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Abstract

Carney complex (CNC) is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine
manifestation is primary pigmented nodular adrenocortical disease (PPNAD), a bilateral adrenocortical hyperplasia causing
pituitary-independent Cushing’s syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 a-regulatory
subunit (R1a) of the cAMP–dependent protein kinase (PKA) have been found in 80% of CNC patients with Cushing’s
syndrome. To demonstrate the implication of R1a loss in the initiation and development of PPNAD, we generated mice
lacking Prkar1a specifically in the adrenal cortex (AdKO). AdKO mice develop pituitary-independent Cushing’s syndrome
with increased PKA activity. This leads to autonomous steroidogenic genes expression and deregulated adreno-cortical cells
differentiation, increased proliferation and resistance to apoptosis. Unexpectedly, R1a loss results in improper maintenance
and centrifugal expansion of cortisol-producing fetal adrenocortical cells with concomitant regression of adult cortex. Our
data provide the first in vivo evidence that loss of R1a is sufficient to induce autonomous adrenal hyper-activity and bilateral
hyperplasia, both observed in human PPNAD. Furthermore, this model demonstrates that deregulated PKA activity favors
the emergence of a new cell population potentially arising from the fetal adrenal, giving new insight into the mechanisms
leading to PPNAD.
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Introduction

Primary pigmented nodular adrenocortical disease (PPNAD) is

a rare form of bilateral micronodular adrenocortical hyperplasia

leading to high morbidity due to ACTH (adreno corticotropic

hormone)-independent Cushing’s syndrome. PPNAD may be

either sporadic or regarded as the most frequent endocrine

manifestation of Carney complex (CNC), an autosomal dominant

multiple neoplasia syndrome characterized by cardiac myxomas,

spotty skin pigmentation and endocrine overactivity [1]. Cushing’s

syndrome in PPNAD is most diagnosed in children and young

adults. Both isolated PPNAD and CNC have been associated with

inactivating mutations in PRKAR1A, the gene encoding the type 1a
regulatory subunit (R1a) of the cAMP-dependent protein kinase

(PKA) [2,3]. Among CNC patients with Cushing’s syndrome, the

frequency of PRKAR1A mutations is about 80%. Tumour-specific

loss of heterozygosity within the chromosomal region harboring

PRKAR1A is observed in tumours from CNC patients and isolated

PPNAD, suggesting that PRKAR1A is a potential tumour

suppressor gene [4]. Because general homozygous loss of Prkar1a

is lethal in early mouse embryos, various haploinsufficiency and

tissue-specific knock-out models have been engineered to demon-

strate its tumour suppressor activity [5,6]. General down-

regulation of R1a levels has been achieved either in mouse lines

heterozygous for a null allele of Prkar1a [6,7] or in a transgenic line

carrying an inducible antisense-construct [8]. Both approaches

indicate that haploinsufficiency for Prkar1a predisposes to tumour

formation in a spectrum of endocrine and non-endocrine tissues

that are cAMP-responsive; the mouse phenotype partially overlaps

with the human one. However haploinsufficiency in mouse models

does not appear to be sufficient to promote tumour formation in a

subset of tissues known for their propensity to develop neoplasms

in CNC patients. Thus, complete loss of Prkar1a using heart-,

Schwann cell- or pituitary-specific knockouts was required to
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induce tumours in these tissues [9–11]. To date, although PPNAD

is the most frequent endocrine disorder observed in CNC patients

[12], little is known on its pathophysiology. No clear adrenal

lesions nor Cushing’s syndrome were observed in mouse models of

haploinsufficiency, suggesting that complete loss of Prkar1a might

be required to phenocopy human phenotype. To address directly

this question and obtain a possible mouse model for PPNAD, we

produced mice with targeted Prkar1a gene inactivation in adreno-

cortical cells by mating Prkar1a floxed mice with Akr1b7-Cre mouse

line, a Cre expressing line allowing specific gene ablation in the

steroidogenic lineage of the adrenals [13]. Adrenal cortex-specific

Prkar1a knockout mice (AdKO) develop pituitary-independent

Cushing’s syndrome and evident signs of deregulated adreno-

cortical cells differentiation and hyperplasia. These defects lead to

improper maintenance and expansion of foetal adrenal cells in

adult adrenals and establishment of tumoural conditions. Dereg-

ulation of the inhibin-activin signalling pathway seems to be

implicated in this improper maintenance in AdKO mice model

and in the human pathology. Our data provide the first in vivo

evidence that the absence of R1a subunit of PKA is sufficient to

induce the autonomous adrenal hyper-activity and bilateral

hyperplasia observed in PPNAD. They also strongly suggest that

deregulated PKA activity positively affects the maintenance of

foetal characteristics in adult adrenal glands.

Results

Efficient ablation of Prkar1a in the adrenal cortex of
AdKO mice

To assess the impact of complete loss of Prkar1a on adreno-

cortical function and initiation of PPNAD, we crossed the

Akr1b7:Cre line [13] with mice carrying the conditional null allele

Prkar1aloxP [6] to produce adrenal cortex-specific KO mice of the

Akr1b7:Cre;Prkar1aloxP/loxP genotype (Figure 1A). In this study, these

mice were referred to as AdKO mice, and wild-type mice (WT)

were of the Prkar1aloxP/loxP genotype. The Prkar1aD2 allele (KO

allele) was detected by PCR in the DNA extracted from AdKO

adrenals but absent from gonads and WT tissues (Figure 1B). As

expected the intact conditional allele was still detected in the

adrenals since Cre-mediated recombination was not supposed to

occur in the whole organ but only in the cortex. Western blot and

RT-QPCR analyses confirmed that Prkar1a gene expression was

impaired in the adrenal glands of AdKO mice at both the mRNA

(50% decrease) and protein levels (60% decrease) (Figure S1A and

Figure 1C) when compared to WT. The 60% loss of R1a protein

in adrenal tissue lysate of AdKO mice was accompanied by a

significant increase in accumulation of R2b and C PKA subunits

(Figure 1C), a phenomenon that is also observed in PPNAD [8].

By contrast, no significant changes were observed at the mRNA

levels, indicating that upregulation of R2b and C subunits,

involved a post-trancriptional mechanism (Figure S1B). We

performed mRNA in situ hybridization and immunostaining to

confirm that the decrease of Prkar1a gene expression was due to

Cre-mediated gene ablation within the cortical compartment. As

shown in Figure 1D, R1a mRNA signal was unaffected in medulla

but was lost in the vast majority of cortical cells. These

observations were confirmed at the protein level by R1a
immunostaining (Figure 1D).

AdKO mice were born at expected Mendelian frequency and

no difference in viability, weight or blood glucose values was

observed up to 18 months of age when compared to WT mice

(data not shown). Adrenal endocrine function and histological

differentiation were explored in groups of mice of both sexes at 5,

10 and 18 months of age.

