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Multiple Sclerosis (MS) is characterized by immune cell infiltration to the central nervous

system (CNS) as well as loss of myelin. Characterization of the cells in lesions of MS

patients revealed an important accumulation of myeloid cells such as macrophages

and dendritic cells (DCs). Data from the experimental autoimmune encephalomyelitis

(EAE) model of MS supports the importance of peripheral myeloid cells in the disease

pathology. However, the majority of MS therapies focus on lymphocytes. As we will

discuss in this review, multiple strategies are now in place to target myeloid cells in clinical

trials. These strategies have emerged from data in both human and mouse studies.

We discuss strategies targeting myeloid cell migration, growth factors and cytokines,

biological functions (with a focus on miRNAs), and immunological activities (with a focus

on nanoparticles).
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INTRODUCTION

Myeloid cells play critical roles in the health and diseases of the central nervous system (CNS). For
example, myeloid cells constitute a significant proportion of the cells found within perivascular
infiltrates in CNS lesions of Multiple Sclerosis (MS) and its animal model, experimental
autoimmune encephalomyelitis (EAE) (1–3). Myeloid cells are also critically involved in the
secondary damage in spinal cord injury (SCI) and traumatic brain injury (TBI) (4–6). These
myeloid cells have the ability to attract other immune cells, release neurotoxic factors, phagocytose
proteins and debris and promote the expansion, and polarization of antigen-specific T cells in
the CNS. In addition to their capacity to induce and sustain inflammation, myeloid cells are also
critically involved in communication with glial cells and neurons, as well as in promoting and
maintaining peripheral tolerance (7–9).

MS is an inflammatory autoimmune disease wherein cells of the immune system initiate an
attack against myelin in the CNS that supports axonal conduction. The immune response in MS is
thought to be mediated by autoreactive T lymphocytes that recognize myelin peptides. Typically,
demyelination is associated with an accumulation of T lymphocytes (lymphoid component of
infiltrates) and monocytes/ macrophages/ dendritic cells (myeloid cells component of infiltrates)
that arise from the migration of peripheral blood immune cells across the CNS microvascular
endothelium (10–12).As they infiltrate the CNS, encephalitogenic T lymphocytes require the
presence of these blood-derived antigen-presenting cells (APCs) to further sustain lymphocyte
proliferation and cytokine polarization in the CNS compartment (13–16). The role of these
peripherally-derived myeloid cells in CNS inflammation will be the focus of the present review.

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.571897
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.571897&domain=pdf&date_stamp=2020-10-06
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s-d-miller@northwestern.edu
https://doi.org/10.3389/fimmu.2020.571897
https://www.frontiersin.org/articles/10.3389/fimmu.2020.571897/full


Ifergan and Miller Myeloid Cells Targeting in MS

ROLE OF MYELOID CELLS IN THE
PATHOGENESIS OF MS AND OTHER
AUTOIMMUNE DISEASES

Experimental autoimmune encephalomyelitis is a commonly
utilized mouse model of MS that recapitulates many aspects
of the human disease such as the CNS inflammation,
encephalitogenic T cell infiltration, and attack of
oligodendrocytes resulting in demyelination. Although not
perfect, EAE has allowed uncovering some of the molecular
pathways governing the pathogenesis of MS such as elucidating
the pathogenic role of TH17 lymphocytes. In addition, EAE
models were critical in identifying and testing new therapeutic
agents such as glatiramer acetate (GA) and Natalizumab (17).

Although myeloid APCs play a prominent role in the
pathogenesis of MS, there has been little consideration given
to targeting these cells as an MS therapy. Some of the current
MS disease-modifying therapies may act on myeloid cells even
if these cells were not the original intended targets (18).
However, interfering directly with myeloid cell has proven
to be efficacious in other diseases including psoriasis with
multiple drugs targeting IL-23 (Guselkumab, Risankizumab,
and Tildrakizumab) or IL-12 and IL-23 (Ustekinumab) (19),
Crohn’s disease and ulcerative colitis targeting IL-12 and IL-
23 (Ustekinumab) (20), rheumatoid arthritis targeting IL-1
(Anakinra) (21), systemic juvenile idiopathic arthritis targeting
IL-1β (Canakinumab) (22), and many others. There are ongoing
clinical trials in rheumatoid arthritis, stroke, atherosclerosis, and
cancer using agents that target myeloid cells and their products.
Biber et al. have provided a recent comprehensive review of drugs
in clinical trials targeting myeloid cells in CNS diseases such as
Alzheimer’s disease, brain tumors, and inflammatory pain, as well
as for other CNS diseases (23).

As we will discuss in this review, multiple tools have been
developed in the EAE models of MS demonstrating significant
regulation of disease progression by various approaches blocking
myeloid cell activation and effector function, but to date, these
approaches have not been tested for therapeutic efficacy in
MS patients.

TARGETING MYELOID CELL MIGRATION

The first strategy we will discuss is interference with peripheral
myeloid cell migration to the CNS. The blood-brain barrier
(BBB), composed of tightly bound endothelial cells (ECs),
regulates the entry of blood-borne molecules and immune
cells into the CNS. Under physiological conditions, a limited
number of peripheral blood immune cells gain access to the
CNS, a process called immune surveillance (24). During an
inflammatory process, meningeal, and BBB-ECs amplify the
migration of immune cells into the CNS parenchyma, in a multi-
step process that involves selectins, chemokines and cell adhesion
molecules (25). BBB-ECs express cell adhesion molecules such as
intercellular adhesion molecule (ICAM)-1, vascular cell adhesion
molecule (VCAM)-1, activated leucocyte cell adhesion molecule
(ALCAM), and melanoma cell adhesion molecule (MCAM)

which mediate at least in part, the adhesion process and
the transmigration of leucocytes to the CNS through their
interaction with integrins αLβ2 [leucocyte function-associated
antigen (LFA)-1], α4β1 [very late antigen (VLA)-4], CD6, and
MCAM respectively (26–31). Interfering with immune cell
trafficking across the BBB by targeting adhesion molecules has
proven to be beneficial in reducing clinical disease activity and
pathological indices in MS (32). Indeed, Natalizumab, which
blocks VLA-4, the ligand of VCAM-1, is reported to reduce
migration of most leukocyte subtypes, including myeloid cells,
into the brain.

