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Abstract
Transcription termination is a fundamental process in which RNA polymerase
ceases RNA chain extension and dissociates from the chromatin template,
thereby defining the end of the transcription unit. Our understanding of the
biological role and functional importance of termination by RNA polymerase II
and the range of processes in which it is involved has grown significantly in
recent years. A large set of nucleic acid-binding proteins and enzymes have
been identified as part of the termination machinery. A greater appreciation for
the coupling of termination to RNA processing and metabolism has been
recognized. In addition to serving as an essential step at the end of the
transcription cycle, termination is involved in the regulation of a broad range of
cellular processes. More recently, a role for termination in pervasive
transcription, non-coding RNA regulation, genetic stability, chromatin
remodeling, the immune response, and disease has come to the fore.
Interesting mechanistic questions remain, but the last several years have
resulted in significant insights into termination and an increasing recognition of
its biological importance.
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Introduction
Transcription termination is the complex and tightly regulated 
process in which polymerase stops RNA chain elongation and 
dissociates from the end of transcription units. A multiplicity of 
termination factors, which assemble into a number of complexes, 
govern the biogenesis of various types of transcripts including 
messenger RNA (mRNA), small nuclear RNA, small nucleolar 
RNA (snoRNA), and long non-coding RNA (lncRNA). Much of 
what we know has been learned from studies in Saccharomyces 
cerevisiae, where one process operates to terminate short 
non-coding transcripts and another involves components of the 
polyadenylation (polyA) machinery and nucleases such as Xrn2 
to terminate the synthesis of mRNA precursors. Recent reviews 
have described some of these fundamental mechanisms and 
factors involved in termination by RNA polymerase II (pol II)1–6. 
Here, we will focus on the role of the termination of transcrip-
tion by pol II in a variety of biological contexts and describe how 
new discoveries have helped elucidate longstanding questions as 
well as contributed to the establishment of new paradigms. It has 
become clear that transcription termination occupies a critical role 
as a regulator of cellular processes. This process and the termina-
tion machinery occupy an increasingly important place in human 
health and disease.

End-of-open reading frame termination: recent studies 
on the torpedo and allosteric models of termination 
of mRNAs
Two prevailing hypotheses for how pol II terminates transcrip-
tion have guided experiments for almost three decades; these are 
the so-called allosteric and torpedo models. In its simplest form, 
the first posits that as elongating pol II encounters a polyA sig-
nal, a physical change in the complex is triggered that provokes 
termination7. The torpedo model suggests more specifically that 
termination is facilitated by a nuclease brought to the transcript 
via the polyA signal and associated RNA processing machinery. 
After the co-transcriptional endonucleolytic cutting of the primary 
transcript in preparation for its polyadenylation, a nuclease engages 
the 5’ end of the 3’ portion of the RNA that remains polymer-
ase associated, and digestion of this RNA ‘stump’ in the 5’ to 3’ 
direction enables the nuclease to chase down pol II, whereupon 
termination is triggered by an undetermined mechanism8. The dif-
ference between these two models may be reduced to the following 
question: what are the changes in pol II that persuade it to go from 
its default mode of continuing elongation into stopping and depart-
ing from the template? Although there has been some controversy 
over the relative acceptance of these two hypotheses, the two mod-
els are not mutually exclusive, and indeed a combination of both 
mechanisms has been proposed9–11.

A recent test of the concept provides new insight showing that 
in vitro, a polyA signal is sufficient to induce elongation complex 
disassembly independent of transcript cleavage12. These authors 
propose that there is an important conformational shift that can be 
blocked by α-amanitin, implicating pol II itself in this transition. 
These findings seemingly support an allosteric component to the 
model, i.e. something happens to pol II following synthesis of the 
polyA signal in the nascent RNA, but cutting of the RNA is not 
needed. However, identifying that change in pol II has remained 

elusive. In an almost reciprocal study, it had been shown that 
exonucleolytic degradation of the transcript by the Rat1/Rai1 nucle-
ase (the two subunits that compose yeast Xrn2) was found to be 
insufficient to dislodge pol II from its template in vitro10,13. So, even 
if a nuclease torpedo is involved in termination, it is not sufficient 
to complete the process.

The conserved Xrn2 nuclease has been considered a strong can-
didate to be the torpedo. Recently, Fong et al. showed that Xrn2 
was necessary for proper termination at thousands of genes14. The 
requirement was not absolute in that loss of Xrn2 delayed, rather 
than prevented, termination, resulting in longer transcripts. This 
supports the idea of a kinetic competition in termination, as the 
Xrn2 torpedo chases the elongating polymerase while Xrn2 digests 
the transcript from 5’ to 3’. In cells with mutant pol II that was 
either abnormally slow or fast, it should take Xrn2 less and more 
time to catch pol II, respectively. Consistent with this prediction, 
slow pol II led to shorter terminated transcripts, and fast pol II 
produced longer terminated transcripts. This result can be taken as 
strong evidence in favor of the torpedo model. Curiously, Xrn2 was 
found to be important for termination, even for non-coding tran-
scription units whose miRNA and lncRNA products are not acted 
upon by the cleavage and polyA machinery.

