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Advanced liver cirrhosis has become life-threatening among non-communicable diseases
nowadays. Cirrhosis, the terminal stage of liver diseases in which the liver develops
scarring as a result of various long-term continuous damages. Among liver diseases, viral
hepatitis is the major risk factor for chronic cirrhosis development. The present paper
demonstrates a compartmental model of chronic disease liver cirrhosis describing the
transmission dynamics of this disease. Applying the Pontryagin’s maximum principle, the
optimal control policies such as vaccination for hepatitis B virus and treatment of other
causes of cirrhosis are adopted as control measures. The target of this study is to minimize
the number of infected and liver cirrhotic individuals as well as the associated cost of the
control. For this purpose, the optimal control strategies are employed according to the
underlying causes behind this disease. Our goal is to find the strategy of preventing
hepatitis B infection which is considered one of the leading causes of cirrhosis and
consequently, reduction of the chronic cirrhosis incidence. Efficiency analysis is also per-
formed to observe the effective control among the two control strategies. The model is
investigated both analytically and numerically and the numerical simulations are carried
out to illustrate the analytical findings. The analysis reveals that both the vaccination and
treatment could be the most fruitful way to reduce the incidence of chronic liver cirrhosis.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Any kind of liver disease acts as a source for cirrhosis of the liver. Liver cirrhosis has become a significant health problem
worldwide as it leads to 1.34 million deaths every year (World Health Organization (WHO), 2017). In liver cirrhosis, the
healthy liver tissue is transformed into scar tissue which substantially blocks the normal blood flow in the liver. Finally, the
liver ploddingly deteriorates and is unable to function normally due to chronic or long-lasting injury. A unique characteristic
of the liver is to regenerate or regrow and this also becomes stopped due to liver cirrhosis. Cirrhosis is caused by many forms
of liver diseases and conditions like viral infections (hepatitis B and C virus) and chronic alcoholism. Viral hepatitis is
considered a major risk factor for the progression of chronic cirrhosis. Cirrhosis is more likely to occur among people having
long-termviral infections. A result in (Yang et al., 2011) showed that cirrhosis was present in 94% of patients having hepatitis B
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and 97% of patients having hepatitis C in the study. However, each year viral hepatitis B and hepatitis C affect 325 million
people causing 1.4 million deaths all over the world. There is no vaccination available for viral Hepatitis C, while hepatitis B
can be precluded by vaccines. These vaccines are safe, accessible and efficacious. Hepatitis B is a potentially life-threatening
liver infection which is caused by the hepatitis B virus (HBV). It keeps people at high risk of causing cirrhosis and thus en-
hances the possibility of death (World Health Organization (WHO), 2017). Hepatitis B is transmitted both vertically (from
mother to child during birth) and horizontally (exposure to infectious blood and body fluids). Sexual contact, blood trans-
fusionwith another infected human, the use of contaminated injection and razors, and also the reuse of needles and syringes
etc. are the forms of horizontal transmission for the hepatitis B development. The long-time progression of this infection in
the body causes chronic cirrhosis. Moreover, advanced cirrhosis is a fatal condition where the treatment options are very
limited. So it is essential to find out control measures of this chronic liver disease. For this purpose, optimal control theory has
been applied to discuss the optimal control strategy to prevent hepatitis B and hence consequently to reduce the chronic
cirrhosis transmission.

There is a large body of work to develop mathematical models and optimal control policies of infectious diseases. Biswas
et al. (Biswas, Paiva, & de Pinho, 2014) (see also Biswas (Biswas, 2014a,b; Biswas, 2013a,b; Biswas, 2012a,b,c; Biswas, Haque,
Mallick, 2019)), Khatun and Biswas (Khatun& Biswas, 2018; Khatun, Biswas, 2019) investigated and analyzed the treatment of
most devastating diseases in which mathematical modeling and optimal control strategy was the key tool. Several other
mathematical models of liver cirrhosis have been presented as well. Celechovska (2004) studied a simple mathematical
model of the liver by applying Bellman’s quasilinearization method. The liver fibrosis stage could be examined with the help
of MR Elastography (Non-invasive). The detailed using a mathematical model was presented by Huwart et al. (Huwart,
Peeters, Sinkus, Annet, Salameh, Beek, Horsmans, Beers, 2006). Kumar et al. (Kumar, Upadhyay, Agrawal, Pandey, 2017)
also presented a mathematical model showing that hematocrit is inversely proportional to blood pressure drop. Remien et al.
(Remien, Adler, Waddoups, Box, & Sussman, 2012) used a set of differential equations to develop a mathematical model for
describing the acute liver injury caused by the overdose of acetaminophen. Furthermore, Friedman (Friedman) analyzed a
mathematical model of liver cirrhosis to explore the efficacy of the drugs aimed at obstructing the progression of liver fibrosis.
Wang et al. (Wang, Liang, Jhou, & Shi, 2017) formulated a computational model on the basis of hepatic circulation with the
help of mathematical modeling to analyze the sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis. Pratt
et al. (Pratt, Wattis & Salter, 2015) developed a mathematical model showing that the interaction of carbohydrates and lipids
through digestion and absorption is relevant to storage and oxidation of the body. Vaccination and treatment can control
hepatitis B (HBV) virus infection which is also presented by formulating a mathematical model and applying optimal control
strategy (Kamyad, Akbari, Heydari & Heydari, 2014). Readers can follow to ((Adams, 2011; Greena, Watersa, Shakesheff &
Byrne, 2009; Dahari et al., 2011; Dontwi, Frempong, Bentil, Adetunde, & Owusu-Ansah, 2010; Hao, Rovin, & Friedman,
2014; Momoh, Ibrahim, Madu, & Asogwa, 2012; Sahani & Biswas, 2017; Wiegand & Berg, 2013; Yusuf & Benyah, 2012;
Zoua, Zhanga, & Ruan, 2010) and the references within) for more details on liver diseases and some recent developments on
mathematical modeling as well as control strategies.