More recently, a new adhesion molecule expressed by BBB-
ECs called Nerve injury-induced protein (Ninjurin)-1 was
described (33). Ninjurin-1 is a membrane protein known to
interact in a homophilic manner through an extracellular
residue-binding motif (34). On immune cells, Ninjurin-1 was
weakly expressed by lymphocytes, but highly expressed by
peripheral myeloid APCs including monocytes, macrophages
and dendritic cells (DCs), in humans and mice. Interestingly,
Ninjurin-1 was also found to be expressed in MS lesions.
Ninjurin-1 neutralization specifically abrogated the adhesion
and migration of human monocytes across a monolayer of
BBB endothelial cells, without affecting lymphocyte recruitment.
Moreover, Ninjurin-1 blockade during the course of EAE
reduced infiltration of peripheral myeloid cells and reduced
clinical disease activity and histopathological indices of EAE (33).

Another adhesion molecule involved in the migration
of peripheral myeloid cells is junctional adhesion molecule
(JAM)-like (JAML). JAMs are type I transmembrane proteins
differentially expressed at the junctions of ECs, epithelial cells,
and on various leukocytes (35). Similarly to Ninjurin-1, JAML
can interact in a homophilic manner (36). It was observed that
JAML is expressed by BBB-ECs, and has an increase expression
in MS lesions compared to normal appearing white matter (37).
In addition, human monocytes and CD8+ T cells were found
to express JAML, and its level was significantly increased on
RRMS patients when compared control subjects: 80 vs. 52% for
monocytes, and 5.5 vs. 2.1% and for CD8+ T cells. These data
reveals that JAMLmight be a more important adhesion molecule
for monocytes than for CD8+ T cells. However, migratory
capacity of both cell types was significantly compromised when
JAML was blocked.

Chemotactic cytokines (chemokines) are secreted proteins
that regulate the migration of leukocytes. Chemokine receptor
signaling plays a central role in cell migration during
inflammatory responses in autoimmune and infectious diseases
as well as in cancer. There are ∼50 chemokines and 20 receptors
known at this time. Blockade of CCR1 and CCR2 have been
the two majors targets in a half dozen MS clinical trials (38).
The chemokines CCL3 (macrophage inflammatory protein-
1α–MIP-1α) and CCL5 (regulated on activation, normal T cell
expressed and secreted—RANTES) bind to CCR1, while CCL2
(monocyte chemoattractant protein 1—MCP-1) binds to CCR2.
Both lymphoid and myeloid cells express CCR1 and CCR2, with
monocytes/macrophages/DCs the cells where these chemokine
receptors are most abundant (39–42). In animal models of
MS, it was shown that CCR1-deficient animals developed
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a less severe disease (43), while CCR2-deficient mice were
completely resistant to disease induction (44, 45), highlighting
the importance of signaling through these chemokine receptors
for disease initiation. In addition, it has been shown that
CCR2+Ly-6Chi monocytes are rapidly recruited to the inflamed
CNS in EAE and are crucial for the effector phase of disease.
Selective depletion of this specific monocyte subpopulation
through engagement of CCR2 significantly reduced disease
severity (46). CCR1+ and CCR2+ macrophages were both
found in active MS lesions (47, 48). The role of chemokines
and their receptors are now well-characterized in MS and other
inflammatory diseases. The potential for a therapy targeting
this signaling pathway is well-recognized. However, none of the
chemokine-directed MS clinical trials has shown robust clinical
efficacy. Similar lack of clinical responses have also been reported
in therapeutic trials targeting chemokines in other diseases such
as rheumatoid arthritis, psoriasis, asthma, and many others (49).
The issue may lie in the redundancy of chemokine/chemokine
receptor action, in which case, it may be beneficial to develop
strategies employing multiple antagonists simultaneously.

As innate cells, myeloid cells express pattern recognition
receptors (PRRs). PRRs include Toll-like receptors (TLRs), RIG-
I-like receptors, NOD-like receptors, and C-type lectin receptors
(CLRs) (50). Selectins, which are part of the C-type lectins
family, are known to play a crucial role in the control of
leukocyte trafficking and homing to sites of inflammation (51).
Selectins are particularly important for the rolling of cells
on endothelial cells, an important component of migration
of myeloid cells into tissue sites of inflammation (52). More
recently, it was uncovered that CLEC12A, a CLR, was involved
in facilitating binding and transmigration of DCs across the BBB
in response to CCL2 chemotaxis (53). In EAE, CLEC12A−/−

mice displayed delayed disease onset and significantly reduced
disease severity. Additionally, in a chronic model of EAE, anti-
CLEC12A antibody treatment initiated at disease initiation also
delayed onset and lessened disease severity. Anti-CLEC12A
antibody administration to mice undergoing relapsing-remitting
EAE after disease onset, resulted in less severe disease
relapse (53). Although the ligand of CLEC12A is currently
unknown, it was suggested that the ligand is present on BBB
endothelial cells (53).

TARGETING MYELOID CELL ACTIVATION
AND CYTOKINES

Growth Factors
Abundance of immune cells as well as cytokines, chemokines and
immunoglobulins in MS plaques and their accumulation in the
cerebrospinal fluid (CSF) of MS patients, support the notion that
MS is an inflammatory disorder. These observations lend support
to the idea that immune cell products, especially cytokines, have
an important role in both the induction and progression of MS.
Targeting cytokines has been a successful strategy used in therapy
of other inflammatory diseases. For example, blockade of tumor
necrosis factor (TNF) has shown positive results in Rheumatoid
Arthritis and Crohn’s disease (54, 55). As of December 2016,

TNF inhibitors were the world’s leading drug class, with sales of
more than US $30 billion and used in more than seven million
patients (56). In MS, the first treatment approved for RRMS was
interferon (IFN)-β, thus showing that cytokines manipulation is
potentially a good strategy.

Current data suggests that MS, and its animal model, EAE, are
driven by both TH1 lymphocytes, producing IFN-γ, interleukin
(IL)-2 and TNF, and TH17 lymphocytes, producing IL-17, IL-21,
IL-22, and Granulocyte-macrophage colony-stimulating factor
(GM-CSF also known as CSF-2). Surprisingly, IFN-γ, IL-12,
IL-17A, IL-17F, IL-21, and IL-22 have all been shown to be
dispensable for the development of EAE [reviewed in (57);
discussed here (58)]. However, in 2011, the CNS pathogenicity
of TH17 cells was reported to be primarily associated with their
production of GM-CSF (59, 60). GM-CSF production by T cells
has been correlated with pathogenesis in several autoimmune
diseases, including MS, rheumatoid arthritis, and myocarditis.
It was reported that IL-1β- and IL-23-induced production of
GM-CSF by CNS-infiltrating CD4+ T cells is essential for the
induction of EAE (59, 60).

