytosolic ionized calcium [203]. In the brain, probably via 
a separate local RAS, AII evokes AVP release and drink-
ing behavior and increases sympathetic outflows. ACE2, 
a homolog of ACE, converts AII to angiotensin 1–7 (Ang 
1–7), which opposes the effects of AII. Thus, ACE2 inhi-
bition would be expected to build up AII. Relevant to the 
present discussion, the SARS-CoV-2 virus enters cells via 
binding to ACE2.

The EAS and biomarkers of risk, 
with applications to COVID‑19

One of the lessons of the COVID-19 pandemic, and a source 
of anxiety and worry, is that it seems impossible to predict 
who among the infected will suffer from rapid evolution to 
acute respiratory distress syndrome and multi-organ failure. 
This section describes clinical and laboratory biomarkers 
that may indicate a high risk of such a transition and are 
related to altered EAS functions.

There are references here to sudden, unexpected health 
catastrophes—earthquakes, acute coronary syndromes and 
stress-related cardiomyopathy (takotsubo cardiomyopathy), 
and previous viral epidemics (SARS, Middle East respira-
tory syndrome). To the extent published information is avail-
able, each factor is applied to COVID-19.

Age

Analyses of medical records from before vs. after natural 
catastrophes such as Hurricane Katrina in 2005 [1, 19] and 
the 2011 earthquake/tsunami in Japan [39, 131] have indi-
cated disproportionately increased morbidity and mortality 
among the elderly [118]. This has not been a universal find-
ing, however [183].

The high risk of serious illness or lethality in the elderly 
from COVID-19 is quite clear. According to the US Cent-
ers for Disease Control, hospitalizations, intensive care unit 
admissions, and case fatality rates are age-related [143]. The 
case-fatality rate in people 75–84 years old is about 10 times 
that in people 55–64 years old and about 40 times that in 
people 20–22 years old.

Hyperglycemia

Hyperglycemia is a common feature of critical illness, even 
in individuals without a history of diabetes [65]. In patients 
with acute, severe head injury, high serum EPI and NE levels 
have been associated with hyperglycemia, worse Glasgow 
coma scores, and poor survival [199]. After the Kobe earth-
quake of 1995, hemoglobin A1c levels and high scores on 
the General Health Questionnaire were especially evident 
in diabetic patients who had severe damage to their homes 
or who had relatives who were killed or injured, indicating 
long-term effects of the acute stress exposure [88]. After 
the East Japan earthquake/tsunami in 2011, among diabetic 
patients followed in a diabetes clinic somatic symptoms and 
sleep disturbances or anxiety were independently associated 
with worse glycemic control [60].

In acute coronary syndromes, hyperglycemia upon admis-
sion is common regardless of a history of diabetes and is 
associated with both increased mortality [98] and a variety 
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of morbidities including ventricular tachycardia/fibrillation, 
atrial fibrillation, advanced degrees of atrioventricular block, 
and pulmonary edema [51] and poor outcome after emer-
gency coronary artery bypass grafting [177]. In non-diabetic 
patients admitted for acute myocardial infarction, concentra-
tions of cortisol, EPI, and NE are the main correlates of cir-
culating glucose concentrations [133]. High glucose levels 
are an adverse prognostic factor in patients admitting for ST 
elevation myocardial infarction (STEMI), regardless of the 
occurrence of diabetes mellitus [162]. Both acute mortality 
and the subacute event rate are increased in patients with 
high admission glucose levels [47, 147]. In the pre-hospital 
phase of cardiac arrest with return of spontaneous circula-
tion, hyperglycemia occurs commonly and is associated with 
increased mortality [185].

In patients with COVID-19 hyperglycemia at the time of 
hospitalization is common and related to adverse progno-
sis [13, 156, 164, 193]. Patients with “new” diabetes noted 
during the hospitalization have if anything poorer outcomes 
than those with an already established diagnosis [107].

Hypokalemia

EPI administration decreases serum potassium levels [169] 
via agonist effects at beta-2 adrenoceptors [17, 42, 93]. After 
the Sichuan earthquake in 2008, hypokalemia was associated 
with ventricular tachyarrhythmias in the ensuing month [202].