In this paper, we present a mathematical model to clarify the transmission dynamics of chronic liver cirrhosis from
hepatitis B infection, which can be controlled by vaccination as well as treatment. In this study, we analyze the mathematical
model of liver cirrhosis and also apply optimal control theory considering two control variables for the prevention and
minimization of the disease. Finally, we perform numerical simulations to interpret the outcomes and also to show the
effectiveness of vaccination in preventing the hepatitis B infections and the proper treatment for controlling the chronic liver
cirrhosis. In the numerical analysis section Efficiency index is also carried out to find out which control is more effective than
the other. The main aim of this work is to minimize the infected and liver cirrhotic individuals using vaccination and
treatment as control and also the associated cost of the implementation of the two control measures.
2. Current status of liver cirrhosis

Cirrhosis of liver has become life-threatening for the people irrespective of developed, developing and under-developing
countries throughout the world. Liver cirrhosis is developed from long term progression of viral diseases (hepatitis B and
hepatitis C), alcoholic disease, fatty liver disease or other liver diseases (see detail in Fig. 1) which were not diagnosed before
Fig. 1. Pie-chart showing different types of liver diseases which ultimately lead the liver to cirrhosis.
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in the body. It is the result of continuous damages of the liver by these diseases. Among these diseases, hepatitis B infection is
the most prominent for the chronic liver cirrhosis development. Because every year this disease affects millions of people all
over the world and consequently leads to chronic cirrhosis. According to the world health organization (WHO), about 257
million people were affected worldwide by this infection in 2015 and this incidence rate is shown in Fig. 2. Fig. 3 shows the
number of hepatitis B infection-related death rates from 2000 to 2016 in the world (Global Health Estimates). However, liver
cirrhosis occurs all most all the countries in Asia. In 2016, a remarkable number of people (Male 111.4 and Female 47.3) died
from liver cirrhosis inMyanmar. Fig. 4 exhibits the number of liver cirrhosis related death rates in Asia in the year 2016 (World
Health Organization (WHO), 2017). Cirrhosis affected about 2.8 million people and resulted in 1.3 million deaths in 2015. In
1995, it affected about 33.63 million people worldwide. Since then, it has been enhanced considerably. Fig. 5 presents the
number of the incidence rate of liver cirrhosis from the year 1995e2016 (Global burden of disease, 2018). Among the four
countries (China, India, United States, Bangladesh), the liver cirrhosis incidence rate is very high in India. The populations of
India are affected by liver cirrhosis more frequently while liver cirrhosis incidence rate is low in Bangladesh comprises to
other three countries in the world.
3. Mathematical model

Mathematical modeling is playing an incredible role for providing quantitative insights into the mechanisms of various
diseases which lead to design better prediction, management and control policies. To analyze and control liver cirrhosis
progression in the present study, we develop a mathematical model introducing two control variables. Firstly, we construct a
model considering the feature of liver cirrhosis transmission and then we apply optimal control theory to minimize the
progression or complications of the chronic disease liver cirrhosis. Let NðtÞ be the total number of population. The individuals
who are not affected by infections like hepatitis B virus (HBV), hepatitis C virus (HCV). But they are prone to become affected
by these infections or diseases. These populations are denoted by SðtÞ in the model. The disease transmission progression
plays an important role in the dynamics of the diseases. For most of the non-communicable diseases, there are always
different ranges of the incubation period. The non-communicable disease liver cirrhosis is developed from long term pro-
gression of viral diseases such as hepatitis B (HBV) and hepatitis C (HCV) which were not diagnosed before in the body. These
infections have a development periodwithin the liver of the body. This incubation period of the infections usually ranges from
approximately 10 to 15 years. So considering this, we create another compartment called exposed individuals denoted by EðtÞ.
Fig. 2. The number of hepatitis B incidence in the world in 2015. About 257 million people were affected worldwide by this infection that year.

