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The emerging understanding of Plasmodium vivax as an infection seated in extravascular
spaces of its human host carries fundamentally important implications for its management
as a complex clinical and public health problem. This progress begins to reverse decades
of neglected research borne of the false dogma of P. vivax as an intrinsically benign and
inconsequential parasite. This Review provides real world context for the on-going
laboratory explorations of the molecular and cellular events in the life of this parasite.
Chemotherapies against the latent reservoir impose extraordinarily complex and difficult
problems of science and medicine, but great strides in studies of the biology of hepatic P.
vivax promise solutions. Fundamental assumptions regarding the interpretation of
parasitaemia in epidemiology, clinical medicine, and public health are being revisited
and reassessed in light of new studies of P. vivax cellular/molecular biology and
pathogenesis. By examining these long overlooked complexities of P. vivax malaria, we
open multiple new avenues to vaccination, chemoprevention, countermeasures against
transmission, epidemiology, diagnosis, chemotherapy, and clinical management. This
Review expresses how clarity of vision of biology and pathogenesis may rationally and
radically transform the multiple means by which we may combat this insidiously
harmful infection.
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GLOBAL PLASMODIUM VIVAX

Among the five protozoan species of plasmodia that naturally infect humans, none is more
geographically widespread than Plasmodium vivax (Battle et al., 2019). It occurs across most of the
perpetually warm tropics, but also where frigid winter seasons interrupt mosquito vector life, as on
the Korean Peninsula. Only a century ago, P. vivax transmission regularly occurred across
temperate Europe and North America, thriving particularly in the sub-tropical latitudes of those
continents. Up to the present day, outbreaks of P. vivax occasionally occur in those zones receptive
to it with seasonally abundant anopheline mosquitoes (Sunstrum et al., 2001; Andriopoulos
et al., 2013).

The biology of P. vivax endows it physical characteristics and behaviours adapted to its broad
geographic reach. These are both subtle and conspicuous, like sporogony in the mosquito
proceeding at lower temperatures, and hepatic latency (Coatney et al., 1971). If the presence of
gy | www.frontiersin.org September 2021 | Volume 11 | Article 6965981

https://www.frontiersin.org/articles/10.3389/fcimb.2021.696598/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.696598/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.696598/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:kevin.baird@ndm.ox.ac.uk
https://doi.org/10.3389/fcimb.2021.696598
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2021.696598
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2021.696598&domain=pdf&date_stamp=2021-09-03


Baird New Biology of Plasmodium vivax
anophelines occurs in relatively cool conditions and too briefly
for a second cycle of transmission, some P. vivax strains pass on a
futile primary attack and commit wholly to hepatic latency
lasting to the next season of anopheline abundance (Garnham
et al., 1975; Schute et al., 1976). Latency also occurs among
tropical strains, but of short duration (White, 2011). Lysenko
et al. (1977) rationally hypothesized selection for these relapse
behaviours by the abundance or paucity of anophelines, i.e.,
forms of rapid latency vanished where and when mosquitoes
appeared too briefly or not at all.

At the beginning of the current century, we believed much of
Sub-Saharan Africa to be protected from endemic P. vivax
transmission by the dominance of Duffy factor negativity
among those residents. Red blood cells lacking Duffy factor
seemed impenetrable to P. vivax merozoites, but the discovery
of Duffy-negative Africans carrying P. vivax (Menard et al., 2010)
challenged that view and sparked investigations of alternate
erythrocyte invasion pathways (Kanjee et al., 2021). The
increasing number of such infections being detected in Africa
(Oboh et al., 2020; Dongho et al., 2021) raises the spectre of a
parasite possibly evolving a workaround to Duffy negativity
(Gunalan et al., 2018). Alternatively, we had not grasped a
biology that underpins broad endemic transmission occurring
without patent parasitaemia; Duffy-negative populations may
have always harboured a silent and cryptic reservoir of infection
and on-going endemic transmission. We could neither see it by
conventional diagnostic means nor understand the inadequacy
of those means to the biology of this parasite.