In hospitalized COVID-19 patients hypokalemia occurs 
commonly and is also associated with increased mortality 
[31]. Low serum potassium may reflect augmented sodium/
potassium exchange in the kidneys mediated by aldosterone 
as well as endogenous and exogenously administered EPI.

Hyponatremia

Hyponatremia often occurs in critical illnesses [59]. After 
the Sichuan earthquake of 2008 in Japan and the Bam earth-
quake of 2003 in Iran there was a high frequency of hypona-
tremia, and the hyponatremia was an independent mortal 
risk factor [155, 201]. Among patients with congestive heart 
failure, ADH levels are increased in a manner associated 
with hyponatremia [146, 174].

In patients with COVID-19 hyponatremia can be an 
early or isolated finding [5, 21, 81]. Hyponatremia has been 
ascribed to inappropriate secretion of ADH [2, 35]. It is 
unknown whether hyponatremia is an independent predic-
tor of outcome in COVID-19.

Electrocardiographic Abnormalities

Tachycardia, electrocardiographic changes, and abnor-
mal heart rate variability in the frequency domain occur 

commonly during catastrophes and in severe illnesses. At 
the time of the Taiwan earthquake of 1999, 15 patients hap-
pened to be undergoing 24-h Holter monitoring, and heart 
rate variability data were analyzed in the time and frequency 
domains. Heart rate and the ratio of low frequency/high fre-
quency (LF/HF) power increased after the earthquake and 
were attributed to PNS withdrawal [112]. After the Great 
Hanshin Earthquake of 1995, there was an increased fre-
quency of deep negative electrocardiographic T waves 
and accelerated washout of cardiac 123I-metaiodobenzyl-
guanidine-derived radioactivity, interpreted as indicating 
increased cardiac sympathetic outflow [196]. The 2008 
Sichuan earthquake was associated with an increased fre-
quency of hemodynamically unstable ventricular tachyar-
rhythmias [202]. On the other hand, the 2011 Christchurch 
earthquakes were not associated with increased ventricular 
arrhythmias, based on analysis of implanted defibrillator 
diagnostics [30], while in the same year, after the East Japan 
earthquake there was an increased incidence of tachyarrhyth-
mias in patients with implanted cardiac devices [128]. After 
the East Azarbaijan earthquake in 2012 there was a reported 
increased likelihood of arrhythmic events associated with 
anxiety in patients with implanted defibrillators [145].

In stress-related acute heart failure, prolongation of the 
QTc interval occurs regardless of left ventricular apical 
ballooning [188] (see the section below about takotsubo 
cardiomyopathy).

EPI increases the electrocardiographic QTc interval [42, 
169]. In acute stroke, the most common new electrocardio-
graphic abnormality is QTc prolongation [20, 69].

In hospitalized patients with COVID-19 several studies 
have noted prolongation of the QTc interval; however, inter-
preting this abnormality has been difficult because of the 
possibility of iatrogenicity from treatment with chloroquine 
or hydroxychloroquine [95]. No studies have reported on 
power spectral analysis of heart rate variability, in either the 
time or frequency domains. There are numerous mechanisms 
by which SNS or SAS activation could precipitate cardiac 
arrhythmias [50]. None of these has been explored specifi-
cally in COVID-19-related research.

Immune functions

Central stress system activation would be expected to pro-
duce lymphopenia from HPA axis stimulation. Neutrophilia 
may reflect effects of glucocorticoids [181] or catechola-
mines. In healthy volunteers adrenaline infusion acutely 
evokes leukocytosis, neutrophilia, and lymphocytosis and 
increases the activity and numbers of natural killer cells 
[181]. The effects of circulating catecholamines depend 
on the types of occupied adrenoceptors. Adrenaline, which 
stimulates both types of adrenoceptor, results more in beta-
adrenoreceptor-mediated effects [11].
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By now it has been widely publicized and generally 
accepted that COVID-19 patients are variably susceptible 
to “cytokine storm.” Bases for this variability are unknown. 
In asymptomatic individuals with COVID-19 there seems 
to be less active immune responses than in symptomatic 
individuals [115]. It has been reported that within 19 days 
of symptom onset, all patients test positive for antiviral 
immunoglobulin-G (IgG) [114]. These findings suggest that 
symptomatic patients have more active immune responses.