Fig. 3. The number of hepatitis B infection-related death rates from 2000 to 2016 in the world.



Fig. 4. (a) Number of liver cirrhosis related death rates in Asia (China to Syria) in the year 2016; (b) Number of. liver cirrhosis related death rates in Asia
(Combodia to Brunei) in the year 2016.

Fig. 5. The number of incidence of liver cirrhosis (world, China, India, United States, Bangladesh) from 1995 to 2016.
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Here, EðtÞ is the number of infected individuals who are not infectious at time t. There are also some individuals IðtÞ who are
affected by infections (hepatitis B or hepatitis C) and can transmit at any time. When these infections remain undiagnosed for
a long time, they become horrible. Long-time progression of these infections leads to cause of liver cirrhosis. Nowwe consider
the individuals LCðtÞwho are affected by liver cirrhosis. The individuals who have recovered and have the immunity from liver
cirrhosis are denoted by RðtÞ. Fig. 6 shows the flowchart of the compartmental model of liver cirrhosis.

This flowchart leads to the following set of nonlinear ordinary differential equations (NODEs):

dS
dt

¼ r � aðI þ sLcÞS� m0S� u1S

dE
dt

¼ aðI þ sLcÞS� ðm0 þ bÞE

dI
dt

¼ bE � m0I � ðmþ gÞI

dLc
dt

¼ mI þ pgI � ðm0 þ dþ εÞLc � u2Lc

dR
dt

¼ dLc � m0Rþ gI � pgI þ u1Sþ u2Lc

(1)

with the initial condition Sð0Þ>0;Eð0Þ � 0; Ið0Þ � 0;Lcð0Þ � 0; Rð0Þ � 0.
In the abovemodel (1), we have assumed that a stable populationwith per capita birth rate r and per capita death rate m0. a

is the transmission rate and s is the infectiousness of carriers relative to acute infections. b is the acute infection rate of
exposed individuals and g is the spontaneous recovery rate of infected individuals. Here, the parameter m is the rate at which
the infected individuals get cirrhotic, d is the recovery rate of cirrhotic individuals, and ε is the disease-induced death rate.
Furthermore, pg is the rate at which the infections of cirrhosis relapse in the liver cirrhotic individuals after being recovered.

Here, we have considered two control variables ðu1; u2Þ: (i) before infection, vaccinations of hepatitis B so that the in-
fections can be prevented and (ii) after infection, treatment based on causes fromwhich liver cirrhosis has developed. So that
u1ðtÞ and u2ðtÞ denotes the vaccination and the treatment control respectively.

Now, model (1) is an optimal control model, and the set of control variables ðu1ðtÞ; u2ðtÞÞ2U is Lebesgue measurable,
where

U¼fðu1ðtÞ; u2ðtÞÞ : 0� ai �uiðtÞ� bi �1; i¼1;2g; ct2½0; T�
Fig. 6. Flow diagram of the compartmental model of liver cirrhosis transmission with optimal control.
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.
Considering these two control variables, the performance index is given by

Min Jðu1; u2Þ¼
ZT

0

�
IðtÞþ LcðtÞ þ A

2
u21 þ

B
2
u22

�
dt (2)
We can reformulate model (1) as an optimal control problem with the performance index (2) as

ðPcÞ

8>>>>>>><
>>>>>>>:

Minimize Jðx;uÞ ¼
ZT

0

Lðt; xðtÞ;uðtÞÞ dt

subject to
_xðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞuðtÞ; ct2½0; T�
uðtÞ2UðtÞ; ct2½0; T�
xð0Þ ¼ x0

(3)

0
SðtÞ 1 0 �S 0

1 0
r � aðI þ sLcÞS� m0S

1

where, xðtÞ ¼
BBBB@

EðtÞ
IðtÞ
LcðtÞ
RðtÞ

CCCCA, gðxÞ ¼
BBBB@

0 0
0 0
0 �Lc
S Lc

CCCCA, f ðxÞ ¼
BBBB@

aðI þ sLcÞS� ðm0 þ bÞE
bE � m0I � ðmþ gÞI
mI þ pgI � ðm0 þ dþ εÞLc
dLc þ ð1� pÞgI � m0R

CCCCA, uðtÞ ¼
�
u1ðtÞ
u2ðtÞ

�
and the integrand of the

performance index is denoted by

Lðx; uÞ¼ IðtÞþ LcðtÞþA
2
u21 þ

B
2
u22 (4)
4. Existence of the optimal control

In order to prove the existence of the optimal control, we have to show the existence of the state and the existence of the
objective functional.