The global Northern clinical perspective focuses attention on
the consequential acute attack, but in global Southern endemic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
zones patency in malaria is the exceptional state of infection
(Sutanto et al., 2018; Hailemeskel et al., 2021). It is the silent
reservoirs that dominate: sub-patent blood infections and latent
hepatic infections. There may be great complexity in sub-
patency, with extravascular compartments of infection beyond
the peripheral blood window through which we have always
viewed malaria. Likewise, the anatomic and temporal disposition
of sexual gametocytes – observed and measured from anatomic
sites inaccessible to probing anophelines – is another area of
basic biological exploration of profound importance to rationally
understanding and combatting the malarias. The primary
technical challenge in eliminating malaria is not the task of
diagnosis and treatment of people ill with malaria, but it is the
management of people who are not acutely ill but nonetheless
chronically infected, more subtly ill, and infectious
to mosquitoes.
STATES OF INFECTION

Infection by P. vivax involves multiple compartments of varied
biologics and clinical consequences (Figure 1). Sporogony
follows sexual union and meiosis in the mosquito gut, yielding
infectious sporozoites leading directly to hepatic schizogony (by
tachysporozoites) or latent hypnozoites (by bradysporozoites)
(Lysenko et al., 1977). Hepatic infection, which is wholly silent
and cannot be detected, leads to the vascular patency of blood
schizogony which may be asymptomatic or provoke an acute
attack of clinical malaria. That malaria is typically readily
diagnosed (i.e., patent) by microscopy, antigen capture, or PCR
FIGURE 1 | Diagram illustrating the states and compartments of infection by P. vivax in humans and mosquitoes.
September 2021 | Volume 11 | Article 696598
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techniques applied to peripheral blood. Semi-immune hosts
suppress parasitaemia to below conventionally detectable levels
(i.e., sub-patent) and acute illness rarely occurs. Recent work
suggests that much of the biomass of asexual trophozoites and
schizonts of P. vivax occur in the extravascular spaces of marrow,
spleen, and liver (Siquiera et al., 2012; Malleret et al., 2015;
Obaldia et al., 2018; Fernandez-Becerra et al., 2020; Kho et al.,
2021). Though not yet demonstrated, it is plausible that this
relatively inaccessible compartment may both contribute to acute
illness (Lacerda et al., 2012) and sometimes be clinically silent
(Siquiera et al., 2012; Kho et al., 2021). In either case,
extravascular sub-patency almost certainly places infected red
blood cells back into the vascular sinuses and peripheral
circulation, be those patent or sub-patent.

Vascular infection includes sexual gametocytes and
placement of them within reach of feeding anophelines,
invariably no more than two or three millimetres below the
epidermis. This state of infection may be referred to as sexual
latency in the sense that gametocytes, like hypnozoites, are
virtually but not entirely metabolically inactive and invariably
clinically silent (Baker, 2010; Gural et al., 2018). Although the
evidence is as yet scanty (Nixon, 2016), long-term presence of
these nearly dormant gametocytes lodged within the uppermost
reaches of the dermal capillaries is biologically plausible and in
an evolutionary sense, tremendously advantageous. Infection of
naturally feeding mosquitoes occurs in patients without patent
gametocytaemia (Bousema and Drakeley, 2011), and parallel
feeds of mosquitoes on skin or membranes (containing venous
blood) consistently show heavier and more frequent infections
from skin (Sattabongkot et al., 2003; Bousema et al., 2012;
Meibalan et al., 2019). Enduring sexual latency of skin
microvasculature may be a vitally important compartment of
infection. The favoured selection of forms capable of this
behaviour making them available to feeding anophelines over
prolonged periods may be intuitively obvious.
HARMFUL LATENT RESERVOIR

We cannot diagnose latency in P. vivax and thus cannot know its
prevalence in endemic zones. It is a condition that may be
recognized as having been present only upon patency.
Nonetheless, the biology of this infection, where Lysenko’s
tachysporozoites and bradysporozoites (Lysenko et al., 1977)
seed the liver, rationally informs an expectation of a prevalence
of latency in excess of that measured by mass blood screening by
microscopy, antigen capture, or PCR methods. Longitudinal
cohort studies of children randomised to treatment of latency
or placebo in Papua New Guinea (Robinson et al., 2015)
suggested that approximately 80% of P. vivax attacks derived
not from recent mosquito bites, but activation of hepatic latency.
Similar cohort studies in western Thailand estimated that
proportion at over 90%, and estimated that each person
infected by P. vivax carried, on average, five hypnozoites in
their livers (Adekunle et al., 2015). A review and meta-analysis of
261 studies of over four thousand patients from seven countries
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
in Africa and Asia estimated a minimum of 79% of patent
infections from relapses (Commons et al., 2020). In
mathematical models of P. vivax that include this hypnozoite
reservoir, transmission quickly collapses when it is successfully
assaulted (Roy et al., 2013; White et al., 2014). For reasons
explained below, doing so presents formidable challenges, and in
most endemic zones today it does not effectively occur. The
hypnozoite reservoir streams new clinical attacks, sub-patent
infections, and onward transmission into the communities where
it stands.