GM-CSF is a hematopoietic growth factor produced by a
number of hematopoietic and non-hematopoietic cell types
including activated CD4+ T cells, monocytes/macrophages, B
cells, NK cells, endothelial cells and epithelial cells. GM-CSF
has a wide array of functions, notably the survival and
activation of myeloid cells, the ability to induce differentiation
of dendritic cells (DCs), the polarization of macrophages
toward a pro-inflammatory M1 phenotype, enhanced
antigen presentation, the induction of complement- and
antibody-mediated phagocytosis, and the mobilization
of monocytes and other myeloid populations from bone
marrow to blood (61–63).

The GM-CSF receptor (GM-CSF Rc) is a heterodimer
comprised of a specific low-affinity α chain (CD116; GM-CSF
Rα) and a common β chain (CD131; GM-CSF Rβ) that is
shared by IL-3 and IL-5 (64). The GM-CSF Rc is expressed
in multipotent myeloid progenitor cells and continues to be
expressed throughout myeloid development on monocytes, DCs,
macrophages and neutrophils (65–67). It is not expressed by
T and B lymphocytes (67). Thus, most of the suspected direct
effects of the GM-CSF in diseases are focused on myeloid cells
(peripheral and CNS resident).

Findings related to the function of GM-CSF signaling in
EAE pathology have been recently reviewed (68). In brief,
in EAE, GM-CSF is necessary for disease as GM-CSF KOs
were found to be resistant to disease induction (69). Disease
can be rescued by the administration of recombinant GM-
CSF. Adoptive transfer using cytokine-deficient mice showed
that wild-type, IL-17A−/−, and IFNγ−/− T cells induced
EAE with similar kinetics. By contrast, GM-CSF−/− T cells
were incapable of inducing EAE and invading the CNS (59).
Due to the variety of cells GM-CSF can stimulate, it became
important to determine the cell population in which signaling
was necessary for disease. A bone marrow chimera study
determined that peripheral myeloid cells, but not microglia, are
key responders (59). This corresponds with earlier observations
that GM-CSF administration stimulated CD11b+ Ly6Chi
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inflammatory monocytes into the circulation (70). Circulating
Ly6Chi monocytes traffic across the blood-brain barrier, up-
regulate pro-inflammatory molecules, and differentiate into
central nervous system DCs and macrophages (70). These data
were confirmed recently using conditional gene targeting in
which the β chain of the GM-CSF receptor (Csf2rb) was deleted
in specific subpopulations throughout the myeloid lineages
(71). It was found that deletion of Csf2rb in CCR2+Ly6Chi

monocytes phenocopied the EAE resistance seen in complete
Csf2rb-deficient mice.

In humans, GM-CSF levels in the CSF are higher in patients
with active MS than in patients in remission (72). Also, untreated
MS patients had significantly greater numbers of CD4+ GM-
CSF+ T cells and CD8+ GM-CSF+ T cells in peripheral
blood compared with healthy controls and with IFN-β-treated
MS patients (73). In addition, IFN-β significantly suppressed
GM-CSF production by T cells in vitro. More recently, the
Canadian B cells in MS Team uncovered a subset of memory B
cells producing GM-CSF (74). In vitro, GM-CSF–expressing B
cells efficiently activated myeloid cells in a GM-CSF–dependent
manner, and in vivo, B cell depletion therapy resulted in
a GM-CSF–dependent decrease in pro-inflammatory myeloid
responses of MS patients.

In light of the critical role of GM-CSF in the pathogenesis
of MS and other inflammatory diseases, multiple tools have
been developed targeting either the cytokine or the receptor.
First tested in EAE, it has been shown that blocking antibodies
against GM-CSF in chronic (C)-EAE (69) or antibodies against
GM-CSF Rα in C-EAE and Relapsing-Remitting (RR)-EAE
(75) were able to prevent disease if given at the time of EAE
induction (day 0). Mice treated with anti-GM-CSF after disease
onset completely recovered within 20 days of treatment in a
model of C-EAE (69). Therapeutic treatment with anti-GM-
CSF Rα ameliorated progression of C-EAE and resulted in a
significant reduction of the relapse severity of RR-EAE (75).
Blockade of the GM-CSF Rα led to a reduction of activated
mDCs, and reduced pro-inflammatory cytokine production
by CD11b+ Ly6C+ inflammatory monocytes. Additionally,
anti-GM-CSF Rα altered the expression of chemokine receptors,
leading to the possibility that antibody treatment may impede
cell migration (75).

Logically, the next step is to test the therapeutic potential
of GM-CSF targeting in humans. A review of tools developed
for clinical trials can be found here (76). At this time, GM-CSF
blocking antibodies have been tested in Rheumatoid Arthritis
and have shown promising results. As for MS, only one drug
has been tested in clinical trials: MOR-103 (also known as
GSK3196165 or otilimab), a human antibody to GM-CSF. The
results of a Phase Ib clinical trial employing MOR-103 in
patients with relapsing-remitting or secondary-progressive MS
have shown the drug to be safe and well-tolerated, although
with modest efficacy (77). At this moment, there are no ongoing
clinical trials targeting GM-CSF or GM-CSF receptor in MS.

Another important growth factor regulating myeloid cell
function is macrophage colony-stimulating factor (M-CSF
also known as CSF-1). M-CSF is ubiquitously produced in
the steady state by a variety of cells, including endothelial

cells, fibroblasts, osteoblasts, smooth muscle, and macrophages,
and can be detected in plasma at ∼10 ng/ml (78–80). The
levels of circulating M-CSF are upregulated in pregnancy (81)
as well as in many different pathologies including cancer,
autoimmune diseases and chronic inflammation (82–86). M-
CSF stimulates progenitor cells from bone marrow and plays an
important regulatory role in the survival, proliferation (in mice),
differentiation, phagocytosis, and chemotaxis of myeloid cells,
including monocytes, macrophages, DCs, and microglia (87–89).
The effects of M-CSF are mediated by signaling through the type
III tyrosine kinase transmembrane receptor CSF-1R (CD115),
which is encoded by the c-fms proto-oncogene (90). IL-34 is
also able to bind CSF-1R with similar outcomes as to M-CSF
binding (88). However, M-CSF and IL-34 present differences
in their spatiotemporal expression patterns, and thus seem to
play complementary roles in their biological activities on target
cells (88, 91, 92). CSF-1R is expressed by myeloid cells such
as monocytes, macrophages, DCs, and microglia, as well as by
trophoblasts, neural progenitor cells and epithelial cells (93, 94).