4.1. Existence of the state variable

The state equation (1) with the initial condition can be written in the following form as

S0 ¼ r � aðI þ sLc � m0ÞSþ ð0ÞEðtÞ þ ð0ÞIðtÞ þ ð0ÞLcðtÞ þ ð0ÞRðtÞ
E0 ¼ aðI þ sLcÞS� ðm0 þ bÞE þ ð0ÞIðtÞ þ ð0ÞLcðtÞ þ ð0ÞRðtÞ
I0 ¼ ð0ÞSðtÞ þ bE þ ð0ÞIðtÞ þ ð0ÞLcðtÞ þ ð0ÞRðtÞ
Lc0 ¼ ð0ÞSðtÞ þ ð0ÞEðtÞ þ ðmþ pgÞI � ðm0 þ dþ εÞLc þ ð0ÞRðtÞ
R0 ¼ ð0ÞSðtÞ þ ð0ÞEðtÞ þ ð1� pÞgI þ dLc � m0R

(5)

Let
NðtÞ¼ SðtÞþ EðtÞþ IðtÞþ LcðtÞ þ RðtÞ
So that,

N0ðtÞ¼ S0ðtÞþ E0ðtÞþ I0ðtÞþ Lc0ðtÞ þ R0ðtÞ (6)
Now putting the right hand sides of equation (5) into equation (6), we get

N0ðtÞ¼ r� εLc �m0NðtÞ0N0ðtÞþ εLc ¼ r�m0NðtÞ∴N0ðtÞ� r � m0NðtÞ
� �
So, we have NðtÞ � r
m0

þ N0 � r
m0

e�m0t ¼ V12ℝþ and lim
t/∞

sup NðtÞ � V1,which conclude SðtÞ; EðtÞ; IðtÞ; LcðtÞ;RðtÞ � V1 as

t/∞.
Then, we can rewrite (5) in the following form:

4t ¼B4þ Fð4Þ (7)
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where 4 ¼

2
66664

SðtÞ
EðtÞ
IðtÞ
LcðtÞ
RðtÞ

3
77775, 4t ¼

2
66664

S0ðtÞ
E0ðtÞ
I0ðtÞ
Lc 0ðtÞ
R0ðtÞ

3
77775, Fð4Þ ¼

2
66664

�aðI þ sLcÞS
aðI þ sLcÞS

0
0
0

3
77775and

B ¼

2
6664

�m0 0 0 0 0
0 �ðm0 þ bÞ 0 0 0
0 b �ðm0 þ mþ gÞ 0 0
0 0 ðmþ pgÞ �ðm0 þ dþ εÞ 0

0 0 ð1� pÞg d � m0

3
7775.

Now

Fð41Þ� Fð42Þ¼

2
66664

�aðI1 þ sLc1 ÞS1
aðI1 þ sLc1 ÞS1

0
0
0

3
77775�

2
66664

�aðI2 þ sLc2 ÞS2
aðI2 þ sLc2 ÞS2

0
0
0

3
77775 (8)
Equation (7) is a non-linear system with a bounded co-efficient.
We set

Dð4Þ¼4t ¼B4þ Fð4Þ
For the existence of optimal control and optimality system, the boundedness of solution of the system for finite time is
needed and we assume for u2U, there exists a bounded solution.

jFð41Þ � Fð42Þj ¼ j � aðI1 þ sLc1 ÞS1 þ aðI2 þ sLc2 ÞS2j þ jaðI1 þ sLc1 ÞS1 � aðI2 þ sLc2 ÞS2j

� 2aðjS1jjI1 � I2j þ jS1 � S2jjI2 þsLc1 j þ jsS2jjLc1 � Lc2 jÞ

� Mj41 �42j

where M ¼ 2gV1.
Also, we get jDð41Þ � Dð42Þj � kBkj41 � 42j þ Mj41 � 42j � V j41 � 42j,where V ¼ max ðM; kBkÞ<∞.
Thus, it follows that the function D is uniformly Lipschitz continuous. From the definition of the control UðtÞ and the

restriction on S;E; I;Lc; and R � 0, we see that a solution of the system (7) exists.

4.2. Existence of the objective functional

In order to prove the existence of the objective functional, we use the following theorem (Fleming, Rishel, 1975).

Theorem 1. Let

xðtÞ¼
2
4 x1ðtÞ

«
xnðtÞ

3
5

be a system of n state variables, and let uðtÞ be a control variable with a set of admissible controls U, that satisfy the following
differential equation x0iðtÞ ¼ gðt; xiðtÞ;uðtÞÞ for. i ¼ 1; :::;n

with associated performance index

JðuÞ¼
Z

f ðt; xðtÞ;uðtÞÞ dt

There exists an optimal control which minimizes JðuÞ if the following conditions are satisfied:

(i) F is non-empty.
(ii) The control set U must be closed and convex.
(iii) The right hand side of the state system is continuous, is bounded above by a linear combination of the control and state,

and can be written as a linear function of u with coefficients defined by the time and the state.
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(iv) The integrand of the objective functional is convex on U and is bounded below by � C2 þ C1ðuÞh, with C1 > 0 and h> 0.