AdKO mice progressively develop ACTH–independent
Cushing’s syndrome

Visual examination of AdKO females from the age of 10

months onwards revealed neck humps formed of large accumu-

lations of adipose tissue. This ‘‘buffalo hump’’ phenotype was

never observed in WT females (Figure 2A) nor in males of both

genotypes (not shown). Alteration of the repartition of fat depots is

one of the features of ‘‘classic’’ Cushing’s syndrome and is

observed in PPNAD patients with PRKAR1A inactivation. In

agreement with these observations, basal corticosterone levels in

plasma were at least 2-fold higher in 10- and 18-month-old AdKO

females than in age-matched WT, while no difference could be

detected at 5 months (Figure 2B). Basal corticosterone levels were

not affected in AdKO males of 5 months (8.966.3 ng/mL in WT

vs 7.865.0 ng/mL in AdKO), 10 months (8.566.5 ng/mL in WT

vs 7.862.1 ng/mL in AdKO) or 18 months of age (7.064.6 ng/

mL in WT vs 8.264.2 ng/mL in AdKO). ACTH levels were

measured in plasma of 10 months females. Importantly, ACTH

levels measured in AdKO females were at least unchanged or

tended to decrease (2167 pg/mL in WT vs 1467 pg/mL in

AdKO), indicating that their basal hypercorticosteronaemia was

independent of pituitary and likely resulted from primary adrenal

overactivity. To explore the mechanism of hypercorticosteronae-

mia, AdKO mice that had not declared frank Cushing’s syndrome,

i.e. 5 months females and 10 months males, were injected with

dexamethasone to induce a complete blockade of the hypotha-

lomo-pituitary-adrenal (HPA) axis and subsequent suppression of

ACTH production (Figure 2C–2E). Dexamethasone suppression

test led to the expected decrease of adrenal weight (measured in

females) as well as cortical atrophy in WT mice but had no effect

on AdKO adrenals (Figure 2C, 2D and S2). Moreover,

corticosterone levels were undetectable in plasma of WT mice

after dexamethasone treatment whereas they remained unaltered

in AdKO mice (Figure 2E). Finally, ACTH replacement in

dexamethasone-treated mice restored corticosterone levels in WT

Author Summary

Carney complex is a rare familial disease characterized by a
predisposition to develop multiple endocrine tumors and
highly morbid syndromes due to endocrine overactivities.
Its most frequent endocrine manifestation, hypersecretion
of glucocorticoids i.e. Cushing’s syndrome, is caused by
micronodular adrenal gland hyperplasia, an unusual
neoplasia which combines both hyperplastic and atrophic
areas. Inactivating mutations of the gene encoding the
regulatory subunit 1a (R1a) of the cAMP–dependent
protein kinase were frequently found in these patients,
but the causal link between loss of R1a and onset of this
adrenal disorder had not yet been established. Here, we
describe the first mouse model mimicking this disease and
provide mechanistic insights into endocrine overactivity
and neoplastic transformation. Indeed, we show that lack
of R1a induces autonomous expression of genes involved
in steroid biosynthesis and resurgence of hyperplastic
fetal-like cells with concomitant defects in cell renewal of
the adult cortex. Our data therefore represent a substantial
conceptual advance on the cellular dynamics involved in
adrenal gland homeostasis. They suggest that regression
of fetal structures may be important to establish normal
endocrine functions and to allow cell renewal in the
definitive cortex. Failure to clear out cells of fetal features
in R1a-deficient adrenals leads to morbid hyperplasia.

R1a Loss and Adrenal Hyperplasia
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Figure 1. Generation of a conditional knockout for Prkar1a in mouse adrenal cortex (AdKO mice). (A) Scheme of the 0.5 Akr1b7-Cre
transgene driving the Cre expression in adrenal cortex, the Prkar1a floxed allele: Prkar1aloxP and the knockout Prkar1a allele lacking exon 2: Prkar1aD2.
Black rectangles, exons; white triangles, loxP sites; small arrows, primers used for genotyping (see Materials and Methods for details). (B) Genomic PCR
experiments using primers a, c and b, c (see A) were performed to confirm all the genotypes. Corresponding phenotypes are indicated. Intact floxed
allele was amplified using primers b and c and knockout allele was amplified using primers a and c. (C) Levels of the different PKA subunits were
quantified by western blotting in adrenals of 10-month-old WT vs AdKO parous female mice. * P,0.05; ** P,0.01. (D) Top panels: In situ hybridization
of adrenal tissue from WT (left) and AdKO (middle and with haematoxylin/eosin staining in the right) parous female mice (10-month-old) with Prkar1a

R1a Loss and Adrenal Hyperplasia
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and led to a further increase in AdKO mice, indicating that lack of

R1a did not impair ACTH inducibility of steroidogenesis (Figure

S3). Altogether, these data demonstrated that the adrenal glands of

AdKO mice acquired the ability to secrete corticosterone in an

autonomous manner leading to frank (in females) or subclinical (in

males) ACTH-independent Cushing’s syndrome.

Adrenal cortex-specific ablation of Prkar1a increases PKA
signalling

Glucocorticoid biosynthesis depends on the continuous ACTH

stimulation of adrenal steroidogenic and detoxification genes,

through the cAMP/PKA signalling pathway. We thus studied the

expression level of ACTH-dependent (Star, Akr1b7, Cyp11a1,

Cyp11b1) and -independent (Cyp11b2) genes in WT and AdKO

adrenal glands (Figure S4). RT-QPCR showed that basal

hypercorticosteronaemia found in 10 months AdKO females

correlated with a significant increase in Star mRNA levels (Figure

S4B). A corresponding rise of StAR protein accumulation was

confirmed by western blot (Figure S4B, inset). Consistent with

their milder phenotype, males did not show any significant change

in the expression of steroidogenic genes. By contrast, when AdKO

mice with subclinical Cushing’s syndrome (5-month-old females

and 10-month-old males) were submitted to dexamethasone

suppression test, most of the ACTH-responsive genes remained

upregulated when compared to WT (Figure S4C). As expected,

Cyp11b2 gene expression remained unchanged, showing that this

response of mutant mice depended on ACTH signalling. We then

checked whether Prkar1a ablation in AdKO mice led to the

expected increase in PKA signalling, by measuring the PKA kinase

activity and CREB phosphorylation on ser133 residue. Kinase

assays demonstrated that basal PKA activity (in the absence of

cAMP) was increased in mutant adrenals while total activity (in the

presence of cAMP) remained unchanged (Figure 3A). In

agreement with an increase in basal PKA activity, the amount

of P-CREB in AdKO adrenals was doubled when compared to

WT (Figure 3B). All these converging data demonstrated that the

adrenal cortex-specific ablation of the Prkar1a gene led to primary

pituitary-independent hypercorticosteronaemia through enhance-

ment of PKA signalling.

AdKO mutant mice show adrenal hyperplasia and
zonation defects

Histological abnormalities consisting of large eosinophilic fœtal-

like cells emerging from the innermost part of the adrenal cortex

were detected in 5-month-old AdKO mice (Figure 4A and 4D).

Eosinophilic cells appeared clearly hypertrophic when compared

to WT spongiocytes (229642 mm2 vs 110615, p,0.01) (Figure 4H

and 4K, insets). This hypertrophic cell population expanded

centrifugally to represent more than 50% of the cortex at 10

months (Figure 4B and 4E) and most of the cortex by 18 months

(Figure 4C and 4F). Simultaneously, neighbouring zona fasciculata

cells, still arranged in tighly packed cords in 5-month-old mutant

mice, became gradually disorganized in 10-month-old adrenals

and appeared completely atrophic at 18 months (Figure 4G–4L).

At this stage, the zona glomerulosa no longer appeared as a

continuous layer of cells but as groups of glomeruli, isolated from

each other by small hyperplastic spindle-shaped basophilic cells,

arising from the subcapsular region (Figure 4L). This region

contains adrenal stem/progenitor cells ensuring the continuous

renewal of the adult cortex [14–16]. We thus assessed possible

changes in the contents of adrenocortical progenitors in AdKO

females of 10 and 18 months of age by quantifying expression of

the progenitor-specific marker Shh and Gli1 [16] and the potential

stem cell marker Pod1 [17]. RT-QPCR analyses showed that

expression of these genes were not affected by the genotype nor the

age (Figure S5), suggesting that the number of adrenocortical

progenitors may not be affected in AdKO mice. The different cell

populations in this area were characterized by double immuno-

staining for Sf1, a marker of steroidogenic lineage, and for b-

catenin, a marker of subcapsular steroidogenic lineage mostly

represented by zona glomerulosa cells [18]. Double immunostaining

of WT adrenals from 18-month-old mice confirmed that both

markers (Sf1 staining in the nucleus and b-catenin mostly at the

cell periphery) colocalized in the cells of zona glomerulosa that

formed a continuous layer in the outermost cortex (Figure 4M). By

contrast, in age-matched AdKO adrenals, the general disorgani-

zation of the innercortex (Sf1-positive, b-catenin-negative cells)

and the discontinuous aspect of the subcapsular/glomerulosa zone

(Sf1/b-catenin-positive cells) were obvious (Figure 4N). A detailed

view of this area showed hyperplastic spindle-shaped cells, both

Sf1- and b-catenin-negative, were surrounding the Sf1- and b-

catenin-positive glomeruli (Figure 4O). In previous mouse models

for adrenocortical tumours, the first signs of neoplastic transfor-

mation seemed to coincide with the emergence of Gata-4 positive

cells growing centripetally from the subcapsular region [15]. Thus,

we examined expression of this transcription factor by immuno-

staining on 18-month-old adrenal sections. As shown in Figure 4P-

4Q, numerous cells with Gata-4 nuclear staining could be detected

within the subcapsular hyperplastic region of AdKO adrenals

while, as expected, very rare positive cells were observed in WT.

