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Abstract

The evolution of complex organismal traits is obvious as a historical fact, but the underlying causes—including the role of
natural selection—are contested. Gould argued that a random walk from a necessarily simple beginning would produce the
appearance of increasing complexity over time. Others contend that selection, including coevolutionary arms races, can
systematically push organisms toward more complex traits. Methodological challenges have largely precluded experimental
tests of these hypotheses. Using the Avida platform for digital evolution, we show that coevolution of hosts and parasites
greatly increases organismal complexity relative to that otherwise achieved. As parasites evolve to counter the rise of
resistant hosts, parasite populations retain a genetic record of past coevolutionary states. As a consequence, hosts
differentially escape by performing progressively more complex functions. We show that coevolution’s unique feedback
between host and parasite frequencies is a key process in the evolution of complexity. Strikingly, the hosts evolve genomes
that are also more phenotypically evolvable, similar to the phenomenon of contingency loci observed in bacterial
pathogens. Because coevolution is ubiquitous in nature, our results support a general model whereby antagonistic
interactions and natural selection together favor both increased complexity and evolvability.
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Introduction

Life emerged on Earth some 4 billion years ago and has evolved

increasingly complex traits, including intricate biochemical path-

ways, elaborate developmental networks, and powerful neural

architectures [1,2]. However, the processes responsible for

promoting this complexity remain poorly understood [1–9]. Is

adaptation by natural selection largely responsible for this

complexity and, if so, what is the nature of that selection? Or is

this apparent trend an artifact that reflects the initial conditions

and lower bounds to complexity? Given the limitations of

historical data for answering these questions, experimental

evolution offers an alternative approach to explore these issues

and test specific hypotheses. However, the emergence of

complexity in nature is a slow process, one not readily replicated

in the laboratory [8,10]; and without an objective way to measure

the complexity of organismal traits [11,12], rhetorical arguments

may obscure and delay empirical research on this fundamental

problem.

Fortunately, computational approaches have advanced beyond

traditional numerical simulations, and it is now possible to test

evolutionary hypotheses by running experiments with computer

programs that self-replicate, mutate, compete, and evolve [13]. In

one study, Lenski and colleagues [14] used the Avida [15] system

to examine the role of selection for intermediate steps along many

evolutionary paths to a particularly complex trait, the EQUALS

(EQU) logic function. Because Avida is computational, the authors

could readily observe changes over thousands of generations;

moreover, the complexity of traits could be objectively quantified

as the number of building blocks (in this case, NAND instructions)

required for their execution. By allowing initially identical

populations to evolve in different environments, Lenski and

colleagues demonstrated that the most complex traits emerged

only when simpler functions were also selectively favored, which

promoted the accumulation of the necessary building blocks [14].

Here we use this system to ask whether coevolution—

specifically, parasite-host interactions—can drive complexity to

higher levels than would otherwise be achieved. Several authors,
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including Dawkins and Krebs [7] and Vermeij [16], have

proposed that coevolutionary ‘‘arms races’’ lead to increased

complexity as adaptations and counter-adaptations favor more

and more extreme traits [6]. Indeed, we show that host-parasite

coevolution produced substantially more complex host traits than

did evolution in the absence of parasites. Moreover, we show that

this complexity arose in the evolving computer programs, in part,

by an unexpected process: selection for increased evolvability,

which was achieved by genetic mechanisms reminiscent of so-called

‘‘contingency loci’’ that are found in many pathogenic bacteria [17].

In Avida, both host and parasite organisms are self-replicating

programs that must expend CPU cycles to execute instructions in

their genomes [18]. The genetic instruction set includes basic

arithmetic and input/output operations as well as operations that

allow storage and manipulation of binary numbers in temporary

memory via a set of stacks. Coordinated execution of appropriate

sets of instructions allows organisms to obtain resources (in the case

of hosts) or infect hosts (in the case of parasites) and copy their

genomes instruction-by-instruction to produce offspring. The copy-

ing process occasionally introduces mutations including point

mutations, insertions, and deletions that may affect the progeny’s

phenotype. As in nature, most mutations are deleterious or neutral,

but occasional beneficial mutations improve an organism’s ability to

acquire resources, infect hosts or resist parasites, or reproduce.

These benefits may enable genotypes to increase in frequency as

they displace less fit conspecifics because of their faster acquisition

and more efficient use of CPU cycles. Thus, populations of digital

organisms, like their counterparts in nature, typically evolve to

better fit their environments [13].