We define F as a class of ðS0; E0; I0; Lc0 ;R0;uÞ such that u is a piecewise function on ½0; T�with values in U. To prove that F is
nonempty, we will use a simplified version of an existence result in (Boyce, DiPrima, 2009), Theorem 7.1.1), which is stated
below.

Theorem 2. Let each of the functions F1; :::; Fn and the partial derivatives vF1
vx1; :::;

vF1
vxn;:::;

vFn
vx1; :::;

vFn
vxn be continuous in a region R of t;

x1; x2; :::; xn space defined by a< t <b, a1 < x1 <b1;:::;an < xn < bn, and let the point ðt; x01; x02; :::; x0nÞ be in R. Then there is an interval
½t¼ t0�< h in which there exists a unique solution x1 ¼ 41ðtÞ; :::; xn ¼ 4nðtÞ of the system of differential equations

x1
0 ¼ F1ðt; x1; :::; xnÞ;

x2
0 ¼ F2ðt; x1; :::; xnÞ;

«
xn 0 ¼ Fnðt; x1; :::; xnÞ;

(9)

That also satisfies the initial conditions

x1ðt0Þ¼ x01; x2ðt0Þ¼ x02; :::; xnðt0Þ¼ x0n (10)

Theorem 3. Let xi ¼ Fiðt; x1; :::; xnÞ for i2½1; n� be a system of n differential equations with initial conditions xiðt0Þ ¼ xi0 for i2 ½1;
n�. If each of the functions F1; :::; Fn and the partial derivatives vF1

vx1; :::;
vF1
vxn;:::;

vFn
vx1; :::;

vFn
vxn are continuous in Rnþ1 space, then there exists

a unique solution x1 ¼ s1ðtÞ; :::; xn ¼ snðtÞ that satisfies the initial conditions.
With the help of the above two theorems (Theorem 2, Theorem 3) we try to prove the existence of the objective functional.

We show that there exists an optimal control u* that minimizes JðuÞ over the control set U.
Proof of (i): We consider

_S ¼ F1ðt; S; E; I; Lc;RÞ;
_E ¼ F2ðt; S; E; I; Lc;RÞ;
_I ¼ F3ðt; S; E; I; Lc;RÞ;
_Lc ¼ F4ðt; S; E; I; Lc;RÞ;
_R ¼ F5ðt; S; E; I; Lc;RÞ;

(11)

where F1; F2; F3; F4 and F5 build up the right hand side of the equation (1). Let uðtÞ ¼ C for some constant C.
F1; F2; F3; F4 and F5 must be linear and they are also continuous everywhere. Moreover, the partial derivatives of
F1; F2; F3; F4 and F5 with respect to all states are constants and they are also continuous everywhere, so by the above Theorem
5.3, there exists a unique solution S ¼ s1ðtÞ, E ¼ s2ðtÞ, I ¼ s3ðtÞ, Lc ¼ s4ðtÞ and R ¼ s5ðtÞwhich satisfies the initial conditions.
Therefore, the set of controls and corresponding state variables is non-empty. Hence, the condition (i) is satisfied.

Proof of (ii): By definition, U is closed. We take two controls ðu1; u2Þ2U and q2½0; 1� such that 0 � qu1 þ ð1 � qÞu2.
We also observe that qu1 � q and ð1 � qÞu2 � ð1 � qÞ. Then, qu1 þ ð1 � qÞu2 � qþ ð1 � qÞ ¼ 1.
Hence, 0 � qu1 þ ð1�qÞu2 � 1 for all ðu1; u2Þ2U and q2½0; 1�. So, U is convex and therefore, condition (ii) is satisfied.
Proof of (iii): If we consider,

F1 � r � u1S

F2 � K1E

F3 � bE � K2I

F4 �K3I � P1Lc � u2Lc

F5 � dLc þ P2I þ u1Sþ u2Lc

Then, the system (11) can be written as.Fðt; X; uÞ � m

0
BBBB@t;

2
66664

S
E
I
Lc
R

3
77775

1
CCCCAXþ n

0
BBBB@t;

2
66664

S
E
I
Lc
R

3
77775

1
CCCCAuðtÞ, where
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m

0
BBBB@t;

2
66664

S
E
I
Lc
R

3
77775

1
CCCCA ¼

2
6664

0 0 0 0 0
0 K1 0 0 0
0 b �K2 0 0
0 0 K3 �P1 0

0 0 P2 d 0

3
7775 and n

0
BBBB@t;

2
66664

S
E
I
Lc
R

3
77775

1
CCCCA ¼

2
66664

�S 0
0 0
0 0
0 � Lc
S Lc

3
77775,

which gives a linear function of the control u defined by time and state variables. Then, we can find out the bound of the
right hand side. It is noted that all parameters are constant and greater than or equal to zero. Therefore, we can write.