To determine the mechanisms leading to early hyperplasia of

the large eosinophilic cells and late hyperplasia of the small

spindle-shaped cells, cellular proliferation within adrenal glands of

5–18 months mice was assessed by immunodetection of Ki67

(Figure 5A). At 5 or 10 months, WT and AdKO adrenals did not

show any difference in the number of Ki67 positive cells (not

shown). By contrast at 18 months, the number of proliferative cells

was more than doubled in mutant adrenal cortex. All Ki67-

positive cells were also and thus probably corresponded to the

large eosinophilic cells but not to the Sf1-negative small spindle-

shaped cells (Figure 5B). The increased cell proliferation was only

evident in late stage of the AdKO phenotype and then could not

be sufficient to explain the hyperplasia of innercortex observed in

5-10-month-old mice. We thus tested the sensitivity of adrenocor-

tical cells to apoptosis induced by dexamethasone injections in 5-

month-old mice [19]. Although apoptotic cells, assessed by positive

staining for cleaved caspase 3, were detected within the cortex of

both genotypes upon dexamethasone treatment, adrenal sections

from AdKO mice showed 62% less apoptotic cells than WT

(Figure 5C). These data support the view that early hyperplasia

observed in 5-10-month-old AdKO mice could be, at least in part,

the result of decreased sensitivity to apoptosis. TGFb superfamily

members inhibin and activin play a critical role in the growth

dynamics of transient zones in the developing adrenal of both

human and mouse [20,21]. The expression of genes encoding the

activin subunits (Inhba and Inhbb), the inhibin subunit (Inha) and

the activin-binding protein follistatin (Fst) were compared in WT

and AdKO adrenals (Figure 5D). The mRNA levels of inhibin

subunit and follistatin were 2-fold higher in AdKO adrenals

antisense riboprobe. Lower panels: R1a protein was immunodetected in adrenal sections of WT (left) and AdKO (right) 18 month-old parous females.
Arrows in AdKO indicate some of the few cortical cells in which Prkar1a expression is maintained. Scale bars, 50 mm.
doi:10.1371/journal.pgen.1000980.g001

R1a Loss and Adrenal Hyperplasia

PLoS Genetics | www.plosgenetics.org 4 June 2010 | Volume 6 | Issue 6 | e1000980



whereas expression of activin subunits remained unchanged. To

assess the relevance of this observation in the human adrenal, we

realised an immunostaining against INHIBIN-a on sections from

normal (3 patients) and PPNAD-affected adrenocortical tissues (5

patients) (Figure 5E and Figure S6). Hypertrophic cells that form

the nodules were strongly stained. By contrast, no significant signal

Figure 2. AdKO mice exhibited an age-dependent, dexamethasone-resistant increase in plasma corticosterone. (A) Abnormal
accumulation of adipose tissue (dotted white line) in the back of AdKO females (10-month-old). (B) Quantitative analysis of plasma corticosterone in
WT female mice compared to AdKO at 5, 10 and 18 months. (C) Mean adrenal weights of 5-month-old WT and AdKO female mice (parous) in basal
conditions or after 4 days dexamethasone suppression test. (D) Representative haematoxylin and eosin adrenal staining in the same conditions as (C).
Scale bars, 50 mm. (E) Quantitative analysis of plasma corticosterone in basal conditions or after dexamethasone suppression test, in 5-month-old
parous females and 10-month-old males WT mice compared to AdKO mice. * P,0.05; ** P,0.01.
doi:10.1371/journal.pgen.1000980.g002

R1a Loss and Adrenal Hyperplasia
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could be detected in the surrounding tissue corresponding to zona

fasciculata nor in sections of normal adrenal tissues. Hence, in both

mice and humans, R1adepletion in adrenal cortex led to increased

expression of TGFb members known for their antagonistic effects

on apoptotic action of activins [22].

Adrenal specific ablation of Prkar1a leads to resurgence
of foetal features

Adrenocortical-specific ablation of the Prkar1a gene led to

expansion of hypertrophic eosinophilic cells emerging from the

innermost part of the cortex, adjacent to adrenal medulla

(Figure 4). We hypothesized that this cell population could

originate from the X-zone, a transient zone of fœtal origin that

regresses during the first pregnancy in female and at puberty in

male mice [23,24]. Hence, we compared adrenal zonation in WT

and mutant mice by using Akr1b7 and 20a-HSD immunostaining

to delineate zona fasciculata and X-zone, respectively [25,26]

(Figure 6 and Figure S7). Adrenal cortex from WT virgin females

showed canonical concentric organization consisting of three

adjacent zones: X-zone (20a-HSD-positive and Akr1b7-negative),

zona fasciculata (20a-HSD-negative and Akr1b7-positive) and zona

glomerulosa (20a-HSD-negative and Akr1b7-negative) (Figure 6A).

By contrast, in the adrenal gland of 5-month-old AdKO virgin

females although the 20a-HSD-expressing cells remained adjacent

to the medulla, the X-zone and zona fasciculata were now

overlaping in the innermost part of the cortex, and some isolated

cells co-expressed both 20a-HSD and Akr1b7 markers (Figure 6B).

As expected, in 10-month-old parous WT females, X-zone had

completely regressed and 20a-HSD-expressing cells were no

longer detected (Figure 6C). By contrast, adrenal cortex from

age-matched parous AdKO females showed a persistent large X-

like-zone that has clearly expanded in a centrifugal direction

(Figure 6D). At this stage, most 20a-HSD positive cells of the X-

like-zone also expressed Akr1b7 and the typical packed cords

organization of zona fasciculata was no longer observed in the

Akr1b7-positive/20a-HSD-negative remaining cortex. In 18-

month-old females, the X-like-zone had further expanded and

now represented most of the cortex. Akr1b7-positive/20a-HSD-

negative cells were repelled to adrenal periphery (Figure 6E).

Interestingly, examination of the proliferative potential of the X-

like-zone using double immunostaining showed that Ki67-

positive/20a-HSD-positive cells could be found in both 10 and

18-month-old AdKO females (Figure S8).