The harm done by the hypnozoite reservoir may be subtle but
nonetheless appears to be substantial. Studies carried out near
Timika in eastern Indonesia shed light on this harm. Over a
period of ten years, Dini and colleagues (Dini et al., 2020)
followed cohorts of tens of thousands of patients infected by P.
vivax or P. falciparum. While risk of hospitalisation and
mortality within two weeks of the index infection was higher
for P. falciparum, as months and years passed, those diagnosed
with P. vivax endured more repeated attacks, hospitalizations,
and higher risk of all-cause mortality compared to the P.
falciparum-infected cohort. Endemic malaria of repeated
clinical attacks imposes poorly understood dangers to patients.

The global Northern perspective deceives by exclusive focus
on the event of the acute attack. Good health is interrupted by a
patent infection and febrile illness – prompt diagnosis and
effective treatment restores health, and we are done. The global
Southern reality is more complex than that. Chronic exposure to
malaria - patent and sub-patent arising from mosquitoes or
latency - carries health consequences beyond the paroxysms of
acute malaria (Chen et al., 2016; Lee and Corban, 2018). Malaria
is not just a clinical event of days, but a continuum of events
across years of cumulative and more subtle harm. Fragile states
of health and healthcare delivery make that continuum all the
more consequential. In this global Southern perspective, we may
grasp the essential importance of successfully assaulting the
latent reservoir of P. vivax.
LATENT RESERVOIR DONJON

A donjon is the innermost keep of a fortified castle, the most
difficult and last thing to take from its defenders. Untaken, the
assault fails and the defenders recover. The latent reservoir of P.
vivaxmay be thus reckoned. What follows below are the complex
and formidable obstacles that must be overcome in delivering a
successful assault on that hard defence. Each is unique in
character, but most of them are linked to inherent pitfalls in
the 8-aminoquinolines, the only class of compounds we have that
kill latent hypnozoites. Our only offensive weapon against
hypnozoites is deeply flawed for use where it is most often
needed – the often impoverished rural settings where endemic
malaria endures.

Stealth
Invisibility is perhaps the greatest defence of the latent reservoir
of P. vivax against our assaults upon it. In any given endemic area
September 2021 | Volume 11 | Article 696598

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Baird New Biology of Plasmodium vivax
we cannot know who or how many people carry hypnozoites.
Typically, an infected person will harbour just a few of them,
each one cocooned within a functioning hepatocyte and wholly
silent. Those that awaken and provoke renewed attacks do so
alongside new mosquito-borne infections, and we cannot
distinguish them by genetic analyses. Deceptively low
parasitaemias in acute vivax malaria conceals a larger and
more harmful biomass, and chronic infection brings more
subtle harm. Latency is hidden and the patency it delivers is
disguised and deceptive. Mustering the will to assault such a
difficult target requires first recognizing it as a threat that merits
the effort and risk thus engaged. In most endemic zones, the great
stealth of latency and its harm very substantially impedes the
ability and will to attack it.

Human G6PD Deficiency
The haemolytic toxicity of the 8-aminoquinolines in patients
having the common inherited enzymopathy glucose-6-
phosphate dehydrogenase (G6PD) deficiency severely
constrains the clinical and public health management of the P.
vivax problem (Howes et al., 2013). G6PD deficiency is not a
single polymorphism of the enzyme, but many dozens of them
(Luzzatto et al . , 2020) of variable sensitivity to 8-
aminoquinolines (Baird, 2015). It is likely that we have
misconstrued the variants of G6PD deficiency in a dichotomy
of relatively mild and inconsequential versus severe and life-
threatening. All of the variants are sensitive to 8-
aminoquinolines, with life threatening drug-induced severe
acute haemolytic anaemia occurring even in patients with so-
called mild variants (Pamba et al., 2012; Monteiro et al., 2016).
The clinical complexity of the event in part explains the danger of
oversimplified rules of thumb regarding this serious problem
(Chu and Freedman, 2019; Bancone and Chu, 2021).