COVID-19 patients have been reported to have lympho-
penia [55, 113], related to decreases in natural killer cells 
and T cell populations [45]. The numbers of total T cells 
and CD4(+) and CD8(+) T cells are dramatically reduced, 
associated with increased serum IL-6, IL-10, and TNF-alpha 
concentrations and poor survival [45]. Meanwhile, there 
tends to be neutrophilia [113, 192] and increased neutrophil 
extracellular traps (networks of extracellular fibers mainly 
containing neutrophil DNA that bind pathogens), associated 
with increased COVID-19 mortality [180].

Heart failure

Dyshomeostasis and heart failure

As intrinsic cardiac pumping efficiency declines, the SNS is 
activated [89, 119, 178]. At first, the increase in SNS outflow 
seems to be confined to the heart [153]. Once cardiac pump 
function declines to below a certain level despite maximal 
SNS stimulation, blood backs up into the pulmonary veins, 
bringing on pulmonary edema. The patient becomes short 
of breath, and in a distress response experiences the clas-
sic “feeling of impending doom” that has been associated 
from time immemorial with massive activation of the SAS 
and high circulating EPI levels. Rather than augmenting 
left ventricular myocardial contractility, EPI can be toxic to 
myocardial cells. Myocardial contractility could decrease 
further, and “stress cardiopathy” could set in, worsening the 
pulmonary edema.

Low LF power is an independent predictor of sudden 
death in heart failure patients [63]. LF power seems to be 
less of a marker of cardiac sympathetic outflow than of the 
ability to modulate that outflow via baroreflexes [72, 144, 
166]. Therefore, the absence of LF power in severe heart 
failure may represent baroreflex failure. Whether severely ill 
COVID-19 patients have low LF power is unknown.

Stress‑related cardiomyopathy

A particular type of acute heart failure involving non-
ischemic myocardial stunning [189] has been called takot-
subo cardiomyopathy [94], because left ventricular api-
cal ballooning in this syndrome gives the radiographic 

appearance of a takotsubo, a type of Japanese pottery for 
catching octopuses. Takotsubo cardiomyopathy is especially 
common in post-menopausal women, for unknown reasons. 
Heart failure with apical akinesia can occur in disorders 
involving high circulating levels of catecholamines such as 
pheochromocytoma [62].

After the 2004 Niigata earthquake, two patients were 
reported who had takotsubo cardiomyopathy [175]. Both 
had stress-associated chest pain, giant T waves in the elec-
trocardiogram, and echocardiographic apical hypokinesia, 
without evidence of coronary artery disease during car-
diac catheterization. Both patients had accelerated loss of 
123I-metaiodobenzylguanidine-(123I-MIBG)-derived radio-
activity, consistent with increased sympathetically mediated 
exocytosis from myocardial sympathetic nerves. After the 
1995 Hanshin earthquake, there was an increased incidence 
of patients with deep negative T waves, also associated with 
accelerated loss of 123I-MIBG-derived radioactivity [196]. 
After the 2011 East Japanese earthquake/tsunami there was 
an increased incidence of acute decompensated heart failure 
in the affected geographic region [127]. The frequency of 
atrial fibrillation was also increased [126]. Patients admitted 
to the hospital after the earthquake were characterized by 
older age, systolic hypertension, infection, increased B-type 
natriuretic peptide and C-reactive protein (respective bio-
markers of heart failure and inflammation), and decreased 
glomerular filtration rate [197].