Figure 1 shows a schematic overview of the relationships between

hosts, functions, resources, and parasites in our experiments. Hosts

obtain the resources necessary for their reproduction by performing

one or more logic functions, but those functions also make the host

vulnerable to infection by a parasite that can perform the same

function. Thus, an infection can occur only if a particular host and

parasite share at least one function, although the specific genetic

encoding that a host and parasite employ to perform that function

rarely, if ever, correspond at the sequence level. After a successful

infection, the parasite acquires 80% of the infected host’s CPU

cycles, which the parasite uses to execute and copy its own genome,

while imposing a severe cost on the host. As a consequence,

coevolution occurs when hosts and parasites acquire and lose

functions.

The experimental configuration allowed for nine different logic

functions, which require varying numbers of NAND instructions

to be executed with the proper inputs used for each; NAND is the

only logic function available in the genetic instruction set. Although

there are many potential measures of functional complexity, the

Avida logic environment provides an intuitive metric, as follows.

The minimum number of NAND operations required for each

function’s performance is known and provides a simple, objective

measure of the complexity of that function [14]. The most complex

function, EQU, requires five NAND operations, and the shortest

program that can perform EQU requires nearly 20 precisely

interacting instructions, although there are many longer programs

that also encode EQU [14]. In the absence of parasites, a previous

study found that 23 of 50 populations evolved the ability to perform

EQU when the other eight functions were rewarded with additional

CPU cycles that increased with their complexity (i.e., minimum

Figure 1. Hosts, parasites, functions, and resources in Avida. (A)
A host organism with stacks used to store binary values, a circular
genome with pointers used to execute its code, and three functions—

, AND, and OR—shown in different colors. Functions vary in
complexity as measured by the number of NAND gates (shown as 1, 2,
and 3 logic gates within the respective colored function circuits)
required to perform them. (B) These functions enable organisms to take
up resources from their environment. (C) Parasites target the resource-
uptake mechanisms of the hosts in this system by performing the
corresponding function. Note that some parasites can perform multiple
functions (shown by multiple colors) and thus infect hosts via multiple
uptake systems. When a parasite infects a host, it acquires a portion of
the host’s CPU cycles. Executing a single operation costs an organism a
single CPU cycle. Time in these experiments is measured in ‘‘updates,’’
which corresponds to a per capita average of 30 executed CPU cycles.
doi:10.1371/journal.pbio.1002023.g001

Author Summary

Over billions of years, life has evolved into the extraordi-
narily diverse and complex organisms that populate the
Earth today. Although evolution often proceeds toward
increasing complexity, more complex traits do not
necessarily make organisms more fit. So when and why
is greater complexity favored? One hypothesis is that
antagonistic coevolution between hosts and parasites can
drive the evolution of more complex traits by promoting
arms races with increased defenses and counter-defenses.
Here, by using populations of self-replicating host com-
puter programs and parasitic programs, which steal
processing power from their hosts, we demonstrated that
coevolution promotes complexity and dissected how it
does so. Instead of simple escalation, we found that a
diversity of coevolving lineages must arise for coevolution
to drive complex traits. Surprisingly, coevolution had a
second effect; it promoted the evolution of more
evolvable hosts. As a consequence, mutations in the
evolved host genomes that confer resistance to parasites
occur at high rates, which help the coevolved hosts outrun
their parasites. Our experiments with an artificial system
demonstrate how the naturally ubiquitous process of
coevolution can promote complexity and favor evolvability.

Coevolution Drives Complexity and Evolvability
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required NANDs), thus allowing essential building blocks to

accumulate in the evolving genomes [14]. Here, we test whether

host-parasite coevolution can drive increased complexity without

explicitly rewarding building blocks. To that end, we ran similar

experiments except with coevolving parasites in one-half of the

replicates and without the progressive reward structure used in the

previous work.

Results and Discussion

Parasites Drive Greater Host Complexity
Figure 2 shows that coevolution with parasites drove host

populations to evolve more complex functions in order to obtain

the resources necessary for their replication, without any greater

reward for performing the more difficult functions. Host complexity

increased in both the presence (red) and absence (blue) of parasites,

but it did so much faster and reached much higher levels in the

coevolution treatment (p%0.001, Mann-Whitney U = 2,304). The

effect of parasites on the rise of complexity is exemplified by EQU, the

most complex function; the ability to perform EQU evolved in 17/50

host populations that coevolved with parasites, but in none that

evolved without parasites (p%0.001, Fisher’s exact test). In a third

treatment, parasites were removed at the mid-point of the runs, and

the cured host populations (green) evolved substantially reduced

complexity relative to the coevolution treatment (p%0.001, Mann-

Whitney U = 543.5), although the cured hosts retained greater

complexity than those that never saw the parasites (p = 0.002,

Mann-Whitney U = 1,703).