There is ongoing debate about whether M-CSF is a
pro-inflammatory or pro-repair cytokine. M-CSF seems to
be essential for the survival and renewal of tissue-resident
macrophages, but not for circulating myeloid cells. Indeed,
in the osteopetrotic Csf1op/Csf1op mouse, which harbor an
inactivating mutation in the coding region of the CSF-1 gene
and are M-CSF deficient, the functions and numbers of several
tissue macrophage populations are altered while there is no
difference in monocyte populations in the blood (95). These
findings were later confirmed in mice deficient for a specific
enhancer for Csf-1r gene, the fms-intronic regulatory element
(FIRE) (96). Csf1r1FIRE/1FIRE mice present a deficit in tissue
resident macrophages in the brain (microglia), skin, kidney,
peritoneal, and heart without significant differences in blood
monocytes. During inflammation, the presence of monocytes in
inflamed tissue is critical for proper immune responses, notably
due to their capacity to traffic to draining lymph nodes and
their ability to present antigens to T cells (2, 97–103). While
tissue resident macrophages also participate in inflammatory
processes, their role in promoting tissue repair and regeneration
is critical (104, 105). For example, M-CSF favors kidney and
liver repair after acute injury (106–108). Moreover, M-CSF is
used to drive human and in mouse macrophage differentiation
in vitro into an anti-inflammatory (M2) phenotype (109–111).
In EAE, it was shown that peritoneal APCs treated with M-
CSF and pulsed with MOG35−55, the disease initiating peptide,
were able to suppress ongoing EAE when injected at the time of
disease initiation or significantly reduce the severity of the disease
when injected at day 7 post-immunization (112). These M-CSF
activated APCs were demonstrated to induce a Treg profile from
CD4+ T cells (CD25+ FoxP3+) with increased secretion of IL-10
and decreased secretion of IL-17, IFN-γ, and TNF (112).

However, as mentioned earlier, elevated levels of M-CSF
are also observed in different pathologies. There are multiple
publications linking M-CSF/IL-34 and CSF-1R signaling in
models of arthritis (113–116), diabetes (117), systemic lupus
erythematosus (85, 118), cancer (119–121), amyotrophic lateral
sclerosis (122), Parkinson’s disease (123), and Alzheimer’s disease
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(124–126). In an effort to determine the role of M-CSF/IL-34
and CSF-1R signaling in MS, different groups used potent c-
fms tyrosine kinase inhibitors, which block M-CSF signaling.
Ki20227 (127), imatinib (128), GW2580 (128, 129), sorafenid
(128), and PLX5622 (130) are all tyrosine kinase inhibitors
that have shown to effectively treat C-EAE. GW2580 has the
greatest apparent specificity for CSF-1R vs. the other kinase
inhibitors (131). Amelioration of EAE using Ki20227 was
associated with the suppression of myeloid cell expansion in
the spleen and reduction in MOG-specific T-cell proliferation
(127). GW2580 and sorafenib suppressed TNF-α production by
macrophages whereas imatinib and sorafenib both abrogated
PDGF-induced proliferation of astrocytes (128). PLX5622 effect
was associated with microglia and macrophage ablation from the
white matter (130). However, in the cuprizone model of CNS
demyelination, which allows study of the remyelination process
with little involvement of the peripheral immune cells (132),
injection of M-CSF reduced demyelination by boosting microglia
activity (133). Tamoxifen-induced conditional deletion of the
CSF-1R in microglia from cuprizone-fed mice caused aberrant
myelin debris accumulation and reduced microglial phagocytic
responses (89, 133). These data indicate that M-CSF plays an
important role in ability of microglia to clear myelin debris and to
support proper remyelination, and suggest M-CSF functions as a
critical factor in tissue repair. These divergent results exemplify
the various functions of M-CSF/IL-34 and CSF-1R signaling
on cells. The possible contribution of M-CSF signaling to both
inflammatory and repair processes suggest that targeting M-
CSF in MS may be problematic. However, although there is an
increase of myeloid cells in MS lesions, the expression of CSF-
1R is lower in MS lesions when compared to normal appearing
white matter (134). It is thus possible to hypothesize that a
therapeutic treatment targeting M-CSF in MS would primarily
target peripheral myeloid cells rather than those in the CNS.

There are now multiple tools targeting M-CSF signaling
approved for human therapy, especially for cancer. Imatinib was
the first tyrosine kinase inhibitor approved for the treatment
of chronic myelogenous leukemia (135). Imitanib is also now
in clinical trials for the treatment of different pathologies, such
as rheumatoid arthritis, type I diabetes and asthma, for which
positive results of a phase 2 clinical trial were recently published
(136). Sorafenib is approved for the treatment of primary kidney
cancer and advanced primary liver cancer (137). Although there
are side effects related to these inhibitors, an important advantage
of tyrosine kinase inhibitors is the fact they can be administered
orally to the patients. In September 2019, a phase 3 clinical
trial for RRMS was started testing the efficacy of evobrutinib, a
Bruton’s tyrosine kinase inhibitor. Although this is not a CSF-1R
inhibitor, it shows: (1) the desire to develop oral treatments in
MS, and (2) the possibility of targeting tyrosine kinases in MS.
Bruton’s tyrosine kinase are critical for B cell receptor signaling
and is also involved in TLR signaling as well as inflammasome
activation in myeloid cells (138)

Cytokines
As mentioned earlier, blockade of myeloid specific cytokines
IL-1β, IL-12, and IL-23 have proven to be efficient therapies

in multiple diseases such as Crohn’s disease, ulcerative colitis,
rheumatoid arthritis, psoriasis, and systemic juvenile idiopathic
arthritis. These cytokines are all involved in CD4+ T lymphocytes
differentiation. While IL-12 is critical for TH1 induction (139),
IL-1β and IL-23 are both involved in TH17 differentiation and
promote the encephalitogenic capacity of these cells by inducing
GM-CSF expression (60, 140, 141). In EAE, mice lacking IL-
1β, or the receptor, IL-1R, developed a milder disease than
WT animals (140, 142–145). Moreover, specific ablation of IL-
1R on CD4+ T cells resulted in significantly reduced disease
severity (146), confirming the importance of IL-1β signaling on
T cells to induce a full EAE. In addition, rats treated with an
IL-1 receptor antagonist (IL-1Ra), which blocks the biological
activity of IL-1β, developed milder signs of EAE compared
to control animals (147). As IL-1β secretion is the result of
inflammasome activation, mice treated with a blocking agent
for the inflammasome component NLRP3 exhibited decreased
EAE severity (148). In MS, it was shown that IL-1R expression
is significantly higher in CD4+ T cells from RRMS patients
than from healthy controls (149). IL-1β expression was also
found to be significantly increased in MS lesions when compared
to tissue from other neurological diseases (150). Interestingly,
multiple treatments used in MS [e.g., IFN-β, glatiramer acetate,
and natalizumab] have shown to increase IL-1Ra expression
and/or to decrease IL-1β production (151, 152)]. Multiple tools
have been developed to block IL-1β activity: the recombinant IL-
1Ra Anakinra used for rheumatoid arthritis, the neutralizing IL-
1β antibody Canakinumab used for systemic juvenile idiopathic
arthritis as well as cryopyrin-associated periodic syndrome,
and the soluble decoy IL-1 receptor (Rilonacept) also use for
cryopyrin-associated periodic syndromes (153). At this time,
Anakinra is the only IL-1β-targeting drug in clinical testing for
MS. This Phase I/II clinical trial just started a fewmonths ago, and
at this time, it is still in the recruitment phase (NCT04025554).