In COVID-19 patients heart failure is a major concern. 
Patients with pre-existing cardiovascular disease are more 
likely to be infected with SARS-CoV-2 and are more likely 
to develop severe symptoms. There are several potential 
mechanisms. Myocarditis can result directly from local 
infection with SARS-CoV-2 and the local immune response 
[165]. ACE2 receptor disruption may cause damage by pre-
venting conversion of AII to Ang (1–7) [7]. Toxic effects 
of endogenous or exogenous catecholamines may evoke 
a takotsubo cardiopathy pattern [67, 120, 123, 136, 148]. 
There may be endothelial or microvascular dysfunction or 
instability of coronary arterial plaque [80].

In heart failure cardiac NE stores become depleted [32]. 
This is likely from greater NE release with escape of neu-
ronal reuptake compared to catecholamine biosynthesis via 
tyrosine hydroxylase [53]. The depletion of NE stores in the 
failing human heart attenuates the ability of indirect-acting 
sympathomimetic amines to provide inotropic support [142].

Intravascular clotting

In the COVID-19 pandemic there has been an unexpect-
edly high frequency of intravascular clotting, manifested 
by deep vein thrombophlebitis, pulmonary embolism, myo-
cardial infarction, or stroke. It has been proposed that an 
imbalance between coagulation and inflammation results in 
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a hypercoagulable state. Thrombosis initiated by the innate 
immune system may limit SARS-CoV-2 dissemination, but 
aberrant activation of this system could cause endothelial 
injury, with dysregulation of fibrinolysis and thrombosis 
[38]. The roles of neutrophilia, neutrophil extracellular traps, 
platelet activation, and proinflammatory cytokines are a sub-
ject matter of active investigation and ongoing clinical trials.

One should bear in mind that adrenaline is a potent hemo-
static agent, not only because of vasoconstriction but also 
because of promotion of platelet aggregation [104, 122], at 
least partly via agonism at alpha-2 adrenoceptors [4, 103]. 
Whether this contributes to intravascular clotting in COVID-
19 is unknown.

Central nervous system

COVID-19 is associated with a variety of central nervous 
system abnormalities, including stroke, encephalopathy, 
encephalitis, anosmia, anorexia, headache, nausea, and 
delerium [184]. A meta-analysis of literature from prior 
epidemics (SARS, Middle East respiratory syndrome) 
noted high frequencies of confusion, depressed mood, 
anxiety, impaired memory, and insomnia [149]. It has 
been proposed that the SARS-CoV-2 virus may invade the 
brainstem and alter functions of medullary cardiorespira-
tory centers [110].

In patients with Parkinson’s disease COVID-19 worsens 
motor and non-motor symptoms, with urinary abnormalities 
and fatigue being prominent [110]. In this study symptoms 
and signs one might ascribe to autonomic failure were unaf-
fected. Serum neurofilament light chain levels, a biomarker 
of axonal damage, have been reported to be increased in 
COVID-19 patients [116]. Although patients with increased 
serum neurofilament light chain levels have been reported to 
be more likely to require intubation, the levels seem unre-
lated to neurologic symptoms.

There have been no reports about brain regions or path-
ways of the central autonomic network in COVID-19, 
although one may reasonably speculate that involvement of 
the medullary nucleus of the solitary tract or dorsal motor 
nucleus of the vagus nerve predisposes to symptoms such as 
nausea, vomiting, and loss of appetite [33].

The dysautonomia postural tachycardia syndrome (POTS) 
can be a consequence of viral illnesses [56, 157] and may 
have an autoimmune component [78, 108, 154]. There are 
substantial concerns—but no published data—about pos-
sibly increased risk from COVID-19 in people with POTS. 
Conversely, one may anticipate an increased incidence of 
POTS in COVID-19 patients.

One may also anticipate a high frequency of post-trau-
matic stress disorder [57, 194], which could be related to 
EAS activation [140].

EAS activation in COVID‑19 may be 
a double‑edged sword

The direct and indirect effects of EAS activation can be 
understood in terms of enhancing survival in life-threatening 
emergencies that have threatened homeostasis throughout 
mammalian evolution, such as asphyxiation, hemorrhage, 
starvation, salt deprivation, water deprivation, exposure to 
extremes of temperature, and “fight-or-flight” encounters 
[24, 25].