The increased complexity relative to the ancestor observed in the

absence of parasites (p%0.001, Wilcoxon signed-rank W = 1,275)

accords with a simple model that couples a random walk in com-

plexity with a selective constraint that limits functional degradation;

Gould dubbed this model the ‘‘drunkard’s walk,’’ alluding to how a

patron leaving a pub eventually stumbles to the curb because the

pub itself limits backward movement [5]. In our experiments, all

populations started from the same ancestral program that could

perform only the simplest function, NOT, and hence they were the

least complex programs able to obtain resources and reproduce.

Any less complex genotypes generated by mutation could not

reproduce and were thus eliminated. More complex organisms also

arose by mutation; although they obtained no additional resources

for performing more complex functions (and, in fact, might replicate

more slowly), they nonetheless could reproduce and thereby persist.

Over time, this asymmetrical constraint allowed complexity to

increase, albeit slowly and to a limited extent. This explanation of

complexity evolving as a ‘‘drunkard’s walk’’ does not imply that

evolution as a whole operates as a random walk; instead, it only

implies that complexity might follow such a pattern.

The coevolutionary process clearly produced greater functional

complexity in the hosts. In broad outline, this effect occurs because

parasites constantly select for new host phenotypes and thereby

cause host populations to explore adaptive landscapes more

broadly than hosts that are evolving alone [19]. However, it is not

obvious why the effect was so large and continued for so long.

Understanding the initial increase in complexity is seemingly

straightforward—hosts must evolve some function other than NOT

to avoid infection yet still reproduce, and all except one of the

other functions have higher complexity than NOT. But this

explanation alone cannot explain even the initial step, because

the first new function to arise by mutation was, in the vast majority

of cases, the one other function, NAND, that also requires executing

only a single NAND instruction. In fact, the average complexity of

the first new function was only 1.10 (1.01–1.19 95% confidence

interval), and the maximum was only 2 in any case. What then

might account for the large and sustained rise in complexity? One

plausible explanation is an escalatory arms race that gives rise to

progressively more extreme and complex adaptations [7,19,20].

For example, coevolution between cheetahs and gazelles may have

favored ever-increasing speed, which was achieved by evolving

more complex musculoskeletal systems. In many systems, howev-

er, coevolution does not occur along a single axis, but instead

involves many traits [21] and can lead to fluctuating frequency-

dependent selection instead of an arms race [22]. For example,

such frequency-dependent fluctuations appear to dominate the

interactions between Daphnia magna and its parasite Pasteuria
ramosa, as determined by reviving eggs and spores from various

sediment depths representing different historical states of the

interaction [23].

Escalating arms races and negative frequency-dependent

cycling, in general, are the two main outcomes of host-parasite

coevolution. Escalation could lead to an increase in complexity if,

for example, more complex tasks provided hosts with resistance to

any less complex parasites. However, there is no such task

‘‘dominance’’ in Avida. Instead, a particular parasite can infect a

particular host provided they share at least one function. Given

that requirement, there is no inherent reason that escalation must

occur [24,25]—for example, the host and parasite populations

could cycle repeatedly between two states—and so we can reject

the arms-race hypothesis as a sufficient explanation for the

emergence of more complex traits in hosts that coevolved with

parasites. Nonetheless, it is important to note that frequency-

dependence and escalation are not mutually exclusive processes.

Parasites Retain ‘‘Memory’’ of Previous Hosts
How could negative frequency-dependence drive a sustained

increase in host complexity rather than producing simple cycles?

One possible explanation is that parasites maintain a ‘‘memory’’ of

Figure 2. Parasites promote the evolution of host complexity.
Complexity was measured as the minimum number of NAND
instructions that must be executed by a host to perform its most
complex logic function, averaged over all individuals in a population.
The blue trajectory shows the grand mean complexity across 50
replicate populations (i.e., runs) that evolved in the absence of
parasites. The red trajectory shows the corresponding values for 50
host populations that coevolved with parasites. In 12 runs, the parasites
went extinct, in all but one case after 22,000 updates and after the hosts
had evolved either the XOR (complexity 4) or EQU (complexity 5)
function. The green trajectory shows mean values for the same 50
parasite populations, except here they were ‘‘cured’’ by experimentally
eliminating the parasites after 250,000 updates. All populations started
with a single host genotype that performs only the NOT function.
Updates are arbitrary Avida time units (see Materials and Methods).
Error bars are 62 standard errors of the mean (SEM).
doi:10.1371/journal.pbio.1002023.g002
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previously encountered host states. If so, then hosts can escape

infection only by evolving in a previously unexplored direction—in

the Avida system, by evolving an entirely new and therefore

usually more complex function to acquire resources, rather than

recycling one that was previously discarded after it was targeted by

the parasite. The simplest way to achieve such memory is if a para-

site population evolves generalist phenotypes that can infect mul-

tiple hosts, including types no longer common in the community.