The clinical dilemma created by G6PD deficiency and 8-
aminoquinolines is clear. Providers standing before patients
diagnosed with P. vivax and having unknown G6PD status must
make a choice between these two stark options: 1) prescribe anti-
relapse therapy and risk acute haemolytic anaemia; or 2) withhold
therapy and risk further clinical attacks and opportunities for harm
and onward transmission. How national malaria control
programmes manage this dilemma varies widely (Recht et al.,
2018). The global Northern perspective of ready access to G6PD
screening, and to care in the event of haemolytic crisis largely
explains the neglect of the haemolytic toxicity problem through
three cycles of 8-aminoquinoline discovery efforts through the past
century (Baird, 2019). We don’t know if non-haemolytic 8-
aminoquinolines exist because, remarkably, we have never
surveyed those compounds for this characteristic. Resolving the
therapeutic dilemma today hinges on G6PD screening before
administering the haemolytic 8-aminoquinolines available to us
(Anderle et al., 2018). Success indoing so is thefirst offensive breach
on the hypnozoite reservoir.

8-Aminoquinoline Chemotherapeutics
The 8-aminoquinolines impose other problems that serve to
protect the latent reservoir of P. vivax. Chief among those may be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the lack of understanding of how these compounds actually kill
latent hypnozoites in patients who may safely receive them. The
discovery of 8-aminoquinolines as hypnozoitocidal in the early
1920s was wholly serendipitous, with activity against “delayed
attacks” (latent forms were suspected but unknown) of P. vivax
coming unexpectedly with the first rationally synthesized drug,
plasmochin, designed and optimized to treat acute attacks
(Baird, 2019). Dangerous haemolytic toxicity in some patients
forced providers to augment diminished doses of plasmochin
with quinine, unwittingly inventing what we call radical cure, i.e.,
a hypnozoitocide combined with a blood schizontocide to cure
patent and latent forms of the infection (Dini et al., 2020). Sinton
and colleagues (Sinton and Bird, 1928; Sinton et al., 1930)
invented and optimized radical cure of P. vivax 90 years ago,
about 50 years before the existence of hepatic hypnozoites was
confirmed (Krotoski, 1985).

The impact of blood schizontocides on 8-aminoquinoline
hypnozoitocidal activity was recognized in that early era of
discovery (Sinton et al., 1930) and confirmed 25 years later
(Alving et al., 1955). Like other blood schizontocides, quinine
alone has no impact on P. vivax latency, but it dramatically
improved the activity of plasmochin or primaquine against
hypnozoites (Baird, 2019). Chloroquine, equally inactive
against hypnozoites, also did so (Alving et al., 1955).
Potentiation of the modern 8-aminoquinoline called
tafenoquine was observed in the model of Plasmodium
cynomolgi in rhesus macaques (Dow et al., 2011). The clinical
development of tafenoquine involved no other partner blood
schizontocides but chloroquine (Lacerda et al., 2019), but when
the US Food and Drug Administration (FDA) approved
tafenoquine for radical cure of P. vivax in 2018 it
recommended any “appropriate” partner blood schizontocidal
th e r apy . When t a f enoqu ine wa s comb ined w i th
dihydroartemisinin-piperaquine in a clinical trial of P. vivax
radical cure in Indonesia – where chloroquine cannot be applied
due to parasite resistance to it (Price et al., 2014) – there was
almost no therapeutic efficacy (Centers for Disease Control and
Prevention (CDC), 2020). Efficacy in radical cure may not
accommodate flexibi l i ty in applying partner blood
schizontocides with 8-aminoquinolines. Assault on the
hypnozoite reservoir will require tools that actually work; that
is, combinations of blood schizontocides and hypnozoitocides of
optimized and validated safety and efficacy.