Since S and Lc are bounded and q includes the upper bound of the constantmatrix. Hence, we see that the right hand side is
bounded by a sum of the state and the control. Therefore, condition (iii) is satisfied.

Proof of (iv): Let us consider that the integrand of the objective functional be.f ðuÞ ¼ IðtÞþ LcðtÞþ u2, where A
2u

2
1þ B

2u
2
2 ¼ u2

(let). Here, the two controls ðu1; u2Þ2U and 0<u<1.
Then, we can write

u21 �2u1u2 þu22 ¼ðu1 � u2Þ2 � 0

0u21 þu22 � 2u1u20uð1�uÞu21 þuð1�uÞu22 � 2uð1�uÞu1u2∴uf ðu1Þþ ð1�uÞf ðu2Þ � f ðuu1 þð1�uÞu2Þ

which implies that f ðuÞ is convex on U.
Now, we will show that

JðuÞ� �C2 þC1ðuÞh with h > 0 C1 � 0

Here, JðuÞ ¼ IðtÞ þ LcðtÞ þ A
2u

2
1 þ B

2u
2
2 JðuÞ ¼ IðtÞ þ LcðtÞ þ u2 [since A

2u
2
1 þ B

2u
2
2 ¼ u2]

JðuÞ� � ½IðtÞþ LcðtÞ� þ u2

¼ �C2 þ C1u
2

where C2 >0which depends on upper bounds of IðtÞ; LcðtÞ. We can also see that h ¼ 2>1, C1 >0. Therefore, the condition (iv)
is also satisfied. From the above discussion, the existence of the objective functional has been established.
5. Characterization of the optimal control

In order to derive the necessary conditions for this optimal control, we apply Pontryagin’s Maximum Principle to the
Hamiltonian (H). Using Pontryagin’s Maximum Principle, to find the optimal vaccination and treatment term the standard
Hamiltonian function H w.r.t ðu1; u2Þcan be defined as follows:

Hðt; xðtÞ; uðtÞ; pðtÞ; lðtÞÞ¼ CpðtÞ; f ðxðtÞÞþ gðxðtÞÞuðtÞD� lLðxðtÞ; uðtÞÞ; l2ℝ

where p ¼ ðpS; pE; pI ; pLc ; pRÞ2ℝ5 denotes the adjoint variables.
Suppose that the pair ðx*;u*Þ is the optimal solution of the above optimal control problem. Then, the maximum principle

asserts the existence of a scalar l0 � 0, an absolutely continuous function pðtÞ, such that the following conditions are satisfied:

i. maxfjpðtÞj : t2½0; T �gþ l0 >0;
ii. _pðtÞ ¼ lLx½t� � Cp½t�; fx½t� þ gx½t�u*ðtÞD;
iii. pðtÞ ¼ ð0; 0Þ;
iv. Hðx*ðtÞ; u*ðtÞ; pðtÞÞ ¼ max

u
fHðx*ðtÞ; pðtÞ; uðtÞÞg; where a1 � u1 � b1, a2 � u2 � b2,

where time argument ½t� denotes the evaluation along with the optimal solution.
Then, from equation (ii) adjoint equations in normal form ði:e: l¼ 1Þ are explicitly given by

pS
0 ¼ � vH

vS
¼ �pSf � aðIþ sLcÞ�m0 �u1g� pEfaðIþ sLcÞg � u1pR

¼ aðIþ sLcÞðpS �pEÞþ pSðm0 þu1Þ � u1pR



Mst.S. Khatun, Md.H.A. Biswas / Infectious Disease Modelling 5 (2020) 91e110100
p0E ¼ � vH
vE

¼ pEðm0 þ bÞ � bpI

¼ pEm0 þ bðpE �pIÞ

p0I ¼ � vH
vI

¼1þapSS�apESþm0pI þðmþgÞpI �ð1�pÞgpLc � ðmþpgÞpR

¼ 1þaSðpS �pEÞþ ðm0 þmþgÞpI �ð1� pÞgpLc � ðmþpgÞpR

p0Lc ¼ � vH
vLc

¼1þaspSS�aspESþðm0 þ dþ εÞpLc þu2pLc � ðdþu2ÞpR

¼ 1þasSðpS � pEÞþ ðm0 þ dþ εþu2ÞpLc � ðdþu2ÞpR

p0R ¼ � vH
vR

¼ m0pR

with transversality condition piðTÞ ¼ 0; i ¼ 1; 2; 3; 4 and 5.
Now, by applying Pontryagin’s Maximum Principle (Lenhart and Workman, 2007) we have the following theorem and

proving Theorem 4, we show the existence of controls.