Indeed, the coexistence of multiple host types maintained by

negative frequency-dependent selection would favor parasites with

broad host-ranges. To examine whether this population-genetic

memory existed, we quantified the average number of functions

that parasites could perform. Consistent with the memory hypoth-

esis, parasites evolved to become generalists that often performed

four or five functions and thereby could infect several different host

types (Figure 3). By contrast, we expect the hosts to evolve primarily

as specialists because an individual needs to perform only one

function to obtain resources, and performing multiple functions

makes it vulnerable to a broader range of parasites. Indeed, most

hosts performed only a single function (Figure 3), although that

function became much more complex over time (Figure 2).

To verify that the parasite’s population-genetic memory drove

the evolution of host complexity, we performed another set of

coevolution experiments using a ‘‘challenge’’ design. This design is

analogous to a microbiological approach in which bacteria are

challenged with phage, a single resistant mutant is isolated, the

phage are then challenged with the resistant host, a single host-

range mutant is isolated that can overcome the resistance, and the

cycle is repeated [26]. Using this design, diversity is lost because

only individual mutants are retained at each step, and the advan-

tage to the parasite of retaining a broad host-range (i.e., memory

of prior hosts) is reduced or eliminated. Therefore, if the parasite’s

population-genetic memory drove the evolution of host complexity

in the original coevolution treatment (Figure 2), then we expect

hosts to achieve reduced complexity under the challenge regime.

Indeed, the resulting host complexity was much lower in the chal-

lenge treatment than with coevolution (p%0.001, Mann-Whitney

U = 2,373); in fact, the challenge treatment was indistinguishable

from the populations that had evolved without parasites (p = 0.43,

Mann-Whitney U = 1,298).

We can form an intuitive understanding of the parasite’s

population-genetic memory and its effects on the evolution of

complexity using the imagery of an adaptive landscape. Consider

the case where increasing complexity is disadvantageous because

performing more complex functions requires more resources than

performing simpler tasks. In the absence of parasites, hosts will

evolve the simplest viable functions (Figure 4A). However, when

this host is targeted by parasites, the landscape is deformed,

creating a new peak at a slightly more complex task (Figure 4B).

As coevolution continues, additional hosts and parasites will evolve

and a diverse set may be maintained through negative frequency-

dependent selection. This community further depresses the

landscape, thus moving the peak toward even higher levels of

complexity (Figure 4C and 4D). To evaluate whether our experi-

ments supported this intuitive model, we measured the proportion

of parasites unable to infect hosts performing each one of the nine

logic functions on its own. That proportion represents a critical

fitness component of the host because it reflects the host’s ability to

resist infections by the parasites present in its environment.

Figure 4E–4H shows the empirical relationship between average

host fitness (i.e., resistance) and the complexity of the task performed

over evolutionary time. In support of our population-genetic

memory hypothesis, the fitness peak shifted strikingly toward higher

levels of complexity as coevolution progressed. Thus, the diversity of

parasites—with their individually and collectively broad host-

ranges—sustained a memory of previously evolved host phenotypes

and generated an adaptive landscape for the host that favored

increasingly complex tasks.

Effects of Breaking the Coevolutionary Feedback
To test whether the fitness landscape shaped by a coevolved

population of parasites was sufficient to drive the evolution of

complexity observed in our original coevolution treatment, we per-

formed a new treatment in which the parasite population began

with genotypes ‘‘frozen’’ at the frequency they occurred within

each original replicate at 250,000 updates (the halfway point,

Figure 3. Parasites evolve generalist strategies while hosts remain specialists. The purple trajectory shows the average number of different
functions performed by individual parasites across 50 replicates of the coevolution treatment. In 12 cases, the parasite population eventually went
extinct, and so the number of replicates declines to 38 over time. The black trajectory shows the corresponding average for individual hosts; host
populations were excluded from the average after the corresponding parasite populations had gone extinct. Error bars are 62 standard errors of the
mean (SEM).
doi:10.1371/journal.pbio.1002023.g003
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when the majority of host complexity and parasite diversity had

evolved), but further evolution of the parasite was precluded. To

maintain constant frequencies of the parasite genotypes, each

newly reproduced parasite was assigned a random genotype from

the 250,000-update set. After 500,000 updates in this complex-

but-static environment of frozen parasite frequencies, hosts

evolved significantly higher complexity than in the treatment

without parasites (p = 0.003, Mann-Whitney U = 1,684). However,

the hosts confronted with the complex-but-static parasite popula-

tions did not reach as high a level of complexity as when the

parasites coevolved (p%0.001, Mann-Whitney U = 1,946) (Fig-

ure 5). This disparity may indicate an effect of fluctuating

environments, such that dynamic parasite environments favor

increased host complexity more than complex-but-static parasite

environments. To test this hypothesis, we then allowed hosts to

evolve in environments where we ‘‘replayed’’ the changing para-

site genotype frequencies over time from the coevolution treat-

ment, but where these parasite genotypes did not respond to the

host evolution that was occurring within any particular replicate.