Many 20a-HSD positive cells were also detected in 18-month-

old AdKO males although the observed phenotype was milder

than in females (Figure S9). Indeed, most 20a-HSD-expressing

cells were not Akr1b7-positive and the overlap of X-like-zone with

zona fasciculata was limited to the innermost cortex. In mouse,

natural X-zone regression at puberty can be suppressed by

castration of pre-pubescent males. To explore the possible reasons

Figure 3. PKA activity was increased in AdKO adrenals. (A) In vitro quantification (arbitrary units) of the PKA catalytic activity in adrenal
extracts of 10-month-old WT and AdKO females. The activity was positively or negatively regulated by cAMP, the ligand of regulatory subunits, and/or
PKI, a selective inhibitor of the PKA catalytic subunits, respectively. ** P,0.01. (B) Representative CREB/P-CREB western blotting and quantification of
the CREB protein phosphorylation in 10 months WT and AdKO adrenals. * P,0.05.
doi:10.1371/journal.pgen.1000980.g003

R1a Loss and Adrenal Hyperplasia
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Figure 4. Morphological defects and progressive hyperplasia in AdKO adrenals. (A–L) Adrenals were collected from WT (A–C and G–I) and
AdKO (D–F and J–L) parous females aged of 5, 10 and 18 months and stained with haematoxylin and eosin. AdKO adrenal cortex presented
progressive centrifugal expansion of large eosinophilic cells, indicated by a double arrow in (D–F). In the top panels, squares delineate the higher
magnifications shown in (G–I) for WT and (J–L) for AdKO adrenals. Insets, higher magnification illustrating the increased cell area of expanding
eosinophilic cells compared to normal spongiocytes. (M–O) Adrenal sections from 18-month-old mice double-stained for b-catenin, a zona
glomerulosa marker (in green) and for Sf1, a steroidogenic marker (in red). Nuclei were stained by Hoechst in blue. (M) WT adrenal cortex. (N) AdKO
adrenal cortex. (O) Higher magnification of (N), where hyperplastic small spindle-shaped, basophilic cells lacking both staining are enlightened by
arrows. (P–R) Immunodetection of the pre-tumoural marker Gata-4 in adrenal sections of parous 18-month-old females. (P) WT. (Q–R) AdKO. (R) The
square delineates the higher magnifications shown in the right. Top panel: Gata-4 staining. Lower panel: same section with haematoxylin and eosin
counter-staining. M, Medulla; C, Cortex; F, zona fasciculata; G, zona glomerulosa; Ca, Capsule; Scale bars, 50 mm.
doi:10.1371/journal.pgen.1000980.g004

R1a Loss and Adrenal Hyperplasia
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Figure 5. Proliferation and resistance to apoptosis in AdKO adrenals, inhibin-activin system in AdKO adrenals, and PPNAD. (A)
Adrenals from 18-month-old WT and AdKO parous females were immunodetected with Ki67 proliferation marker. The corresponding statistical
analysis of the number of Ki67 expressing cells in the adrenal cortex of both genotypes is shown on the right panel. ** P,0.01. (B) Co-
immunodetection of Ki67 (green) and Sf1 (steroidogenic marker, red) in 18 months AdKO adrenal sections. Co-localisation of Ki67 and Sf1 stainings is
shown in the right panel. (C) Representative stainings for cleaved-caspase 3 apoptosis marker in WT and AdKO adrenal sections of 5-month-old mice
treated for 4 days with dexamethasone. The right panel shows the quantification of apoptotic cells (cleaved-caspase 3 positive) in adrenal cortex of
untreated (Ctrl) or treated (Dexa) mice of both genotypes. * P,0.05. (D) Quantitative representation of mRNA expression (RT-QPCR) of genes
encoding inhibin-activin system in 10-month-old parous female adrenals of both genotypes. Inhibin subunit (Inha); Activin A and B subunits (Inhba

R1a Loss and Adrenal Hyperplasia
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for the less pronounced phenotype in AdKO males, we tested

whether gonadectomy occuring at 3-weeks of age (before natural

X-zone regression) could accelerate the onset of the adrenal

defects in 3-month-old adult males (Figure S10). 20a-HSD/

Akr1b7 co-immunostaining showed that castration allowed the

maintenance of a classical X-zone in WT, and of a X-like-zone

overlaping fasciculata in AdKO adult males. When compared to

shame-operated AdKO males of the same age, gonadectomized

AdKO males showed a high number of Akr1b7-positive/20a-

HSD-positive cells, these cells being never observed in gonadec-

tomized WT males (Figure S10A). Consistently, corticosterone

levels were more elevated in gonadectomized than in shame-

operated AdKO males (Figure S10B). By contrast, gonadectomy

had no impact on corticosterone levels in WT males. These data

suggested that gonadectomy was able to amplify the phenotype in

male AdKO mice.

The persistence of X-zone marker suggested that foetal

characteristics were maintained throughout adult life of AdKO

mice. Cyp17 is a steroidogenic enzyme involved in the biosynthesis

of precursors of both sex steroids and cortisol. In rodents, however,

Cyp17 is only transiently expressed in the foetal adrenal and is

therefore considered a foetal marker [27]. RT-QPCR analyses

showed that, as opposed to WT, most adult AdKO adrenal glands

expressed high levels of Cyp17 transcripts (Figure 7A). In addition,

Cyp17 positive immunostaining was detected within the inner-

cortex of AdKO adrenal glands (Figure 7B). More importantly,

this expression led to the production of a functional Cyp17 enzyme

since AdKO mice produced detectable levels of cortisol

(Figure 7C). Because both corticosterone and cortisol production

required the continuous expression of genes encoding Cyp21 and

Cyp11b1 biosynthetic enzymes, we examined whether their

expressions were maintained throughout the progression of the

AdKO phenotype (Figure S11). RT-QPCR analyses demonstrated

that Cyp21 and Cyp11b1 expression levels were unchanged with

age in both WT or AdKO females.

Altogether, these data demonstrate that adrenal-specific abla-

tion of Prkar1a altered the differentiation program of the adult

cortex by promoting the improper maintenance and centrifugal

expansion of steroidogenic competent foetal-like cells, that had the

capacity to proliferate and to produce glucocorticoids (cortisol and

corticosterone).

Discussion

Here, we shown that the adrenal-specific ablation of Prkar1a, the

Carney Complex gene 1 (CNC1), in mouse reproduced the

essential features of PPNAD observed in humans carrying

PRKAR1A mutations. AdKO mice developed ACTH-independent

Cushing’s syndrome and cortical hyperplasia combined with

atrophic areas that are typical hallmarks of PPNAD [1]. This

mouse model definitively proves the central role of PRKAR1A gene

defects in the etiology of PPNAD. Furthermore, the discovery of

an unexpected role of Prkar1a in the repression of foetal features in

adrenal cortex provides novel mechanistic insight into the cellular

dynamics leading to definitive adrenal tissue or, when disturbed, to

morbid hyperplasia.

AdKO mice phenocopied most of the features of adrenal

overactivity seen in patients. From a clinical point of view, PPNAD

is difficult to diagnose because Cushing’s syndrome usually

develops slowly. Hypercortisolism may be mild or even periodic,

with no clear decrease in plasma ACTH levels [28–30]. Adrenal-

specific disruption of Prkar1a triggered subclinical hypercorticos-

teronaemia revealed upon blockade of pituitary ACTH, in 5-

month-old mice. Around one year of age, it evolved into frank

Cushing’s syndrome with low, but still detectable levels of plasma

ACTH. Contrasting with PPNAD, we did not detect any

paradoxical rise in corticosterone levels after dexamethasone

injection in AdKO mice, but only a resistance to ACTH blockade.

Paradoxical response would rely on increased expression of the

glucocorticoid receptor (GR) that was shown to activate PKA in

PPNAD nodules [31,32]. We did not find any AdKO-dependent

increase in GR expression neither by measuring mRNA levels nor

by immunohistochemical analyses (not shown). This paradoxical

response could likely be a feature of human cells since adrenal

cultures from Prkar1a haploinsufficient mice did not show

paradoxical dexamethasone response in perifusion experiments

[32]. Another discrepancy between AdKO adrenals and PPNAD

was the absence of pigmentation in the mice glands. Hyper-

pigmentation in PPNAD nodules relies on the accumulation of

lipofuscin and is a consequence of autophagic deficiency [33,34].

This decreased autophagy was thought to originate from the R1a
loss and consecutive activation of mTOR signalling [35].

Lipofuscin is made of aldehyde-linked protein residues that make

it non-degradable and that form under chronic mild oxidative

stress conditions, at a rate inversely related to the average lifespan

of species [36]. We thus speculate that more efficient enzymatic

defenses against reactive aldehydes forming aducts [25] and/or

shorter lifespan might preserve mice from adrenal lipofuscin

accumulation under R1a depletion. The cytomegalic aspect of

eosinophilic cells arising from the innercortex is a hallmark of

hyperplasia seen in PPNAD patients or in AdKO mice, and could

be linked to unbuffered mTOR activity [35,37] that is a

prerequisite to increased cell size [38]. Works are in progress to

explore the contribution of this pathway in the pathophysiology of

the AdKO model.