Theorem 4. There exists optimal control ðu1*;u2*Þ that minimizes the objective function J over U given by

u1* ¼ max
½0; T �

�
0;min

�
1; ðpS�pRÞS*

A

��
and u2* ¼ max

½0; T �

�
0;min

�
1; ðpLc�pRÞLc*

B

��
.

Proof: By optimality conditions, we have.

vH
vu1

¼Au1 � pSSþ pRS¼00u1 ¼
ðpS � pRÞS

A
¼u1;

vH
�
pLc � pR

�
Lc
vu2
¼Bu2 þpRLc � pLcLc ¼00u2 ¼ B

¼u2;
According to the property of U, the two controls ðu1*;u2*Þ are bounded with upper bound 1 and lower bound 0. Therefore,

u1
*ðtÞ¼

8>>>>><
>>>>>:
0 if u1 �0

ðpS�pRÞS
A

if 0<u1<1 1 if u1 �1:
This can be written in compact form as

u1
* ¼max

½0; T�

�
0;min

�
1;

ðpS � pRÞS
A

��
Similarly,

u2
*ðtÞ¼

8>>>>><
>>>>>:
0 if u2 �0

�
pLc �pR

�
Lc

B
if 0<u2<1 1 if u2 �1:
In the same way, this can be written in compact form as
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u2
* ¼max

½0; T�

�
0;min

�
1;

�
pLc � pR

�
Lc

B

��
Thus, we get optimal solutions as

ðu1*;u2*Þ¼
�
max
½0; T�

�
0;min

�
1;

ðpS � pRÞS
A

��
; max

½0; T �

�
0;min

�
1;

�
pLc � pR

�
Lc

B

���
Hence completes the proof.

6. Numerical results and discussion

In the present section, numerical simulations of the optimal control model (3) have been performed using ODE-45 solver
written in MATLAB programming. We use a set of logical parameter values. Graphical results are displayed using the initial
values: S ¼ 5:54E ¼ 0;I ¼ 0:1;LC ¼ 0:3, R ¼ 0:2 and all the parameters showed in Table 1. The simulations are performedwith
time 20 years. Firstly, the optimal control model is simulated. For the simulations of the optimal control model (3), we first
solve the optimality systems when no treatment is employed. So that we take the control variable u1s0 (i.e. treatment
control, u2 ¼ 0). The simulation results in the absence of treatment are shown in Figs. 7e11. Also, we run the program of the
optimal control model (3) when no vaccination strategy is employed. Hence we take the control variable u2s 0 (i.e. vacci-
nation control, u1 ¼ 0) and the simulations are presented in Figs. 12e16.

Again numerical simulations of the optimal system (3) are performed considering both the two controls: vaccination
control (i.e.u1s0) and treatment control (i.e. u2s0) and also the results are shown in Figs.17e21. Considering the vaccination
and treatment controls at a great extent ði:e: u1 ¼ 1; u2 ¼ 1Þ, we draw Figs. 22e26. Furthermore, we determine the efficiency

index of the model by using MATLAB programming. For this purpose, we calculate, E:I: ¼
�
1�Ac

A0

�
� 100 and the detailed

about Ac and A0 are given in (Ghosh, Ghosh, Biswas, Sarkar, 2019). Here the best strategy will be the one whom efficiency

index will be bigger than the other. A ¼
Z 20

0
LcðtÞ dt represents the cumulated number of liver cirrhotic individuals during

the time interval [0, 20]. We evaluate the value of integration and we have A0 ¼ 2:4551 . The values of Ac and efficiency index
(E.I.) for STR-1 and STR-2 are given in Table 2.

Table 2 shows that STR-2 is the best strategy among STR-1 and STR-2, which permits to reduce the number of incident
cases. Thus, treatment is more effective than vaccination to minimize the disease (liver cirrhosis) transmission.

Figs. 7e11 represent the effects of vaccination as a control measure on the susceptible, exposed, infected, liver cirrhotic and
recovered individuals for 20 years timeline. It has been noticed that the control measure slightly influences the susceptible
individuals, but significantly controls the exposed, infected, liver cirrhotic and recovered individuals. As expected, both the
infected and liver cirrhotic individuals have increased in the absence of vaccination than the individuals with having the
control measure. On the contrary, the number of recovered individuals increases when vaccination control is applied
compared to the individuals without optimal control.

From Figs. 12e16, we observe the effects of treatment as a control measure on the susceptible, exposed, infected, liver
cirrhotic and recovered individuals for 20 years timeline. It has been seen that the control measure significantly influences the
susceptible, exposed, infected, liver cirrhotic and recovered individuals. Here, both the infected and liver cirrhotic individuals
have decreased noticeably for the presence of treatment control than the individuals without having the control measure.
Table 1
Parameter specifications of model (3).