Again, the host populations that evolved in this replay treatment

achieved significantly greater complexity than those that evolved

without the parasites (p = 0.034, Mann-Whitney U = 1,529), but

the hosts in the replay treatment still did not reach as high levels

of complexity as the coevolved hosts (p%0.001, Mann-Whitney

U = 1,908) (Figure 5).

Thus, coevolved parasites—whether constant (frozen) or vary-

ing over time (replayed)—favored the evolution of hosts with more

complex functions than hosts that evolved without parasites at all.

Nonetheless, the hosts under these treatments failed to evolve the

highest level of complexity, which they achieved with coevolving

parasites. Coevolution involves reciprocal changes in which the

host population influences how the parasite population responds,

both ecologically and evolutionarily, and vice versa. Although the

parasite population was diverse in both the frozen and replayed

treatments, and while it varied in time in the latter treatment, the

evolution of the parasite population was decoupled from the

evolutionary changes that occurred in the host population. Taken

together, these experiments thus indicate that the special push-

and-pull of coevolution played a major role in the evolution of host

complexity. They also imply a more dynamic view of population-

genetic memory, one in which negative frequency-dependence

constantly tunes the parasite population in response to host evolu-

tion. Without coevolutionary reciprocity, the interactions between

host and parasite populations are dissonant and population-genetic

memory is ineffective.

Figure 4. Effects of parasites on the host’s adaptive landscape. (A) Assuming that unnecessary complexity is costly in the absence of any
direct benefit, the fitness peak corresponds to the simplest host phenotype. (B) Once parasites are introduced, the landscape is deformed and
selection favors a more complex host phenotype. (C, D) As coevolution continues, the parasites maintain a population-genetic memory of host
phenotypes, which pushes the fitness peak toward higher and higher levels of complexity. (E–H) In the coevolution runs, we quantified the effect of
parasites on the host adaptive landscape as the proportion of parasites that were unable to infect hosts performing each of the nine logic functions.
doi:10.1371/journal.pbio.1002023.g004

Figure 5. Frozen and replayed parasite genotypes fail to
recapitulate the level of complexity seen in the coevolution
treatment. Host complexity was measured as in Figure 2, and the
coevolved (red) and evolved-without-parasites (blue) treatments are
shown as before. The grey trajectory indicates the mean level of host
complexity that evolved when parasite genotype frequencies were
frozen at the values observed after 250,000 updates of coevolution. The
orange trajectory shows the level of complexity that hosts evolved in
the replay treatment, where they faced changing, but not coevolving,
parasite populations. In this treatment, the parasite genotype
frequencies were set to the levels observed during coevolution runs
at 1,000-update intervals. The parasites went extinct before 250,000
updates in one of the coevolution replicates, and so the frozen
treatment started with 49 replicates. In three of the 49 replicates of the
frozen treatment, the hosts overcame the parasites and drove them
extinct. In the replay treatment, a total of 30 host populations drove the
replayed parasites extinct (including the 12 that went extinct during
coevolution). Error bars are 62 standard errors of the mean (SEM).
doi:10.1371/journal.pbio.1002023.g005
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Effects of Starting Condition on Evolved Complexity
We started the previous experiments with hosts and parasites

capable of performing only the simplest logic functions in order to

understand how coevolution might drive the emergence of

complex functions from simpler ones. However, we can also ask

whether coevolution would sustain the greater functional com-

plexity if the experiments began with hosts and parasites that could

perform the most complex function, EQU. Indeed, coevolution

maintains much higher complexity than evolution alone from this

alternative starting point (Figure 6). In these runs, host complexity

initially declined rapidly when the parasites were present because

the hosts readily escaped by performing new, simpler, tasks.

However, as the hosts exhausted the simple tasks that were easily

evolved, their complexity leveled off at a higher value than without

parasites (p%0.001, Mann-Whitney U = 2,305) (Figure 6). Al-

though the average complexity across populations never dropped

below ,3, genotypes within the host populations explored the

simplest functions (Figure S1). In all but one population, the

frequency of hosts that performed only the simplest tasks tran-

siently exceeded 10%. The apparent equilibrium levels of host

complexity with and without coevolving parasites were evidently

the same whether the experiments began at low or high comple-

xity (compare Figures 2 and 6).