Although they were attributed to the lack of R1a regulatory

subunit of PKA, until now, the mechanisms leading to adrenal

overactivity in PPNAD were not clear. The PKA heterotetrameric

holoenzyme is composed of a dimer of regulatory subunits

combined with two catalytic subunits. When the regulatory

subunits bind cAMP, they dissociate from the catalytic subunits,

which in turn, exhibit their kinase activity [39]. In previous

knockout mouse models with general loss of R1a, basal PKA

activity (linked to free catalytic subunits only) measured in embryos

was found increased whereas total PKA activity (cAMP-stimulat-

ed) was decreased [5]. When measured in mouse embryonic

fibroblasts both activities were increased [40]. The net impacts of

R1a depletion on PKA activity could therefore depend on the cell

type or tissue context. Consistent with these studies, specific

depletion of R1a in adrenals mainly triggered a rise in basal PKA

activity, attested both by increased catalytic activity and CREB

phosphorylation. This resulted in a net gain of Star gene expression

and therefore increased basal steroidogenesis. In agreement with

our findings, StAR gene expression was found upregulated in a

serial analysis of gene expression (SAGE) of PPNAD tissues [41].

and Inhbb); Follistatin (Fst). * P,0.05; ** P,0.01. (E) Immunostaining for INHIBIN-a on human adrenal sections from control G52902 patient (female)
and PPNAD G91567 patient (female) carrying germline PRKAR1A-inactivating mutation c.709-7del6(TTTTTA) [61]. Similar stainings were observed on
two other control patients (not shown) and four other PPNAD patients (Figure S6). Square delineates the higher magnifications located on the right.
N, nodule; M, medulla, F, zona fasciculata. Scale bars, 15 mm in entire human adrenal and 50 mm in magnification.
doi:10.1371/journal.pgen.1000980.g005

R1a Loss and Adrenal Hyperplasia

PLoS Genetics | www.plosgenetics.org 9 June 2010 | Volume 6 | Issue 6 | e1000980



The most intriguing phenotype observed during the follow-up of

AdKO mice was an atypical hyperplasia of foetal-like cortex

emerging at the corticomedullary junction which, over time,

extended to the periphery. However, concomitant atrophy of the

adult cortex resulted in net adrenal size equivalent to WT. These

results were reminiscent of early histopathological studies of

Figure 6. Existence of a persistent, mislocated X-like-zone in AdKO adrenals. The X-zone 20a-HSD marker (in red) and the zona fasciculata
Akr1b7 marker (green, right column) were co-immunodetected. The two colours are merged in the right column with the Hoechst nuclei marker
(blue). (A) Adrenal section of a 5-month-old nulliparous WT female. The unlabelled zone separating the X-zone (red) and the zona fasciculata (green)
is indicated by a star (*). (B) Adrenal section of a 5-month-old nulliparous AdKO female. (C) Adrenal section of a 10-month-old parous WT female. (D)
Adrenal section of a 10-month-old parous AdKO female. (E) Adrenal section of a 18-month-old parous AdKO female. M, Medulla; F, zona fasciculata; G,
zona glomerulosa; X, X-zone; XL, X-like-zone; Scale bars, 50 mm.
doi:10.1371/journal.pgen.1000980.g006
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PPNAD, showing that micronodules seemed to arise from the

medulla-cortex boundary. These were composed of eosinophilic

giant cells that were surrounded by mostly atrophic cortex

resulting in an otherwise normal-sized gland [1,42,43]. In mice,

a transient cell layer, termed the X-zone, is adjacent to the

medulla and regresses at puberty in males and at the first

pregnancy in females [23]. Pioneer work from Morohashi‘s

laboratory provided unequivocal genetic proofs that the X-zone

was a remnant of foetal cortex forming before the definitive cortex

and that distinct pools of precursor cells within the foetal cortex

contributed to either the definitive cortex or the transient X-zone

[24,44]. One pool of precursors activated transiently the foetal

adrenal-specific enhancer of Ad4BP/Sf1 (FAdE) and contributed to

the definitive cortex while the second pool maintained FAdE

activated and contributed to the formation of the transient X-zone

[24]. We showed previously that the developmental pattern of

Akr1b7-Cre mediated recombination was reminiscent of that

observed with the FAdE construct and that it occurred in both

foetal and definitive adrenocortical cells [13]. Here, we provided

evidence that loss of R1a during adrenal development resulted in

two major abnormalities: unbuffered PKA activity leading to

endocrine overactivity, and persistence of foetal-like cells that

expanded across the adult cortex. In human, INHIBIN-a is more

expressed in foetal than in adult adrenals [45]. In PPNAD, besides

the hypertrophic aspect of the cells, the overexpression of

INHIBIN-a specifically in the nodules could be interpreted as

another sign of foetal origin of these cells. In mice, the foetal

character of these hyperplastic and hypertrophic cells was attested

both by persistent expression of 20a-HSD, an X-zone marker, and

by re-expression of Cyp17, an enzyme otherwise restricted to the

embryonic period in rodent adrenals [26,27]. However, in contrast

to natural X-zone cells that had no reported steroidogenic

potential, the foetal-like hyperplastic cells of AdKO adrenals had

acquired full steroidogenic competence of zona fasciculata cells and

produced both corticosterone and cortisol. It is tempting to

speculate that this (hyper)cortisolism, hitherto never described in

mouse, could participate to the Cushing’s syndrome of AdKO

mice.

Our data demonstrated that AdKO adrenals were less sensitive

to apoptosis than WT. Apoptosis mediated by TGFb family

members largely contributed to the regression of both human

foetal zone and mice X-zone in which both inhibin and follistatin

opposed to the apoptotic signal triggered by activins [20,21]. This

is in good agreement with our observation that inhibin-follistatin/

activin transcripts ratio was augmented in AdKO adrenal glands

and could therefore contribute to strengthen anti-apoptotic

paracrine signals. In addition, R1a depletion could render foetal

cells less sensitive to TGFbsignalling. This mechanism likely

occured in human cells since we recently demonstrated that R1a
knockdown in NCI-H295R adrenocortical cells enhanced their

resistance to TGFb-stimulated apoptosis [46]. Consistent with all

these observations, here we showed an increased immunostaining

for INHIBIN-a specifically in the nodules of PPNAD samples.

Converging data in the literature highlight the importance of

inhibin/activin system as a paracrine mediator of cAMP/ACTH

signalling in both foetal and adult tissues [20,47–49]. Accordingly,

maintaining derepression of PKA activity in the adrenal glands of

AdKO mice from the foetal period to adulthood would favour the

maintenance of high levels of inhibin. Interestingly, in a murine

cell line postulated to originate from the X-zone [50], inhibin was

shown to counteract the repressive effect of activin on the Cyp17

gene [51]. This could provide a plausible but yet-non-demon-

strated mechanism for re-expression of Cyp17 in the adult mutant

gland of AdKO mice.

Most adrenocortical tumours and Cushing’s syndrome are more

frequent in females than in males [52]. PPNAD does not escape

this rule [12]. By the age of 40 years, more than 70% of the female

carriers of PRKAR1A defects had clinical evidence of this disease,

Figure 7. AdKO adrenals expressed Cyp17 and produced cortisol. All the experiments were realised in 10-month-old parous females. (A)
Quantitative representation (RT-QPCR) of Cyp17 mRNA levels, a foetal adrenal marker in mouse, in WT and AdKO adrenals. (B) Representative
immunodetection of Cyp17 showing abnormal expression in the innercortex in AdKO compared to WT adrenals. (C) Quantitative analysis of plasma
cortisol showing significant level of cortisol in AdKO compared to normal absence in WT mice. * p,0.05.
doi:10.1371/journal.pgen.1000980.g007
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whereas only 45% of the male carriers were concerned. In

addition, PPNAD was diagnosed at a younger age in females than

in males. These clinical outcomes were strikingly reminiscent of

the phenotype of AdKO mice that was earlier and more severe

(Cushing’s syndrome and hyperplasia) in females than in males.