Another fundamental problem of 8-aminoquinoline
chemotherapeutics is the uncertainty of effective dosing. In
striving to mitigate risk of harm to G6PD-unknown patients,
we have consistently applied doses at the margin of good efficacy.
This has been true of primaquine (Baird and Hoffman, 2004),
and remains true of tafenoquine (Hanboonkunupakarn and
White, 2020). Intrinsically variable susceptibility to 8-
aminoquinolines among strains of P. vivax has long been
recognized (Collins and Jeffery, 1996) and authoritative
guidance to apply universally more effective higher dosing
regimens (Hill et al., 2006) are not broadly accepted and
implemented (Recht et al., 2018). Hesitancy, uncertainty, and
confusing inconsistency characterizes 8-aminoquinoline
September 2021 | Volume 11 | Article 696598
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treatment policies and practices. This weakness serves to protect
the latent reservoir.

Human Metabolism of 8-Aminoquinolines
The problematic complexity of radical cure applying 8-
aminoquinolines is greatly compounded by the necessity of
metabolic activation of those compounds by the patient. The
therapeutic activity of these drugs seem to require hydroxylation
of the 5-position of the aminoquinoline ring (Marcsisin et al.,
2016). In the instance of primaquine, that involves human
cytochrome P450 2D6 (CYP2D6) (Bennett et al., 2013), a
naturally polymorphic isozyme of activities ranging from null-
to ultra-metabolizer phenotypes of significant clinical
consequences for very many therapeutic agents (Nofziger et al.,
2020). Patients having impaired metabolic activity of CYP2D6
are at much higher risk of therapeutic failure of primaquine
against relapse (Baird et al., 2018). The extraordinarily high
frequency of the impaired *10 allele in Asia may compromise
primaquine efficacy (Spring et al., 2020). Tafenoquine does not
appear to be CYP2D6-dependent (St Jean et al., 2016), but it may
nonetheless require activation by other means; its very poor
efficacy when administered with dihydroartemisinin (Centers for
Disease Control and Prevention (CDC), 2020) suggests
interference with that activation. The complexities of human
metabolism of 8-aminoquinolines compound the difficulty of
assaulting the hypnozoite reservoir.

8-Aminoquinoline Ineligibles
The people who cannot safely receive or benefit from
8-aminoquinoline therapies constitute a safe haven for latent
P. vivax (Baird et al., 2018). Foremost among them in numbers
may be the G6PD-deficient at risk of harm by therapy, and the
CYP2D6-impaired at risk of poor efficacy. Those are permanent
conditions in many hundreds of millions of people living at risk
of infection, whereas those ineligible by pregnancy or infancy are
counted in many tens of millions and transiently ineligible. Some
authorities include lactating women as ineligible, probably
unnecessarily (Gilder et al., 2018). There is no validated
approach to managing risk of relapse in these patients, many
of them being especially vulnerable to harm caused those acute
attacks of vivax malaria (McGready et al., 2012; Rijken et al.,
2012; Kenangalem et al., 2016). A far better understanding of
hypnozoite basic biology could perhaps yield a means of
activating them in patients like these placed under reasonably
brief protective suppressive chemoprophylaxis (rather than
impractically for a year).
INSIDIOUS PLASMODIUM VIVAX
MALARIA

Acutely Ill Patients
In 1949, S.F. Kitchen writing in Mark Boyd’s classical text of
modern malariology, explicitly described P. vivax as intrinsically
benign (Kitchen, 1949). Remarkably, he did so while also
describing severe anaemia, hyperpyrexia, seizures, splenomegaly,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
severe dehydration, intractable vomiting, and astasis as common
consequences of acute P. vivax. Kitchen’s patient subjects were
undergoing induced vivax malaria as therapy for otherwise
invariably fatal neurosyphilis. Quinine therapy was withheld or
minimized in order to allow maximum severity of the paroxysms
in order to improve the relatively poor efficacy of those attacks
against neurosyphilis (only about 30% in the best clinics). Simply
put, the patient’s life depended on the severity of malaria
experienced. Although Kitchen did not mention any of his
patients not surviving that therapy (or the neurosyphilis
prompting it), other practitioners reported fatality rates for
induced vivax malaria that typically ranged from 5-15% (Baird,
2013). According to Nicol (1927), who treated many hundreds of
such patients in the UK, it was acute vivax malaria killing patients
under treatment rather than complications due to neurosyphilis or
other comorbidities. Autopsy findings supported that view
(Fong, 1937).