Descriptions Parameters Values

Source rate of susceptible population r 0.0121
Natural population death rate m0 0.95
Transmission rate a 0.16
Infectiousness of liver cirrhosis relative to acute infections s 0.00693
Acute infection rate b 6 (per year)

Spontaneous recovery rate g 0.25
Rate of moving from infection to liver cirrhosis m 4 (per year)

Recovered rate from liver cirrhosis d 0.03
Disease induced death rate ε 0.02
Rate of moving from recover to liver cirrhosis carriers p 0.25



Fig. 7. Dynamics of susceptible individuals when only vaccination control ðu1Þ is employed as optimal control.

Fig. 8. Dynamics of exposed individuals when only vaccination control ðu1Þ is employed as optimal control.

Fig. 9. Dynamics of infected individuals when only vaccination control ðu1Þ is employed as optimal control.
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Fig. 10. Dynamics of liver cirrhotic individuals when only vaccination control ðu1Þ is employed as optimal control.

Fig. 11. Dynamics of recovered individuals when only vaccination control ðu1Þ is employed as optimal control.

Fig. 12. Dynamics of susceptible individuals when only treatment control ðu2Þ is employed as optimal control.
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Fig. 13. Dynamics of exposed individuals when only treatment control ðu2Þ is employed as optimal control.

Fig. 14. Dynamics of infected individuals when only treatment control ðu2Þ is employed as optimal control.

Fig. 15. Dynamics of liver cirrhotic individuals when only treatment control ðu2Þ is employed as optimal control.
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Fig. 16. Dynamics of recovered individuals when only treatment control ðu2Þ is employed as optimal control.

Fig. 17. Dynamics of susceptible individuals when both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.

Fig. 18. Dynamics of exposed individuals when both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.
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Fig. 19. Dynamics of infected individuals when both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.

Fig. 20. Dynamics of liver cirrhotic individuals when both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.

Fig. 21. Dynamics of recovered individuals when both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.
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Fig. 22. Dynamics of susceptible individuals when the maximum level of both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.

Fig. 23. Dynamics of exposed individuals when the maximum level of both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.

Fig. 24. Dynamics of infected individuals when the maximum level of both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.
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Fig. 25. Dynamics of liver cirrhotic individuals when the maximum level of both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.

Fig. 26. Dynamics of recovered individuals when the maximum level of both vaccination ðu1Þ and treatment control ðu2Þ are employed as optimal control.

Table 2
Calculation of efficiency index.

Strategy Ac E.I.

STR-1 2.4319 0.9474
STR-2 1.5208 38.0551
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Again, the number of recovered individuals increases when treatment control is applied compared to the individuals without
optimal control.

Figs. 17e21 show the effects of control measures (vaccination and treatment) on the susceptible, exposed, infected, liver
cirrhotic and recovered individuals for 20 years timeline. It has been observed that the control measure slightly influences the
susceptible population, but significantly controls the exposed, infected, liver cirrhotic and recovered individuals. As antici-
pated, both the infected and liver cirrhotic individuals have decreased for the presence of control measure than the in-
dividuals without having the control measure. In contrast, the number of recovered individuals increases when the control
measure is applied compared to the individuals without optimal control.

Figs. 22e26 exhibit the effects of the maximum level of the control measures (vaccination and treatment) on the sus-
ceptible, exposed, infected, liver cirrhotic and recovered individuals for 20 years timeline at an extreme level of the control
measure. It has been noted that the control measure significantly controls the susceptible, exposed, infected, liver cirrhotic
and recovered individuals. As presumed, both the infected and liver cirrhotic individuals have increased for the absence of
control measure than the individuals with having the control measure at their extreme level. Conversely, the number of
recovered individuals increases when the control measure is applied compared to the individuals without optimal control.
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7. Conclusions

In this paper, an optimal control model has been formulated considering two control variables by using the most well-
known Pontryagin’s maximum principle. Numerical simulations have been performed to illustrate the analytic results.
After investigation, it has been observed that the optimal vaccination and treatment are muchmore effective for reducing the
number of exposed, infected and liver cirrhotic individuals, to maximize the recovered individuals and also to minimize the
cost of the two control measures. Since there are vaccination strategies available for hepatitis B infection (which ultimately
leads to chronic disease liver cirrhosis) so from the simulations, it has been established that the optimal combination of
vaccination and treatment is effective to control the disease progression. So to reduce the infections, hepatitis B virus
vaccination should be started immediately after newborn birth. Eventually, liver cirrhosis is a significant cause of illness and
death worldwide. It affects millions of patients all over the world. Liver cirrhosis occurs throughout the world irrespective of
age, sex, region, and race. It is time to get rid of this fatal disease.
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