Although the influence of sex-specific hormones cannot be ruled

out as suggested by the (permissive) aggravating effect of

gonadectomy in AdKO males, some gender specificities of foetal

cortex cells could account for these differences in mouse. First,

foetal expression of Cyp17 was nearly completely down-regulated

at E14.5 in males, whereas down-regulation occurred only at birth

in females [53]. Second, post-natal foetal cortex, the X-zone,

regressed at puberty in males but only during first pregnancy in

females. Thus, foetal cells (and among them, foetal/X-zone

precursor cells) remained for a longer time in the female cortex.

Since our mouse model showed that R1a loss contributed to

foetal-like cortex persistence and expansion, it is reasonable to

assume that enrichment in foetal cells (or foetal precursor cells)

predisposes AdKO females to manifest more severe PPNAD. To

our knowledge, possible gender differences in foetal cortex

dynamic changes have never been addressed in human adrenals.

According to the centripetal model, cell renewal in the adrenal

cortex depends on a common pool of stem/progenitor cells

located in the periphery (within the fibroblastic capsule and/or the

glomerulosa) which migrate centripetally from this zone, differenci-

ate to successively adopt all the cortical fates and finally enter into

apoptosis in the innermost cortex (Figure 8). According to cell

lineage-tracing studies, two populations of progenitors contributed

to the formation of the adult cortex, one located in the capsule

expressed Gli1 and the second in a subcapsular position expressed

Shh [16]. Although the role of capsule/subcapsule in the

centripetal renewal of the adult definitive cortex is now fully

established, there are also genetic evidences that in developing

adrenal, the definitive cortex and the transient X-zone originate

from different foetal precursors [24,44].

According to the centripetal model, dividing cells are essentially

present at the periphery while apoptotic cells preferentially

concentrate at the inner cortex ([54], reviewed in [17]). The

balance between these two opposing gradients could be essential

for homeostatic maintenance of the adrenal cortex i.e. the

establishment of a centripetal differentiation. In AdKO mice, the

centrifugal expansion of foetal-like cells with proliferative potential

emerging from the inner cortex and the progressive atrophy of

zona fasciculata could indicate that this balance is perturbed. A

possible model may be proposed to illustrate these observations

(Figure 8). Indeed, loss of R1a allowed the maintenance of cells of

foetal features, which otherwise were transient. This maintenance

could result from both an improvement of their proliferative

capacity and from their decreased sensitivity to apoptotis and/or

alteration of the apoptotic gradient (as suggested by the increased

expression of Inha and Follistatin genes known to antagonise

activins signalling). In addition, loss of R1a induced a progressive

atrophy of the zona fasciculata in AdKO adrenals that was

reminiscent to defects in cell renewal. Indeed, whereas the

foetal-like cells undergo a continuous centrifugal expansion across

the cortex, no gain in adrenal size was detected and no increase in

cell apoptosis accompanied the concomitant atrophy of zona

fasciculata. On the other hand, hyperplasia of non-steroidogenic

subcapsular spindle-shaped cells was observed in elder mice (18

months) and their accumulation eventually affected the integrity of

zona glomerulosa. At least two non-exclusive mechanisms could

account for defective cell renewal in the definitive cortex of AdKO

mice: depletion of progenitor cells or impaired capacity of these

progenitors to undergo centripetal differentiation and clonal

replenishment of the cortex. The latter mechanism seems more

likely in our model. Indeed, the expression levels of markers for

Figure 8. Model of dynamic changes and cell renewal in the AdKO adult cortex. Left, model of cell renewal and homeostatic growth
maintenance of WT adrenal cortex (according to [17]). Hypothetical opposing gradients of proliferation and apoptosis leading to the set up of
centripetal differentiation are schematized. Right, consequences of the defect of apoptosis gradient on the cellular dynamics in AdKO cortex (5-, 10-,
and 18-month-old mice). Loss of R1a led to decreased apoptosis of foetal cells which were maintained, expanded across the cortex and differentiated
(acquired steroidogenic competences) while definitive cortex progressively regressed.
doi:10.1371/journal.pgen.1000980.g008
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stem/progenitor cells (Figure S5) were unaltered in AdKO mice

suggesting that progressive atrophy of the definitive cortex was not

due to their depletion. Similar to observations made in most

mouse adrenal tumour models, with age, adrenal glands of AdKO

mice accumulated subcapsular Gata-4-positive spindle-shaped

cells that are supposed to descend from multipotent progenitors

capable to engage toward adrenal or gonadal fates [15,55,56]. In

AdKO mice, late accumulation of Gata-4-positive cells could

reflect an incapacity for the progenitor cells to properly

differenciate into adrenocortical cells. This would prevent efficient

renewal of the definitive cortex, which as a result, would become

atrophic over time. An other hypothesis emerges from a recent

report of Hammer and colleagues showing that inhibin-a
prevented aberrant proliferation and differentiation of subcapsular

adrenocortical progenitor cells [57]. Indeed, as opposed to Inha2/

2 mice, adrenal glands of AdKO mice have increased inhibin-a
expression. This is consistent with PPNAD samples and could

therefore decrease proliferation/differentiation of progenitors. The

possible dual role for inhibin-a in enhancing survival of foetal cells

and impeding renewal of definitive cortex will have to be

demonstrated in AdKO mice in an Inha2/2 context. In a

symmetric point of view, the slow but continuous centrifugal

expansion of hypertrophic foetal-like cells, would imply that a

reservoir of foetal cortex precursor cells could lay in the

juxtamedullary region and that differentiating steroidogenic foetal

cells could emerge and replenish the cortex (Figure 8). Lineage

tracing experiments will be required to confirm this hypothesis.

By developing a mouse model of PPNAD, we established for the

first time that Prkar1a, the Carney Complex gene 1, not only

controls adrenocortical endocrine activity but also prevents the

maintenance of foetal remnants. The loss of R1a acts, at least, by

increasing PKA activity and possibly by PKA independent effects

mediated through alteration of protein interactions that remain to

be deciphered [35,58]. The data existing in the literature and our

present results strongly suggest a role for the inhibin-activin

signalling pathway in the progression of the disease. Adrenal

hyperplasia observed in PPNAD is classified as a neoplastic lesion.

Although we showed that R1a loss induced tumoural conditions in

adrenal glands (resistance to apoptosis, cell hypertrophy, mild

proliferation), profound alterations in zonal differentiation and cell

renewal suggest that PPNAD should also be considered as a

developmental disease.

Materials and Methods

Human PPNAD tissue sections
Informed signed consent for the analysis of adrenal tissue and

for genetic diagnosis was obtained from the patients and the study

was approved by an institutional review board (Comité Consultatif

de Protection des Personnes dans la Recherche Biomédicale,

Cochin Hospital, Paris). PPNAD paraffin sections were performed

from adrenal samples of patients with isolated PPNAD or PPNAD

with Carney complex who underwent bilateral adrenalectomy for

ACTH-independent Cushing’s syndrome. All patients carried

germline inactivating mutations of the PRKAR1A gene.

Animals and hormonal treatments
Animal studies were done in agreement with standards

described by the NIH Guide for Care and Use of Laboratory

Animals as well as with the local laws and regulations applicable to

animal manipulations in France. For all analyses, groups of 17–20

mice of each genotype (WT and AdKO) and each age (5, 10 and

18 months) were constituted. Adult mice were injected s.c. with

vehicle (sesame oil), dexamethasone acetate for 4 days (75 mg twice

daily; Sigma-Aldrich, L’Isle d’Abeau Chesnes, France) and

injected i.m. with long-acting ACTH (1.2 U, Synacthene, Novartis

Pharma S.A., Rueil-Malmaison, France) the day before and in the

morning of the experiment.