IL-12 and IL-23 are heterodimeric cytokines that share a
common subunit IL-12p40. The other subunit needed to form
IL-12 is IL-12p35, while the other subunit to form IL-23 is
IL-23p19. IL-12 signals through the IL-12 receptor (IL-12R)
composed of the IL-12Rβ1 and IL-12Rβ2 subunits, while IL-
23 signals through IL-23R and IL-12Rβ1 (154). Thus, IL-12Rβ1
is required for biological response to both IL-12 and IL-23.
When specific gene ablation was tested for the different receptor
chains of IL-12 and IL-23, it was found that IL-12Rβ1−/−

mice were completely resistant to EAE (155). However, IL-
12Rβ2−/− mice developed severe EAE, extensive inflammation
and demyelination, and higher production of pro-inflammatory
cytokines than WT animals (156). Finally, similar to IL-
12Rβ1−/− mice, IL-23R−/− mice were completely resistant to
EAE induction (157). As for the cytokines, mice deficient for
the subunits IL-23p19 or IL-12p40 were resistant to EAE. By
contrast, mice in which the subunit IL-12p35 was deleted were
highly susceptible to EAE (158). In addition, treatment with anti-
IL-12p40 antibodies inhibited both murine and primate models
of EAE (159–161). Treatment with anti-IL-23p19 antibodies
reduced the clinical severity and prevented relapsing EAE by
inhibiting epitope spreading (162). These results led to the
conclusion that IL-23 was a more critical factor than IL-12 in the
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inflammatory response observed in EAE. Nevertheless, there are
multiple studies linking both cytokines to MS pathology. It was
demonstrated that peripheral blood monocytes from progressive
MS patients produced increased amounts of IL-12 compared
to controls and that IL-12 production correlated with disease
activity (163). Another study showed an augmented level of
IL-12 mRNA-expressing cells in the peripheral blood and the
CSF of MS patients when compared to controls (164). There
was also elevated levels of IL-12p70 detected in plasma from
MS patients compared to healthy individuals. A more recent
report showed that both RRMS and secondary progressive MS
patients had increased levels of IL-12p40 mRNA compared
with controls during the development of active lesions (165).
IL-12p40 and IL-23p19 have also been detected in human MS
lesions (166, 167). Based on this and other data, there was hope
that Ustekinumab, an IL-12p40 neutralizing antibody, would
be efficacious for treatment of MS. However, disappointingly
no clinical improvement in the treatment group compared to
the placebo was found (168). Possible reasons for the failure
of Ustekinumab are the broad range of MS patients in the
trial, many having very severe symptoms and long-standing
disease. Also, there may be weak bioavailability of the drug as
Ustekinumab may be inefficient in crossing the BBB (169). At
this time there are no ongoing trials targeting IL-12/IL-23 in MS
despite the impressive results in the various animal models of
the disease.

TARGETING BIOLOGICAL FUNCTIONS OF
MYELOID CELLS

MicroRNAs (miRNAs) are small non-coding RNAs of 17–25
nucleotides that regulate gene expression by inducing mRNA
degradation or by interfering with translational machinery
of mRNAs (170). It is predicted that more than 60% of
protein-coding genes are regulated by miRNAs (171).
They are key regulators of various biological processes
including immune cell lineage commitment, differentiation,
maturation, and maintenance of immune homeostasis and
normal function [reviewed in (60)]. Extensive evidence
demonstrates that miRNAs play crucial roles in the
development, differentiation, and function of different
immune cells, such as B and T lymphocytes, DCs and
macrophages (172–175). In the last few years, miRNAs
have drawn a lot of interest due to their involvement in the
pathogenesis of cancer, inflammatory and autoimmune diseases
[reviewed in (176)].

In MS patients, expression studies using whole blood
(177), PBMCs (178), as well as brain sections (179) identified
multiple deregulated miRNAs. Of these miRNAs, three were
consistently upregulated across multiple studies and directly
affecting myeloid cell functions: miR-223, miR-155 and miR-
146a. miR-223 is induced by the myeloid transcription factors
PU.1 and CCAAT/enhancer-binding protein-β (C/EBPβ) (180).
miR-223 expression is mainly confined to myeloid cells and is
induced during the lineage differentiation of myeloid progenitor
cells. It was shown to negatively regulate both the proliferation

and activation of neutrophils (181). Moreover, miR-223−/−

macrophages exhibited enhanced pro-inflammatory M1, but
decreased regulatory M2 responses (182). It was later described
that miR-223 is required for efficient M2-associated phenotype
and function (183). Moreover, a low functional level of the miR-
223 is essential for monocyte differentiation. In MS patients,
miR-223 was found significantly increased in blood, PBMCs
and active MS lesions compared with control subjects (177,
179). During EAE development, the expression level of miR-
223 is dramatically increased in myeloid cell populations, but
not in other cell types, and was maintained at comparable levels
between disease onset and peak of disease (184). Surprisingly,
although miR-223 expression is associated with M2macrophages
and microglia (183), it was shown that miR-223 KO mice
present a milder course of EAE than WT mice (184–186).
Reduced disease severity was also observed in adoptive transfer
EAE induced by transfer WT T lymphocytes into miR-223 KO
recipient mice compared to transfer into WT recipient mice,
demonstrating the importance of miR-223 on the APCs side
rather than on the T cells side (184). Our group demonstrated
that while M1-like macrophages were upregulated in KO mice,
DCs showed a reduced inflammatory profile characterized by
increased PD-L1 expression and decreased expression of IL-1β,
IL-6, and IL-23, all cytokines involved in differentiating and
sustaining a TH17 profile (184). Significantly, APCs from miR-
223 KO mice have a comparable ability to drive TH1 cells, but
possess a reduced capacity to drive TH17 cells (184). Moreover,
it was shown that monocytic-myeloid-derived suppressor cells
(MO-MDSCs) isolated from miR-223−/− suppressed T cell
proliferation and cytokine production in vitro and regulated EAE
more efficiently than MO-MDSCs derived from WT animals
(186). The enhanced suppressive function of miR-223−/− MO-
MDSCs was associated with higher expression of Arg1 and
Stat3, which are miR-223 target genes (186). Interestingly, Stat3
controls the expression of PD-L1 on APCs (187), consistent
with the previous observation of PD-L1 upregulation on DCs
in miR-223−/− animals. Although these results point to miR-
223 as a potential therapeutic target in MS, it is important
to note that in a model of lysolecithin-induced demyelination,
the absence of miR-223 was demonstrated to lead to impaired
CNS remyelination and myelin debris clearance (183). The
impaired capacity of M2 polarization by macrophages and
microglia is likely a significant factor contributing to the
decreased remyelination capacity in miR-223 KO mice. In
particular, microglia adopting anM2 profile are critical for proper
remyelination (188, 189). Thus, when targeting miR-223 in MS,
it is important to keep in mind the different implications of
such therapy.