This activation may come at a cost. Among other things, 
activation of the extended ANS increases myocardial 
oxygen consumption and glucose levels, uses up energy, 
decreases thresholds for arrhythmias, induces hypokalemia 
and hyponatremia, can promote renal ischemic injury and 
intravascular thrombosis, and can evoke a form of stress car-
diopathy [189]. Moreover, imbalances in the inflammasome 
system could contribute to cytokine “storm.”

In several ways, in critically ill patients physiologic nega-
tive feedback loops could give way to pathophysiologic posi-
tive feedback loops. Within a sometimes surprisingly short 
period of time from the onset of symptoms, the patient could 
die—within minutes because of a catecholamine-evoked 
ventricular arrhythmia, hours because of intractable pulmo-
nary edema, or days because of critically decreased perfu-
sion of body organs such as the kidneys.

Biomarkers predicting COVID‑19 mortality

Hyperglycemia, hypokalemia, hyponatremia, prolonga-
tion of the electrocardiographic QTc interval, arrhythmias, 
hemodynamic instability, takotsubo cardiopathy, and neu-
robehavioral manifestations suggest contributions of the 
EAS to morbidity and mortality in COVID-19; however, all 
these indices are indirect and complexly determined.

Quantitative indices of EAS activation such as increases 
in plasma catecholamines, ACTH, AVP, and AII levels could 
provide valuable biomarkers by which to test whether EAS 
involvement explains the high mortality associated with 
aging and chronic disorders of regulation in COVID-19. 
To date, no reports have described levels of any of these 
compounds in COVID-19 patients. A recent correspondence 
noted associations of both elevated neutrophil/lymphocyte 
ratios and cortisol levels with decreased survival in COVID-
19 patients [176].

Treatment implications

In COVID-19 patients who have evidence of EAS acti-
vation, treatment with already existing drugs such as the 
benzodiazepine alprazolam [15, 86], the CRH-1 receptor 
antagonist antalarmin [6], the alpha-2 adrenoceptor agonist 
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dexmedetomidine [109, 187], a beta-1 adrenoceptor blocker, 
an IL-6 inhibitor (tocilizumab), or even DOPA or DA might 
prevent positive feedback loops and improve survival. Some 
of these are undergoing clinical trials now.

Given that adrenaline promotes platelet aggregation, 
treatment with dexmedetomidine might be risky in COVID-
19 patients with intravascular clotting.

DA, via the type-1 DA receptor-1 (DRD1) and cyclic 
AMP signaling, inhibits the NLRP3 inflammasome [198]. 
This introduces the possibility of modulating cytokine 
“storm” by a DRD1 agonist. Fenoldopam is a catechol-
containing DRD1 partial agonist that does not cross the 
blood-brain barrier. The drug also exerts vasodilator effects 
in coronary, renal, mesenteric, and peripheral arteries and is 
used intravenously clinically as an anti-hypertensive agent. 
The sulfonylurea oral hypoglycemic drug glyburide is a 
NLPR3 inhibitor [186]; however, effective doses may be 
high enough to produce cardiovascular side effects.

In patients with sepsis or acute respiratory distress 
syndrome, high-dose corticosteroid administration does 
not improve survival; however, low doses of corticoster-
oids alleviate inflammation and improve survival [29]. A 
recent news report noted that dexamethasone substantially 
improved mortality in COVID-19, without reference to a 
peer-reviewed publication [105].

A randomized, blinded, healthy control pilot trial of non-
invasive transcutaneous vagal stimulation reported down-
regulation of inflammatory cytokine release [106]. Clinical 
trials of non-invasive vagal stimulation in COVID-19 are 
currently under way (NCT04382391, NCT04379037).

Conclusions

Concepts presented here such as the EAS, allostasis, and 
dyshomeostasis can account for the age-relatedness of 
COVID-19 mortality and the multi-organ involvement in the 
disease. These concepts lead to testable hypotheses about 
biomarkers of risk in COVID-19 and about possible treat-
ments. Ideas are cheap and easy; data are expensive and 
hard, and the science of COVID-19 and the autonomic nerv-
ous system is in its infancy.
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