Mouse genotyping
Mouse genomic DNA (from tail, adrenal or gonad) was

extracted and analyzed by PCR. Genotyping for the 0.5 Akr1b7-

Cre transgene was carried out using the following conditions:

94uC, 45 s; 55uC, 45 s; 72uC, 45 s for a total of 40 cycles (primers:

59-CCTGGAAAATGCTTCTGTCCG-39; 59-CAGGGTGTTA-

TAAGCAATCCC-39) and Prkar1aloxP/loxP intact or knockout allele

were genotyped using the following conditions: 94uC, 90 s; 58uC,

90 s; 72uC, 90 s for a total of 35 cycles (primer a: 59-

CACTGCAGGGGCCTATTTTA -39; primer b: 59-

TGTCTAGCTTGGGGTGGACT-39, primer c: 59-CATC-

CATCTCCTATCCCCTTT-39).

Analysis of hormone levels
Mice were sacrified by decapitation at 8–9 am with minimum

handling (within 1 min), trunk blood was collected in eppendorf

tubes containing 5 mL EDTA 0.5 M and placed immediately at

4uC. Samples were spun down at 4000 g for 5 min at 4uC and the

resultant plasma was stored at 220uC for corticosterone or cortisol

analysis, or at 280uC for ACTH analysis.

Corticosterone concentrations in plasma were determined by

radioimmunoassay (RIA) using a commercially available kit (ICN

Biomedicals, Orsay, France). ACTH dosage in plasma were

performed by solid-phase, two-site sequentiel chemiluminescent

immunometric assay (Siemens Healthcare Diagnostic SAS, Saint-

Denis, France) using an Immulite 2000 analyzer. Cortisol

concentrations were determined by electrochemiluminescence

immunoassay (Roche Diagnostic, Meylan, France) using a

Modular Analytics E170 analyzer.

PKA activity
PKA activity was quantified in freshly dissected adrenals using

the following commercial kit: PepTag assay for non-radioactive

detection of cAMP-dependant protein kinase (Promega Corp.,

Charbonnière, France).

Quantitative reverse-transcription polymerase chain
reaction

Total RNA and DNA (for genotype confirmation) were isolated

from tissue with the Qiagen DNA/RNA Mini kit (Qiagen,

Courtaboeuf, France). Total RNAs (1 mg) were reverse-transcribed

by Moloney murine leukaemia virus reverse transcriptase

(Promega Corp., Charbonnière, France) according to the

manufacturer’s instructions. Quantitative real-time PCR was

performed using the iCycler BioRad system and BioRad IQ5

optical system software (BioRad, Marnes-la-Coquette, France)

under standard conditions (40 cycles of 95uC for 15 seconds and

60uC for 60 seconds). All primer/probe sets were obtained from

Applied Biosystems: Prkar1a, Prkar1b, Prkar2a, Prkar2b, Prkaca, Star,

Akr1b7, Cyp11a1, Cyp11b1, Cyp11b2, Cyp21, Shh, Gli-1, Pod-1, Ppib,

Cyp17, Inha, Inhba, Inhbb, Fst (Applied Biosystems, Courtaboeuf,

France). For quantification of transcripts, all PCR were performed

in triplicate and the DCt method was used to calculate mRNA

levels relative to a Peptidylprolyl isomerase B (Ppib) standard.

In situ hybridization
A 442 bp 39untranslated part of the Prkar1a cDNAs was

amplified using the following primers: 59-GGGCGTTGGAAT-
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TACTGAGA-39; 59-CTCCCAAATAGAACCCGACA -39; and

subcloned in pGEM-T easy vector (Promega Corp., Charbon-

nière, France). Antisense riboprobes were synthesized and labelled

with digoxigenin (Boehringer Mannheim, Mannheim, Germany).

Adrenals were fixed in 4% paraformaldehyde overnight, embed-

ded in paraffin and sectioned. Sections were treated for 15 min

with proteinase K (3 mg/ml) at room temperature and washed

with glycine (2 mg/ml) and then with PBS. They were fixed with

4% paraformaldehyde for 5 min and washed with PBS. Samples

were incubated in hybridization mix (50% formamide; 4x SSC;

10% Dextran sulphate; 1x Denhart’s; Salmon sperm DNA

250 mg/ml; tRNA 250 mg/ml) for 1 h at 42uC. Digoxygenin

labelled probe was added to the hybridization mix and incubated

overnight at 42uC. Slides were then treated to a series of washes in

2x SSC and 1x SSC at 42uC and 0.2x SSC at room temperature.

Sections were washed in buffer 1 (150 mM NaCl; 100 mM Tris,

pH 7.5), blocked by Boehringer blocking reagent in buffer 1 then

incubated 1 h at room temperature with peroxidase-conjugated

anti-digoxygenin antibody. After several washes in buffer 2

(150 mM NaCl; 100 mM Tris, pH 9.5; 5 mM MgCl2), peroxidase

activity was detected by incubation with 0.18 mg/ml BCIP and

0.34 mg/ml NBT in buffer 2. In situ hybridization slides were

observed and photographed on an Axiophot microscope (Carl

Zeiss, Zurich, Switzerland).

Histology and immunostaining
Adrenals were fixed overnight in 4% PFA and embedded in

paraffin. Sections were then cut and deparaffinized in Histoclear.

For general morphology, sections were stained with haematoxylin

and eosin.

For mouse-anti-human-INHIBIN-a immunodectection, un-

masking solution was sodium citrate buffer 10 mM pH 6, Tween

0.05%. For co-localisation experiments of Akr1b7/Ki67 with 20a-

HSD, the following protocol of limit detection was used:

deparaffinised sections were incubated for 20 min at 95uC with

Unmasking Solution (Vector Laboratories, Peterborough En-

gland). For the first detection, rabbit-anti-Akr1b7 antibody [59]

(1/1000) or rabbit-anti-Ki67 (1/500, Thermo Fischer Scientific,

Elancourt, France) was revealed using a secondary biotinylated

goat anti-rabbit antibody, Vectastain ABC amplification kit

(Vector Laboratories, Peterborough England) and TSA fluorescein

HRP substrate (Perkin Elmer, Courtaboeuf, France). For the

second detection, slides were incubated with a rabbit-anti-20a-

HSD antibody at 1/2000 (kind gift from Dr Y. Weinstein, Ben-

Gurion University, Israël) revealed by goat anti-rabbit Alexa 555

at 1/1000 (Molecular probes, Cergy Pointoise, France). Sections

were then incubated 5 min with Hoechst at 1 mg/ml (Sigma-

Aldrich, L’Isle d’Abeau Chesnes, France), rinsed, mounted in

PBS-glycerol, and photographed on an Axiophot microscope (Carl

Zeiss, Zurich, Switzerland).

The following antibodies: Mouse-anti-R1a (1/50, BD Biosci-

ences, Le pont de Claix, France); rabbit-anti-Sf1 (1/1000, kind gift

from Dr K. Morohashi, Kyushu University, Japan), rabbit-anti-

Cyp17 (1/5000, kind gift from Dr A. Conley, University of

California, USA); rabbit-anti-cleaved-Caspase-3 (1/400, Cell

signalling, Saint-Quentin-en-Yvelines, France); goat-anti-GATA-

4 (1/100, Tebu-Santa Cruz, Le Perray en Yvelines, France),

mouse-anti-b-catenin (1/500, BD Biosciences, Le pont de Claix,

France), mouse-anti-human-INHIBIN-a (1/75, AbD Serotec,

Oxford, UK) were detected using the same protocol as Akr1b7.

The secondary biotinylated antibodies were donkey anti-goat to

detect Gata-4 and sheep anti-mouse to detect R1a and b-catenin.

Gata-4 detection was performed using the Novared Kit (Abcys,

Paris, France).