miR-155 has drawn a lot of attention for its possible role
in MS as detailed in a recent review (190). miR-155 has been
shown to be upregulated in active MS lesions (179) as well as in
CD14+ monocytes isolated from the blood of RR-MS patients
compared to control donors (191). While miR-223 expression
is limited to myeloid cells, multiple immune cell populations
express miR-155 such as B cells, T cells, macrophages and
DCs (192). miR-155 is found at low levels in both myeloid
and lymphoid cells, but its expression is upregulated following
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cellular activation via antigen, Toll-like Receptor (TLR) ligands,
and inflammatory cytokines. An important target of miR-

155 is Src homology 2 (SH2)-domain containing inositol-5
′

-
phosphatase 1 (SHIP-1) (193). SHIP-1 is an enzyme that inhibits
phosphoinositide 3-kinase (PI3K) activity, which governs cellular
responses to multiple stimuli, cell proliferation and cell survival
(194). Thus, it is believed that miR-155 dysregulation would
have critical consequences. Indeed, forced expression of miR-
155 in hematopoietic stem cells by a retroviral vector leads to
severe splenomegaly as well as increasedmyeloid cell populations
in the bone marrow and in circulation (195). In addition, it
has been reported that in absence of miR-155, mice displayed
altered immune responses to infectious agents, due to defective
functions of B cells, T cells, and DCs (196). Focusing on myeloid
populations, it was shown that DCs lacking miR-155 are less
competent at inducing antigen-specific T cell activation (196).
More recently, it was demonstrated that overexpression of miR-
155 in DCs is a critical event that is alone sufficient to break self-
tolerance in an animal model of diabetes, and promote a CD8-
mediated autoimmune response in vivo (197). Human CD14+

monocytes and macrophages overexpressing miR-155 exhibit
increased production of pro-inflammatory cytokines, including
IL-1β, IL-6, and TNF, and decreased production of the anti-
inflammatory cytokine IL-10 (198).

miR-155-deficient mice display a delayed course and reduced
severity of clinical symptoms of EAE (199, 200). Decreased
disease severity in miR-155−/− mice was associated with reduced
TH1 and TH17 responses. In addition to the direct effect on
T cells, it was also shown that the decreased ability of miR-
155 KO mice to mount inflammatory T cell responses was
linked to DCs secreting less cytokines critical for driving TH1
and TH17 responses, mainly IL-1β, IL-6, IL-12, IL-23, and
TNF (199). miR-155 is induced in macrophages and DCs after
exposure to a variety of inflammatory cytokines such as IFN-
β, IFN-γ, and TNF-α (199, 201). It is thus possible to speculate
that following the first wave of inflammation, these myeloid
APCs upregulate miR-155 leading to an accentuation of the
inflammatory response. In addition, more recently, it has been
demonstrated that miR-155 plays an essential role in driving
the inflammatory phenotype of M1 macrophages (202), which
would also impact the severity of the disease. Lastly, treatment
with a miR-155 inhibitor after EAE onset reduced the clinical
disease severity (199). Considering the important role of miR-
155 in driving inflammatory responses in general, and specifically
in myeloid APCs, fine tuning the expression of this miRNA in
MS would most certainly prompt beneficial results in terms of
slowing the inflammatory loop. It is noteworthy that miR-155 is
the most consistent miRNA found to be upregulated in MS being
reported in eight independent studies (203).

A third miRNA that has been shown to regulate myeloid cell
activation is miR-146a. Like miR-155, miR-146a is upregulated
following cell stimulation and its induction is NF-κB dependent
(204). However, contrary to miR-223 and miR-155, miR-146a
represses inflammatory responses by targeting two adapter
proteins, TNF receptor–associated factor 6 (TRAF6) and IL-
1 receptor-associated kinase 1 (IRAK1), that are crucial
for pro-inflammatory signaling (204). miR-146a KO mice

develop a spontaneous autoimmune disorder, characterized by
splenomegaly, lymphadenopathy, and multiorgan inflammation
(205, 206). In addition, miR-146a KO mice display excessive
production of myeloid cells and develop flank tumors in their
secondary lymphoid organs. Consistent with the repression of
inflammation, miR-146a expression promotes M2-Macrophage
polarization by targeting Notch-1 (207). Multiple studies have
indicated that miR-146a plays pivotal roles in the pathogenesis
of several autoimmune diseases, such as systemic lupus
erythematosus, rheumatoid arthritis, and Sjögren’s syndrome
(208). In MS, miR-146a is upregulated in active lesions (179),
as well as in PBMCs of RRMS patients (209, 210). Expression
of miR-146a is reported to be significantly downregulated
in glatiramer acetate treated RRMS patients (210). Logically,
upregulation of this miRNA would seem to be beneficial in
reducing the ongoing inflammation observed in MS patients
leading to the possibility that the upregulation observed
in MS patients is the result of the ongoing inflammation
rather than a pathological expression. However, when studied
in animal models of MS, there was no consensus on the
suppressive effects of miR-146a. One study using the Cuprizone-
induced demyelination model found that miR-146a-deficient
mice displayed reduced inflammatory responses, demyelination,
axonal loss, and numbers of infiltrating macrophages compared
to WT controls (211). However, a second study found that miR-
146a-deficient mice developed more severe EAE characterized
by exaggerated TH17 responses (212), going along the possible
beneficial effect of upregulation of this miRNA in MS. More
recently, it was shown that miR-146a mimic treatment of
mice with RR-EAE at day 14 improved neurological function,
increased the number of newly generated oligodendrocytes,
which may facilitate remyelination in the CNS (213). In
addition, the treatment increased the number of regulatory M2
macrophages while reducing the number of pro-inflammatory
M1 macrophages (213).