Effects of Coevolving Parasites on Host Phylogeny
Coevolution with parasites also had profound effects on the

phylogenetic structure of host populations and on the phenotypic

evolvability of host genomes. With respect to phylogenies, the

frequency-dependent nature of host-parasite interactions promotes

not only greater diversity at any given moment but also deeper

branches that reflect the preservation of diversity through time. In

Avida, we can track genealogies precisely and thus construct exact

phylogenetic trees, avoiding uncertainty about historical states and

branch lengths. Figure 7 shows representative trees for host

populations that evolved in the presence and absence of parasites,

and they differ strikingly in their coalescence profiles. To formalize

this difference, we calculated the time since the most recent

common ancestor (MRCA) for all 50 host populations in the

coevolution and evolution-without-parasites treatments (Figure 8).

The MRCA in coevolved host populations usually arose soon after

the experiment began (median 3% of the total elapsed time),

whereas the MRCA in the absence of parasites typically dated to

well after the midpoint (median 70%), and this difference is highly

significant (p%0.001, Mann-Whitney U = 1,742). Thus, coevolution

not only affects the outcome of adaptation, but also fundamentally

changes how those outcomes are reached. Coevolution was similarly

found to increase the rate of adaptation when embedded in

multispecies networks of mutualists [27]. Although the systems and

form of interactions are different, their similar results suggest the

important role reciprocity plays in evolving systems.

Effects of Coevolving Parasites on Host Evolvability
Previous research using Avida showed that different treatments

could drive populations into qualitatively different regions of the

fitness landscape; specifically, populations that experienced higher

mutation rates evolved onto lower but flatter regions of genotypic

space than populations that evolved at lower mutation rates, a

phenomenon dubbed ‘‘survival of the flattest’’ [28]. Here we

examine whether coevolution with parasites produced host genomes

that were more evolvable with respect to escaping infections. To

that end, we mapped phenotypic changes onto every possible one-

step point mutation for the most common host genotype from all

evolved and coevolved populations at the end of the experiment.

Several types of phenotypic changes are possible including the gain

of a function, the loss of a function, or switching which function is

performed without changing the total number of functions

performed. Mutations in the last category are of particular interest

because, in the presence of parasites, the ability to switch functions

without requiring intermediate steps (adding a new function before

Figure 6. Higher levels of host complexity are also maintained
with coevolving parasites when starting from complex ances-
tors. As in Figure 2, complexity was measured as the minimum number
of NAND instructions that must be executed by a host to perform its
most complex logic function, averaged over all individuals in a
population. The blue trajectory shows the grand mean complexity
across 50 replicate populations that evolved in the absence of parasites.
The red trajectory shows the corresponding values for 50 host
populations that coevolved with parasites. In nine coevolution runs,
the parasites went extinct. All populations started with a single host
genotype that performed only the EQU function, the most complex task
available to them. Error bars are 62 standard errors of the mean (SEM).
doi:10.1371/journal.pbio.1002023.g006

Figure 7. Effect of coevolving parasites on host phylogenies.
Representative phylogenies for hosts that evolved in the (A) presence
and (B) absence of parasites. The branch leading to the original ancestor
is too short to be seen in (A). The phylogenies show all of the host
genotypes present at the end of the run, and the phylogenies are
known exactly in this system.
doi:10.1371/journal.pbio.1002023.g007
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losing the old one) could be adaptive. That is, more evolvable hosts

would be able to change phenotypes faster and could thereby escape

coevolving parasites more readily. While selection does not directly

favor hosts with more evolvable genotypes, they are more likely to

produce surviving lineages when coevolving with parasites; thus,

second-order selection could drive the evolution of evolvability. In

strong support of this hypothesis, function-switching mutations were

.10-fold more common in hosts that evolved with parasites than in

hosts that evolved without parasites (p%0.001, Mann-Whitney

U = 2,338) (Figure 9). To evaluate whether this effect might some-

how merely reflect the more complex tasks typically performed by

coevolved hosts, we analyzed pairs of genotypes from the coevolved

and evolved host populations that perform identical sets of tasks.

The coevolved hosts were still significantly more evolvable than

their paired evolved host (P%0.001, Wilcoxon signed-rank

W = 112,616.5) (Figure 10), although the frequency of task-switch-

ing mutations tended to be lower in both treatments after this

pairing procedure. Thus, coevolution drove host populations to

occupy more evolvable regions of the adaptive landscape.

Taken together, our experiments show that parasites pushed

hosts to levels of functional complexity that were well beyond what

they achieved by random walks (Figure 2). This complexity resulted

from population-level processes [29–31], in which frequency-

dependent interactions sustained generalist parasites (Figure 3) that

were supported by phenotypically and phylogenetically diverse

hosts (Figures 7 and 8). If population-level effects were eliminated,

as in the challenge experiments, then host complexity remained low.