For the double staining b-catenin/Sf1, 20 min in 0.02% HCl

are necessary to abolish the rest of the peroxidase activity after the

first immuno-reaction. Detection of Cyp17 was done without

incubation in unmasking solution. An InSitu Pro VSi (Intavis AG)

automated processor was used for immunodetection.

Western blot analysis
Adrenal samples and western blotting were done as described

previously [60]. The Primary antibodies were used at the following

dilutions: rabbit-anti-StAR (1/5000, kind gift from Dr Stocco,

Texas Tech University Health Sciences Center, USA); mouse-

anti-R1a (1/500); mouse-anti-R2a (1/1000); mouse-anti-R2b (1/

1000); mouse-anti-Cab (1/1000, BD Biosciences, Le Pont de

Claix, France), rabbit-anti-CREB (1/1000), rabbit-anti-P-CREB

(1:1000, Cell signalling, Saint-Quentin-en-Yvelines, France);

rabbit-anti-bTubulin (1/1000, Sigma-Aldrich, L’Isle d’Abeau

Chesnes, France). Quantification of western blot signals was

performed using the Quantity One software (Biorad, Marnes la

Coquette, France).

Statistical analysis
For statistical analysis, a Student t test was performed to

determine whether there were differences between the two groups.

Mann-Whitney test was used in Figure 7A. A P value of 0.05 was

considered significant.

Supporting Information

Figure S1 Quantification of mRNA levels of the PKA subunits

in 10-month-old, WT and AdKO mice adrenals. A, Quantitative

(RT-QPCR) representation of R1a subunit mRNA expression in

female (parous) and male adrenals of both genotypes. A significant

decrease was detected in AdKO when compared to WT, as

expected, ** p,0.01. Insets show levels of R1a subunit analysed

by western blotting in adrenals. B, Quantitative (RT-QPCR)

representation of mRNA expression of the different PKA subunits

in female adrenals of both genotypes.

Found at: doi:10.1371/journal.pgen.1000980.s001 (0.18 MB TIF)

Figure S2 Morphological defects and dexamethasone-resistance

in AdKO adrenals of male mice. Representative haematoxylin and

eosin adrenal staining of 10 and 18-month-old males of WT and

AdKO genotype, in basal conditions or after 4 days dexameth-

asone suppression test. Insets, higher magnification illustrating the

increased cell size of expanding eosinophilic cells compared to

normal spongiocytes. The dotted line delineates the cortex-

medulla boundary. Double arrows indicate the cortex. Scale bars,

50 mm.

Found at: doi:10.1371/journal.pgen.1000980.s002 (5.01 MB TIF)

Figure S3 Sensitivity to ACTH of plasma corticosterone levels

in WT and AdKO adrenals. Quantitative analysis of plasma

corticosterone in dexamethasone-treated mice (5-month-old par-

ous females, 5- and 10-month-old males) with or without ACTH

replacement. * p,0.05. NS: statistically non significant.

Found at: doi:10.1371/journal.pgen.1000980.s003 (0.19 MB TIF)

Figure S4 ACTH responsive genes were maintained up-

regulated in AdKO adrenals. A, efficiency of the dexamethasone

suppression test on the expression of genes implicated in

steroidogenesis or detoxification in 5-month-old WT females

(parous) and 10-month-old WT males. B–C, Quantitative

representation of mRNA levels of genes involved in steroidogenesis

or detoxification: Star, Akr1b7, Cyp11a1, Cyp11b1, Cyp11b2. RT-

QPCRs were done with adrenal mRNA from WT and AdKO 10-

month-old parous females and males in basal conditions (B) and
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from WT and AdKO 5-month-old parous females and 10-month-

old males treated with dexamethasone (C). *, P,0.05; ** P,0.01.

Inset, western blot showing basal up-regulation of StAR protein in

AdKO adrenals from 10-month-old females.

Found at: doi:10.1371/journal.pgen.1000980.s004 (0.40 MB TIF)

Figure S5 Maintenance of progenitor cell markers in AdKO

adrenals. Quantitative representation of mRNA levels of the

genes: Shh, Gli-1 and Pod-1. RT-QPCRs were done using adrenal

mRNA from WT and AdKO mice of 10 and 18-month-old

females (parous).

Found at: doi:10.1371/journal.pgen.1000980.s005 (0.11 MB TIF)

Figure S6 INHIBIN-a was overexpressed in the adrenal nodules

of PPNAD patients. INHIBIN-a was immunodetected (in brown)

in adrenal sections of two males (top panels) and two females

(lower panels) PPNAD patients and counter-stained with haema-

toxylin (blue). Scale bars, 50 mm.

Found at: doi:10.1371/journal.pgen.1000980.s006 (4.44 MB TIF)

Figure S7 Existence of a persistent X-like-zone in AdKO female

adrenals. The X-zone 20a-HSD marker (in red) was immunode-

tected, and merged in the right column with the Hoechst nuclei

marker (blue, right column). A–B, Adrenal sections of a 5-month-

old parous WT and AdKO female. The arrows indicate cells

expressing 20a-HSD. C–D, Adrenal sections of a 10-month-old

virgin WT and AdKO female. E–D, Adrenal sections of a 18-

month-old virgin WT and AdKO female. C, cortex; M, Medulla;

X, X-zone; XL, X-like-zone; Scale bars, 50 mm.

Found at: doi:10.1371/journal.pgen.1000980.s007 (3.95 MB TIF)

Figure S8 Evidence for cell proliferation in the X-like-zone of

AdKO mice adrenals. In 10 and 18-month-old parous AdKO

females, the X-zone 20a-HSD marker (in red) and the Ki67

proliferation marker (in green) were co-immunodetected and

merged with the Hoechst nuclei marker (blue). Double-stained

cells are outlined by arrows. XL, X-like-zone; Scale bars, 20 mm.

Found at: doi:10.1371/journal.pgen.1000980.s008 (1.13 MB TIF)

Figure S9 Existence of a persistent, mislocated X-like-zone in

male AdKO adrenals. The X-zone 20a-HSD marker (in red) and

the zona fasciculata Akr1b7 marker (green, right column) were

immunodetected. The two colours are merged in the right column

with the Hoechst nuclei marker (blue). A, Adrenal section of a 18-

month-old WT male. No staining for 20a-HSD was shown. B,

Adrenal section of an 18 month-old AdKO male. Cells doubled-

stained for Akr1b7 and 20a-HSD were detected, as in AdKO

females, indicating the presence of a pathological X-like-zone in

AdKO male adrenals. M, Medulla; F, zona fasciculata; G, zona

glomerulosa; X, X-zone; XL, X-like-zone; Scale bars, 20 mm.

Found at: doi:10.1371/journal.pgen.1000980.s009 (1.37 MB TIF)

Figure S10 Castration in AdKO males increased the size of

persistent, mislocated X-like-zone and plasma corticosterone

levels. WT and AdKO males were castrated at 3 weeks and kept

for sacrifice at 3 months of age. A, Co-immunostaining for Akr1b7

(green) and 20a-HSD (red) were realised on adrenal sections of

control (left column) and castrated mice of WT and AdKO

genotypes. B, Quantitative analysis of plasma corticosterone in

control and castrated 3-month-old males of WT and AdKO

genotypes. M, Medulla; C, cortex; X, X-zone; XL, X-like-zone;

Scale bars, 20 mm. *, P,0.05.

Found at: doi:10.1371/journal.pgen.1000980.s010 (1.91 MB TIF)

Figure S11 Maintenance of steroidogenesis markers in aging

AdKO adrenals. Quantitative representation of mRNA levels of

the genes: Prkar1a (control), Cyp21, Cyp11b1. RT-QPCRs were

done with adrenal mRNA from WT and AdKO mice in 10 and

18-month-old females (parous). *, P,0.05. NS: statistically non

significant.

Found at: doi:10.1371/journal.pgen.1000980.s011 (0.09 MB TIF)
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