Currently, targetingmiRNAs is a challenge since they control a
myriad of immune and non-immune related functions. However,
there is a strong interest in pursuing this approach, not only
in MS, but also in many different diseases. Identification of
technology to target miRNAs in a cell specific manner would
appear to be the desired way to safely and effectively employ this
targeting strategy. In the meantime, an abundance of researchers
are also exploring the use of miRNAs as biomarkers of diseases
pathogenesis and therapy.

TARGETING IMMUNOLOGICAL ACTIVITY
OF MYELOID CELLS

The final strategy we will discuss is the use of nanoparticles
to target myeloid cells for disease therapy which has been
pioneered in our laboratory. In the recent past, many studies
have focused on characterizing the ability of nanoparticles to
modulate immune responses and ultimately to be used as
potential therapeutics for immune-related diseases. Here we
will focus on the “carboxylated” poly(lactic-co-glycolic acid)
(PLGA) nanoparticles, which are particles without any protein
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FIGURE 1 | Proposed mechanisms of peripheral myeloid cells in multiple sclerosis pathogenesis. (A) Chemokine receptors CCR1 and CCR2, as well as the adhesion

molecules Ninjurin-1 and JAM-L, and the C-lectin receptor CLEC12A have all been shown to play important roles in myeloid cell migration from the periphery to the

CNS. (B) Interactions between myeloid cells and CD4T cells are critical to shape the type of immune response. These interactions take place in the periphery as well

as in the CNS. Cytokines such as IL-1β, IL-12, and IL-23 produced by myeloid cells and GM-CSF produced by activated CD4T cells are all attractive targets for MS

therapy, playing critical roles in the CNS inflammation. (C) M-CSF (CSF-1)/IL-34 and GM-CSF (CSF-2) are upregulated during inflammation and control many different

functions on myeloid cells such as differentiation, phagocytosis, chemotaxis, activation, polarization, and survival. Blockade of the receptors of these growth factors

are intriguing therapeutic options in MS. (D) miRNAs have the ability to regulate the function of many cells, including myeloid cells. miR-223,−155, and−146a have all

shown to be upregulated in MS lesions, and are expressed by myeloid cells. While miR-146a and miR-223 promote an M2 profile, miR-155 promotes an M1 profile

from macrophages/microglia. However, expression of miR-223 and miR-155 by DCs induce the ability of these cells to promote a TH17 polarization. miR-155 also has

the ability to promote a TH1 polarization when expressed by DCs. (E) Intravenous injection of PLGA nanoparticles are capture by MARCO+ myeloid cells leading

these cells to be sequestered in the spleen, with some cells dying by apoptosis and other cells changing their profile toward an immunoregulatory phenotype.

or peptide attached to the surface or encapsulated inside.
Phagocytic cells have the extraordinary ability to engulf dead
cells, invading microbes and other particles, and this property
of phagocyte cells led to the idea of using carriers such as
apoptotic cells (214–216), liposomes (217), extracellular vesicles
(218), or nanoparticles (219–223) to deliver molecules to modify
the immune response. We will restrict our discussion to the
use carboxylated PLGA nanoparticles for the modulation of
inflammatory monocytes for treatment of CNS inflammation
for multiple reasons. Firstly, they can be easily manufactured
under GMP conditions. Secondly, they more specifically target
inflammatory monocytes by their affinity of binding via
the macrophage receptor of collagenous structure (MARCO)

(224) as compared to liposomes and extracellular vesicles.
Thirdly, they directly carry out immune-modulatory effects on
monocytes without the need for add-on agents such as would
be required with liposomes. Lastly, they have been proven
to be safe and efficacious for use in celiac disease patients
treated via intravenous infusion of gliadin encapsulating PLGA
nanoparticles for induction of immune tolerance in a phase 1/2a
clinical trial (225).

Nanoparticles have diameters between 1 and 1,500 nm.
Smaller particles (<100 nm) are able to cross tissue barriers and
traffic directly to the lymph nodes. Larger particles (>100 nm)
require uptake by phagocytic cells (226). Nanoparticles
administered subcutaneously or intradermally may be taken
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up by tissue resident APCs or their precursor cells and are
ultimately transported to the draining lymph nodes. Systemic
administration of nanoparticles favors accumulation in the
organs such as the spleen and liver (227). Also, the shape
of nanoparticles dictates efficiency of uptake by phagocyte
cells. For example, phagocyte cells internalize spherical-shaped
nanoparticles more easily than stretched-shaped structures
(228). And although positively charged particles are taken up
more avidly, negatively charged particles have been shown to
exhibit lower toxicity (229–232). Nanoparticles can be made
from different materials, metallic (e.g., silver, gold, and copper),
magnetic (e.g., iron) (useful for imaging), ceramic, carbon-based,
silica, lipid-based, or polymeric such as poly(amino acids),
polysaccharides and poly(alpha-hydroxy acids).

Our group was one of the first to test the ability of 500 nm
non-biodegradable carboxylated polystyrene (PS) particles to
modulate immune responses in inflammatory settings in vivo.
Intravenous infusion of PS nanoparticles led to a reduction
in trafficking of Ly6Chi inflammatory monocyte into the
CNS and increased survival in a mouse model of West
Nile virus (WNV) encephalitis (224). It was discovered that
these inflammatory monocytes were redirected to the spleen
of treated animals and resulted in a dramatic reduction of
mortality in WNV-infected mice by preventing the release of
a pro-inflammatory “cytokine storm” in the CNS. Robust anti-
inflammatory effects induced by infusion of PS nanoparticles
were also observed in other inflammatory diseases such as
peritoneal inflammation and inflammatory bowel disease. To
enhance the clinical relevance of the nanoparticle targeting
approach, we next investigated the potential of biodegradable
carboxylated PLGA nanoparticles for regulation of myeloid
cell-dependent inflammation.

PLGA is one of the best characterized and most used
biodegradable polymers. The hydrolysis of PLGA leads to
metabolite monomers, lactic acid and glycolic acid. The two
monomers are endogenous and easily metabolized by the body
via the Krebs cycle. There is minimal systemic toxicity associated
with the use of PLGA (233, 234). Because PLGA is a safe material,
it has been approved by the United States Food and Drug
Administration (FDA) and European Medicine Agency (EMA)
in various drug delivery systems in humans. Indeed, PLGA can
be engineered to deliver, alone or in any combination with
small-molecule drugs, proteins, peptides, DNA, miRNAs, and
even clustered regularly interspaced short palindromic repeat
(CRISPR) (227).