Another observation from Nicol and his colleagues is relevant.
They also treated a minority of many dozens of patients with
induced Plasmodium falciparum malaria, among whom death
during therapy occurred in about 4%, whereas among his patients
treated with the Madagascar strain of P. vivax, it was 14% (James
et al., 1932). They referred to these species in this context as
causing “so-called malignant” and “so-called benign” malarias. A
possible explanation for this seemingly paradoxical observation is
relatively simple and evidence for it is mounting. The bulk of
harmful parasite biomass may not occur in the readily observable
peripheral blood within vascular sinuses but in the relatively
inaccessible and unobserved extravascular spaces of some deep
organs like bone marrow and spleen. In reading the old malaria
neurosyphilis therapy literature, the clinician’s struggle to keep
the patient alive through repeated bouts of deliberately severe
malaria paroxysms is conspicuous and intuitively obvious. Those
attending assiduously monitored microscopic parasitemia counts
in peripheral blood smears in nearly real time - intelligence that
guided the suppression of those with measured sub-curative doses
of quinine when perceived as dangerously high. The inferior
malaria therapy survival rates among patients with induced P.
vivax relative to P. falciparum may have been a consequence of
unseen and unmanaged P. vivax biomass. The schematic diagram
of Figure 2 illustrates this hypothesized explanation.

Sub-patency in acute vivaxmalaria is not simply amatter of low-
grade parasitemias, but also of harmful parasite biomass effectively
hidden from view beyond the vascular sinuses. As Nicol’s paradox
of malignant and benign identity attests, and modern studies tend
to affirm, severe and complicated acute P. vivaxmalaria is typically
attended by very modest levels of parasitaemia (Silva-Filho et al.,
2020). This species is not intrinsically benign, but inherently
obscure and insidiously harmful.

Chronically Infected Without Acute Illness
As has been explained, good evidence points to illness and
patency as an exceptional state of infection among people
living with endemic transmission. That may occur as a result
of innate (e.g., Duffy negativity) or acquired immunity. Figure 3
illustrates a hypothetical infection by P. vivax in a semi-immune
host resulting in a primary parasitaemia and a single relapse. At
September 2021 | Volume 11 | Article 696598
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the beginning of the infection (left of diagram), hepatic
schizogony commences, as does the condition of latency by co-
inoculation of tachy- and brady-sporozoites. A brief period of
pre-patency in blood later occurs, leading to patent parasitaemia
that is or becomes suppressed and sub-patent. Extravascular
sequestration occurs in connection with the primary
parasitaemia and may later release newly infected red blood
cells back into the vascular sinuses, leading to a patent or sub-
patent recrudescence. The last hypnozoite in the liver activates,
ending latency and commencing another round of schizogony in
infected red blood cells; be those patent, sub-patent or
sequestered beyond the vascular sinuses. In this hypothetical
semi-immune host, the condition of vascular or extravascular
sub-patency along with sexual latency continues indefinitely
without acute illness or therapy for the infection.

These hypothesized distributions of P. vivax in varied
compartments of its human host bears directly on the means by
which we strive to measure burdens of infection. That is, up to the
present day, by examination of the peripheral blood for evidence
of the parasite; be it microscopically, by antigen capture, or PCR.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
What fraction of infected people are missed by these techniques
cannot be known with certainty, and that fraction would certainly
vary among distinct transmission settings. Nonetheless, evidence
like that already discussed (dominant states of infections in
endemic areas) mounts that most infections are indeed missed
by mass blood screening by any of those techniques. Figure 4
illustrates the problem hypothetically.
EXPLORATION OF PLASMODIUM VIVAX
BIOLOGY AND PATHOGENESIS