Moreover, if the coevolutionary feedback between hosts and para-

sites was broken by freezing or replaying parasite genotypes, then

hosts did not evolve such complex tasks as when parasite popula-

tions could respond to the changing host population (Figures 4

and 5). Although the form of interactions between the hosts, their

resources, and parasites in our study system (Figure 1) strongly

constrained host evolution (e.g., hosts performing multiple functions

were more broadly susceptible to parasites and rarely observed),

hosts nevertheless overcame these limitations by becoming more

evolvable (Figure 9). In particular, host genomes evolved such that a

much larger proportion of mutations caused a switch from one

resource-acquisition function to another, thereby allowing hosts to

escape, in a single step, parasites that targeted the first function.

These results—from an unusual but highly tractable system—add to

growing evidence from experiments and theory that coevolutionary

processes promote biological diversity, new functions, and evolva-

bility [16,17,20–25,29–35].

Figure 8. Effect of coevolution on coalescence times in host
phylogenies. The data are shown as box plots and smoothed
frequency distributions for the times of origin of the MRCA in 38 host
populations that coevolved with parasites (excluding the 12 runs where
the parasites went extinct) and 50 populations that evolved without
parasites. The MRCAs arose significantly earlier in the coevolution
treatment. The tail of the distribution for the coevolution treatment is
more pronounced if we include the host populations where the
parasites went extinct, but the difference remains highly significant
(p%0.001, Mann-Whitney U = 1,859). Box hinges depict first and third
quartiles and whiskers extend 1.56 interquartile range (IQR) out from
their corresponding hinge.
doi:10.1371/journal.pbio.1002023.g008

Figure 9. Proportion of point mutations in host genomes that
switch functions without changing the number of functions
performed. The data are shown as box plots and smoothed frequency
distributions. Proportions were obtained by testing all possible one-
step point mutations in the genetic background of the most abundant
host genotype at the end of all 50 runs with and without parasites. Box
hinges depict first and third quartiles and whiskers extend 1.56inter-
quartile range (IQR) out from their corresponding hinge.
doi:10.1371/journal.pbio.1002023.g009

Figure 10. Proportion of point mutations that switch functions
without changing the number of tasks performed in paired
genotypes, where each pair includes hosts from the coevolu-
tion and evolution treatments that perform identical sets of
tasks. Proportions were obtained by testing all possible one-step point
mutations in each genetic background. Box hinges depict first and third
quartiles and whiskers extend 1.56interquartile range (IQR) out from
their corresponding hinge.
doi:10.1371/journal.pbio.1002023.g010
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Materials and Methods

Evolution Experiments
All experiments were performed using the Avida 2.13.0

software, which is available without cost (http://avida.devosoft.

org/). Configuration files with the parameter settings used and

data files have been deposited into the Dryad Repository: http://

dx.doi.org/10.5061/dryad.485qq [36]. Host and parasite popula-

tions lived in a well-mixed chemostat-like environment, with a

single type of resource entering at a constant rate. Hosts obtained

resources required for replication by performing any of nine

distinct one- and two-input logic functions, provided there were

resources available in the environment. A parasite could infect a

host if they performed at least one function in common, and an

infecting parasite then acquired 80% of its host’s energy (CPU

cycles) [37]. The ancestral hosts and parasites could perform only

NOT, one of the two simplest functions. We initially monitored

evolution under two main treatments, each with 50-fold replica-

tion: host organisms evolved alone in one treatment, and they

coevolved with parasites in the other. Each replicate started with a

different numerical seed, and the resulting sequence of pseudo-

random numbers influenced mutations, parasite-host encounters,

and other probabilistic events. The parasites went extinct in 12

coevolution runs; except where otherwise noted, we included those

runs in our analyses. In a third treatment, the parasites were

experimentally removed halfway through each run, with the first

half being identical to a run in the coevolution treatment (i.e.,

using the same initial seed).

All runs lasted for 500,000 updates; an update is an absolute

time unit in Avida equal to the execution, on average, of 30

instructions per individual host organism. Generation times for the

ancestral host and parasite genotypes were 63 and 23 updates,

respectively, although generation times changed as genomes evolved.

Each host population began with one individual; the carrying

capacity was 14,400 in the absence of parasites. In the coevolution

treatment, 400 parasites were introduced after 2,000 updates; only

a single parasite could infect an individual host. Mutation rates

were 0.25 and 0.5 per genome replication for the ancestral host and

parasite, respectively, of which 90% were point mutations and 5%

each were insertions or deletions of single instructions. Per-site

mutation rates were constant, so total genomic rates varied with

changes in genome length. Mutations occurred at random with

respect to genome position.