We have shown that administration of negatively charged
500 nm PLGA nanoparticles resulted in reduced inflammatory
monocytes accumulation and overall robust beneficial effects
in disease severity in multiple mouse models of inflammatory
disease such as EAE (224), SCI (235), TBI (236), myocardial
infarction (237), and herpes simplex virus 1 infection of the
cornea (238). The exact mechanisms behind immunomodulatory
effects of PLGA therapy are still under investigation. However,
in all these models, it has been shown PLGA particles are
selectively recognized and bound by inflammatory monocytes.
These monocytes undergo sequestration and eventual apoptosis
in the spleen, culminating in reduced immune pathology at sites

of inflammation. Phenotypic changes were also observed on DCs
and macrophages in the inflammatory sites, showing decreased
expression of activation markers such as MHC II and CD86. In
the SCI study, PLGA nanoparticle administration led to reduced
M1 macrophage polarization.

While our group has also shown that antigen (Ag)-coupled
or encapsulated PLGA nanoparticles can have important
immunomodulatory effects (220, 222, 224, 239), other strategies
using PLGA nanoparticles have also been shown to regulate EAE
(240). For example, Cappellano et al. showed that simultaneous
subcutaneous injection of PLGA nanoparticles loaded with either
MOG35−55 or IL-10 ameliorated the course of EAE (241). TGF-β,
another immunoregulatory molecule, coupled to the surface of
PLGA nanaopartlces containing PLP139−151 peptide were shown
to improve the tolerogenic effect of Ag-PLGA nanoparticles
(242). Another example is Maldonaldo et al. using PLGA
nanoparticles loaded PLP139−151 together with rapamycin, an
inhibitor of the mTOR pathway, and demonstrating that a single
dose of these particles injected at the peak of disease were able
to protect from relapses (243). Also, Pei et al. aimed to develop
PLGA nanoparticles which function as a direct modulator of T
cells, without the involvement of APCs (244). For that purpose,
TGF-β1 encapsulated nanoparticles were coupled with target
antigens for CD4 and CD8T cells (MOG40−54/H-2Db-Ig dimer
and MOG35−55/I-A

b multimer), regulatory molecules (anti-Fas
and PD-L1-Fc) and a “self-marker” CD47-Fc (244). These
particles were injected in EAE mice on day 8, 18, 28, and 38
after immunization with MOG35−55, and induced a significant
reduction in EAE symptoms that lasted for more than 100 days.
Moreover, the authors observed a decrease of TH1 and TH17
MOG35−55-specific cells as well as TC1 and TC17 MOG40−55-
specific cells, an increase of regulatory T cells, inhibition of T
cell proliferation and augmentation of T cell apoptosis in the
spleen (244). In addition to regulating the immune response,
PLGA nanoparticles have also been used as a transporter
to help in the remyelination process. Indeed, Rittchen et al.
encapsulated leukemia inhibitory factor (LIF), which is a cytokine
known to promote oligodendrocyte maturation thus favoring
remyelination (245). To specifically target oligodendrocytes,
the LIF-PLGA nanoparticles were coupled with anti-NG2
antibodies. The authors showed that intra-lesion delivery
of LIF-PLGA nanoparticles improved CNS remyelination
increasing the percentage of remyelinated axons and
their thickness (245).

In conclusion, the mechanism(s) of action of PLGA
nanoparticles are still incompletely understood, but studies
in multiple models have shown their capacity to limit
inflammatory events by targeting inflammatory monocytes.
PLGA nanoparticles can also be used as delivery vectors,
like liposomes and extracellular vesicles. However, a critical
advantage of carboxylated PLGA nanoparticles, as compared
to liposomes and extracellular vesicles, is their ability to
act directly to modulate the function and trafficking of
inflammatory monocytes based on their ability to engage the
MARCO scavenger receptor. Because of the safety record of
PLGA nanoparticles, they can be easily translated into clinical
use. In fact, Cour Pharmaceuticals successfully completed a
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Phase IIa clinical trial for celiac disease showing the safety
and efficacy of systemic infusion of PLGA nanoparticles
encapsulating gliadin for inducing gluten-specific immune
tolerance in celiac disease patients undergoing oral gluten
challenge. Takeda Pharmaceuticals has acquired the exclusive
license for future development of this therapy for celiac
and other GI diseases. Cour Pharmaceuticals is currently
developing antigen encapsulating PLGA nanoparticle-based
tolerance clinical programs for treatment of MS and peanut
allergy and clinical programs using carboxylated “naked” PLGA
nanoparticles targeting inflammatory monocytes for treatment
of acute respiratory distress in COVID-19 infection and
treatment of TBI.

CONCLUSIONS

The importance of peripheral myeloid cells in MS pathology is
profound. There is an extensive presence of these cells and their
products in MS lesions as well as in the CSF of MS patients.
Studies in animal models of MS have clearly demonstrated
the beneficial effects in targeting peripheral myeloid cells for
the different forms of the disease. Multiple tools have now
been developed targeting these cells including blockade of their
migration to the CNS, their activation and cytokine production,
their biological functions and their immunological activity
(Figure 1). However, contrary to other inflammatory disorders,
no drug is currently approved targeting specifically these cells
in MS. Multiple pro-inflammatory cytokines including GM-CSF,
IL-1β, IL-12, IL-23, M-CSF all represent potential MS therapeutic
targets. Treatments targeting these cytokines have been shown
to be well-tolerated and safe in patients for different diseases.
Additionally, non-specific blockade of leukocyte entry to CNS
using Natalizumab is beneficial in MS, however this carries the

risk of severe side-effects from infections. However, specifically
impeding the migration of myeloid cells would limit such
adverse effects. CLEC12A, CCR1, CCR2, JAM-L, and Ninjurin-
1 represent interesting options to inhibit CNS migration of
peripheral myeloid cells. Altering the biological functions of
myeloid cells via through miRNA modulation is an appealing
strategy for treatingMS and other chronic inflammatory diseases.
miR-146a, miR-155, and miR-223 are all upregulated on myeloid
cells from MS patients. Lastly, nanoparticles represent one
of the most exciting new tools for regulating myeloid cell
functions. The biodegradable PLGA particles are particularly
interesting due to their approval by the FDA and EMA for
use in humans, as well as their ability to regulate many
different inflammatory disorders, even those that take place
in the CNS.
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