This review has summarised the problems imposed by the
biological and physiological character of P. vivax infection on
the ways and means by which we strive to measure, avert, or
mitigate the harm done. The subsections that follow describe
how leveraging explorations of biology and pathogenesis may
guide us to approaches of greater safety, convenience, and
effectiveness underpinned by ever-greater scientific certainty
and essential confidence in combatting that harm.
FIGURE 2 | Hypothetical distribution of equal parasite biomass (areas of the rectangles) with infection by P. vivax or P. falciparum in acutely ill patients. Tropisms of
P. vivax disfavour the intravascular compartment, whereas those of P. falciparum place it predominantly within those sinuses. Estimates of parasite biomass based
on counts of parasites observed in smears of peripheral blood would be disproportionately underrepresented in P. vivax malaria.
FIGURE 3 | Hypothetical infection by P. vivax of a semi-immune host illustrating stages and compartments of infection. Only vascular patency affords an opportunity
for diagnosis and treatment by active case detection in an asymptomatic carrier.
September 2021 | Volume 11 | Article 696598
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Basic Biology Informing Improved
Diagnostics
Accepting P. vivax as improbably detected by conventional
diagnostic approaches among asymptomatic carriers using
peripheral blood sampling opens multiple avenues of
promising investigation. An epidemiology of vivax malaria
based on classically diagnosed acute attacks is a Northern bias
of clinical medicine and public health. Although the acutely ill
are indeed reliably diagnosed by peripheral blood examination,
the reality in endemic settings is the exceptional character of that
patency with regard to the parasitism of human communities.
Understanding endemic P. vivax epidemiology will require far
greater diagnostic reach. That need properly drives the search for
other indicators of infection, be they molecules of parasite or
host origin.

Diagnostics underpin the clinical management of infectious
diseases. Detecting and quantifying molecules derived from P.
vivax may better guide determining the extent of parasitism of
clinically ill patients. Plasmodial lactate dehydrogenase (pLDH)has
been studied as a biomarker of total parasite biomass in patients
infected by P. vivax (Barber et al., 2015). The ratio of that molecule
to peripheral parasitaemia was 6-fold higher in patients with severe
illness compared to relatively mild P. vivax malaria, whereas only
slight differences occurred in that ratio between such patients with
P. falciparum malaria (Barber et al., 2015; Silva-Filho et al., 2020).
Reliance on parasite counts in peripheral blood smears may be
dangerously deceptive with acute P. vivax malaria. Validating
markers like pLDH may better guide the clinical management of
patients with this infection.

Diagnostics also underpin the epidemiology of infectious
diseases. Investigations of the serological epidemiology of
malaria have been undertaken (Cook et al., 2010; Folegatti
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et al., 2017; Longley et al., 2020; Wu et al., 2020), but the
presence of parasites in peripheral blood (by microscopy or
antigen-capture) remains the standard of malaria epidemiology
globally (World Health Organization, 2020). Mass surveys of
populations involving specific validated antibodies of short-lived
duration may reveal nearer-to-true prevalence of this infection. It
remains possible, for one example, that sustained endemic
transmission of P. vivax occurs in much of Sub-Saharan Africa
where vascular patency – and therefore prevalence by
conventional diagnostics – appears virtually absent. Serological
surveys for P. vivax in areas of Sub-Saharan Africa where the
infection is rarely found by conventional means ranged between
about 10-60% positivity (Culleton et al., 2009; Poirier et al., 2016;
Niang et al., 2017). Although some blood surveys employing
PCR diagnostics also detected prevalent P. vivax (1%-15%) in the
same region (Motshoge et al., 2016; Haiyambo et al., 2019; Oboh
et al., 2020; Podgorski et al., 2020; Dongho et al., 2021),
serological surveys may ultimately be required to detect and
measure the extent of endemic P. vivax transmission.

Basic Biology Informing Improved
Interventions
Successful treatment of P. vivax requires combining an 8-
aminoquinoline against latency with blood schizontocidal agents
against patency. As already explained, the complexity of this task
involves managing G6PD vulnerability, patient metabolism of 8-
aminoquinolines, drug-drug interactions impacting safety and
efficacy, and naturally variable parasite sensitivity to those drugs.
In combining blood schizontocidal agents that optimize 8-
aminoquinoline activity we may finally see validated radical cures
of superior efficacy andmaximal safety inmost patients infected by
any strain of P. vivax (Baird, 2019).
FIGURE 4 | The diagrams represent the same population of hypothetical individuals being either uninfected (no color) or infected (color). The colors represent varied
states of infection, where mass screening for microscopic or antigen-capture patency of infection (red) reveals the minority thus infected. More sensitive PCR
detection reveals otherwise sub-patent infection of blood, but not extravascular sequestration of active parasites or the inactive parasites of hepatic latency.
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The tool needed to explore those combinations and strains is
ex vivo hepatic systems accommodating not only immediate and
delayed hepatic development of parasites, but also including the
crucial metabolism/interactions of those drugs as it is likely to
occur in patients. The many dozens of possible combinations,
multiplied by many more dosing strategies, are too numerous to
conceivably approach with clinical trials or even the P. cynomolgi
in rhesus macaque model. Reasonably high throughput
screening in the laboratory requires sophisticated biological
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
systems of human (or macaque) hepatocyte culture coupled to
ready access to viable sporozoites (Gural et al., 2018; Subramani
et al., 2020; Voorberg van derWel et al., 2020). That access would
be vastly improved by laboratory systems supporting in vitro
deve l opmen t o f P . v i vax b l ood s ch i zogony and
gametocytogenesis (Gunalan et al., 2020).