Challenge Experiment
To eliminate all population-level interactions in both species, we

screened individual hosts and parasites for defenses and counter-

defenses, rather than using evolving populations. Starting from the

same ancestral host, we generated thousands of individuals using

the same mutation regime as in the evolution experiments, and we

randomly chose a single host mutant that was resistant to the

ancestral parasite. We then repeated this process for parasites,

again using the same mutation regime as in the evolution experi-

ments, and we isolated a host-range mutant able to infect that

resistant host mutant. We continued the pairwise challenges using

the derived host and parasite genotypes for 50 rounds. A challenge

experiment was stopped if we failed to isolate a relevant mutant

after screening 500,000 individuals. In the comparisons with the

evolution and coevolution treatments, we used 56 challenge

experiments (out of 100 started) that achieved the full 50 rounds of

reciprocal defenses and counter-defenses. However, the truncated

runs appeared to be indistinguishable from those that went the full

duration.

Freeze and Replay Experiments
In these experiments, we allowed host populations to evolve

with either ‘‘frozen’’ or ‘‘replayed’’ parasites. During the original

coevolution experiments, we saved each replicate’s entire set of

host and parasite genotypes every 1,000 updates. We modified the

Avida source code such that this record of genotypes can be loaded

into an on-going run at any point by adding an option to override

the normal replication process with one that samples from a

genotype list. When organisms reproduce, instead of inheriting

their parent’s genome, the offspring is assigned a random genotype

from the list. This procedure can be implemented for hosts, para-

sites, or both; however, in the freeze and replay experiments

presented here, we manipulated only the parasite populations

using this new procedure. In both treatments, we injected 1,500

parasites into the host population after 2,000 updates; this number

was increased relative to the coevolution treatment to ensure that

the frozen and replayed parasite populations, which were some-

times poorly adapted to the ancestral host, did not go extinct.

In the freeze treatment, each host population confronted a

parasite population that was complex and diverse, but constant in

its genotypic frequencies over an entire run (except for the

fluctuations associated with births and deaths of the parasites). The

composition of each parasite population was based on the list of

parasites taken at the mid-point (i.e., 250,000 updates) of one of

the coevolution treatment runs. Thus, the genetic composition of

the parasite population was frozen throughout the run, although

the total number of parasites could rise or fall in accord with the

dynamics of infections. Under the replay treatment, the frequen-

cies of parasite genotypes changed over time, but those changes

were based on parasite evolution that had taken place in an earlier

coevolution run, rather than on the dynamics that were occurring

in the replay itself. That is, the list of parasite genotypes from

which new parasites were drawn was changed every 1,000 updates

to reflect what had happened in the earlier run. As a consequence,

the host could evolve in response to the changing frequencies of

the various parasite genotypes, but not vice versa—the coevolu-

tionary feedback was broken, although parasite diversity and the

temporal changes in that diversity were preserved.

Phylogenetic Analysis
In Avida, the genealogy of organisms is known perfectly and,

when coupled with the asexual lineages studied here, allows con-

struction of the exact phylogenetic history for a population. We

used the python ete2.1 module to represent (Figure 7) all of the

genotypes present in two host populations along with their ances-

tries through the various coalescences, the most recent common

ancestor for the entire population, and the founding genotype.

Evolvability Analysis
We tested every possible one-step point mutation in the genetic

background of the most abundant host genotype at the end of all

50 evolution and coevolution runs. Each mutant was placed into

one of the following categories based on the phenotypic changes

relative to its parent: (i) the mutant cannot perform any functions

or is otherwise nonviable; or (ii) the mutant is viable and (a) there is

no difference in the number or identity of functions performed; (b)

the mutant performs more functions; (c) the mutant performs

fewer functions; or (d) the identity of functions performed has

changed, but the number has not. The last category, which we call

‘‘switching,’’ was the focus of our analysis.

We also modified this analysis to take into account possible

effects of differences in the number and complexity of tasks

performed by pairing host genotypes isolated from the evolved and

coevolved populations that performed identical sets of tasks.

Coevolution Drives Complexity and Evolvability

PLOS Biology | www.plosbiology.org 8 December 2014 | Volume 12 | Issue 12 | e1002023

http://avida.devosoft.org/
http://avida.devosoft.org/
http://dx.doi.org/10.5061/dryad.485qq
http://dx.doi.org/10.5061/dryad.485qq


Genotypes were pooled across the replicate runs based on what

tasks they could perform. All of the coevolved populations were

compared with all of the evolved populations to identify paired

host phenotypes that performed identical sets of tasks. For each

pair of phenotypes thus identified, a genotype from the evolved

and coevolved populations that performed the appropriate set of

tasks was chosen at random, and all possible one-step mutations

were then generated for both genotypes.

Supporting Information

Figure S1 Proportion of hosts at all five levels of
complexity over the first 25,000 updates in each of the
50 replicates seeded with the most complex ancestors.
White regions represent host genotypes that performed only the

simplest tasks, while progressively darker regions represent hosts

that performed more complex functions. All of the host populations

transiently harbored subpopulations that could perform only the

simplest functions, although coevolving parasites drove the host

populations to perform more complex functions on average

(Figure 6).

(TIF)
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