Those ex vivo systems, along with mice grafted with human
liver (Schafer et al., 2020), offer a great deal more than screening
drugs and exploring their mechanisms of action. Fundamentally
FIGURE 5 | Maps illustrating location and cumulative numbers of clinical trials of chemotherapeutics involving P. vivax infected-patients up to 1980, 2000, and 2020
(top to bottom). Pin colors correspond to categories of responses to chloroquine therapy as indicated in the key at bottom of each map. Images and numbers taken
from Vivax Surveyor on 8 April 2021 (http://www.wwarn.org/vivax/surveyor/#0).
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important questions of P. vivax biology may also be addressed.
Chief among those may be the phenomenon of hypnozoite
formation, dormancy, and activation. Some of this ex vivo and
rodent work, for example, corroborates Lysenko’s (Lysenko et al.,
1977) hypothesis of polymorphic sporozoites, i.e., immediate
versus delayed hepatic schizogony of what may be genetically
determined periodicity (Mikolajczak et al., 2015). Those genetics
await definitive phenotyping empowered by these new tools,
along with increasingly available P. vivax whole genome and
RNA transcriptome capacities (Bright et al., 2014; Brashear et al.,
2020; Buyon et al., 2020; Ford et al., 2020; Bourgard et al., 2021).
Better understanding of the molecular mechanics of hypnozoite
biology may rationally inform interventions against them that we
may scarcely imagine today.

Recent breakthroughs in the biology of P. vivax erythrocyte
invasion mechanics deepen our understanding of pathogenesis
and epidemiology, along with identifying specific potential
targets of chemotherapy or vaccination (Rawlinson et al., 2019;
Chan et al., 2020). Likewise, new work in the immunology of
infection by P. vivax inform strategies for improved clinical
management, new epidemiological tools in the form of markers
of infections, and rational vaccine development (Antonelli
et al., 2019). This important work includes the sexual forms of
P. vivax and their singular biology and immunology (de Jong
et al., 2019).

In the field, clinic, and laboratory, research on P. vivax has
greatly accelerated since 30 years ago when very little work was
being done on this infection. Each year through the 1980s and
early 1990s no more than 3 clinical trials involving P. vivax were
reported, and during many of those years it was none at all
(Commons et al., 2017). After the year 2000, that number
approached or exceeded a dozen trials each year. Figure 5
presents data from Vivax Surveyor (http://www.wwarn.org/
vivax/surveyor/#0) illustrating this trend. Likewise, a PubMed
search of “Plasmodium vivax” shows similar trends: through the
1980s and 1990s; around 100 citations appeared each year, but
after 2000 a rapid rise to around 500 citations/year appears.
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These trends are intermingled, each spurring the other with new
questions and demands for further work and progress.
SUMMARY

The long neglect of research on P. vivax as a clinical and public
health problem now offers rich opportunities for penetrating
explorations of basic biology and pathogenesis of direct relevance
to preventing and mitigating the insidious harm of this infection.
The global epidemiology of this infection may be very poorly
understood, or even misunderstood by superficial diagnostic
technologies inadequate to the biology of P. vivax – prevalence
of parasitaemia may not reliably approximate prevalence of
infection. Clinical management of acutely ill patients may be
similarly misinformed by the same diagnostics – low-grade
parasitaemia does not equate to low-grade infection. The
complexity of the chemotherapeutic problem of radical cure
has been underestimated and remains fraught with uncertainty,
hazard, and hesitancy – available regimens are often not
validated, inadequate, and sometimes dangerous. All of these
serious gaps in understanding may be addressed by the basic
research like that summarized in this issue of Frontiers.
Acknowledging the stealth and complexity of P. vivax malaria
may propel that hard work to very substantial progress against
this important infection.
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