In another test of the need for cleavage of the primary transcript 
for termination, Schaughency et al. mapped the chromatin loca-
tions of pol II in a S. cerevisiae strain depleted for Ysh1, the endo-
nuclease that generates the 3’ end that becomes polyadenylated11. 
The analysis revealed that pol II stops elongation but remains tem-
plate bound, presumably because the lack of cleavage prevents a 
nuclease torpedo from gaining access to the elongation complex11. 
This gives rise to the idea that both an allosteric change resulting 
from crossing the polyA site and the torpedo effects of Rat1 are 
necessary for efficient pol II release in yeast.

While implicated as an essential part of the torpedo model, there 
is also a growing body of research on Xrn2’s post-translational 
modification. Sansó et al.15 employed a chemical genetic screen 
introduced by Shokat and co-workers16,17 to look for substrates of 
the Cdk9 kinase, an enzyme implicated in transcription as a subu-
nit of the pTEFb elongation factor18. By mutating its active site to 
accommodate a bulky ATP analog, these investigators could label 
kinase substrates specific for Cdk9 that could then be tracked by 
their covalently attached thiophosphate group. One such substrate 
was Xrn215. The phosphorylated form of Xrn2 could be found 
on chromatin and the modification was associated with a modest 
enhancement of its nuclease activity. Inhibition of Cdk9 kinase 
activity and mutation of the phosphorylated threonine in Xrn2 led 
to the expected defects in termination predicted by the torpedo 
model. This new finding incorporates Xrn2 into a cellular 
signaling pathway. It will be important to learn what cellular 
events activate and reverse phosphorylation-based control of the 
torpedo’s activity.

Xrn2 was also recently shown to regulate chromatin structure 
to promote meiotic gene silencing during vegetative growth in 
Schizosaccharomyces pombe19,20. In this case, heterochromatin 
formation was dependent on transcription and termination, which 
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was coupled to the nucleolytic elimination of the resulting RNAs. 
Chalamcharla et al. showed that the Xrn2 homolog Dhp1 was 
necessary for premature termination of non-coding RNAs that 
marked sites of repression of facultative heterochromatin at 
meiotic genes19. Loss of dhp1 in an exosome-deficient strain 
resulted in compromised RNAi-mediated gene silencing, similar 
to the changes found in ago1 mutants. Tucker et al. also found a 
similar effect for Dhp1 in silencing and also showed that loss of 
Dhp1 resulted in defects in meiotic chromosome segregation20. 
Interestingly, the two groups have different mechanistic expla-
nations for their observations. Chalamcharla et al. postulate that 
termination-coupled degradation by the exosome triggers recruit-
ment of the heterochromatin machinery. Tucker et al. consider the 
functions of the Dhp1 nuclease in termination and gene silencing 
as separable, with the termination role not an important aspect of 
its silencing duty. These reports, and that of Kowalik et al.21, have 
been productive investigations into the role of transcription ter-
mination factors in S. pombe gene silencing, a phenomenon that 
had been explored previously in S. cerevisiae22–24 but which seems 
mechanistically distinct between the yeast species considering the 
absence of post-transcriptional gene silencing in S. cerevisiae.

Pervasive transcription and termination
In recent years, it has been repeatedly shown that transcription 
initiation is promiscuous and widespread, with much of the genome 
capable of being copied into RNA. A corollary to this is the recog-
nition that the termination reaction is an important governor over 
the transcriptome in its capacity to partition or funnel transcription 
products into a degradative ‘clean up’ pathway for RNA elimina-
tion (such as seen for cryptic unstable transcripts), a maturation 
pathway for limited processing (such as snoRNAs), or an option to 
yield spliced and polyadenylated mRNAs.

One form of pervasive transcription is seen as divergent initiation 
from promoters. Recent work has gone into characterizing tran-
scripts that radiate in both directions from bidirectionally firing 
promoters25–29. Non-coding transcripts that extend in the ‘wrong’ 
(antisense) direction are terminated, and their degradation is 
tightly coupled to this process30–34. Interestingly, the genomic DNA 
extending in that direction tends to be enriched in polyA signals 
and hence termination sequences. In contrast, those in the sense 
or mRNA-yielding direction are depleted of termination poten-
tial because they are enriched in splicing signals, which protect 
transcription from premature termination35,36. Thus, termination 
enforces promoter directionality.

A recent genome-wide study showed that prematurely terminated 
transcripts are one class of RNA that is cleaned up by nuclease 
surveillance. Mutation of the human nuclear ribonuclease complex, 
known as the exosome, revealed the surprising frequency with which 
prematurely terminated RNAs are generated from the genome37, 
something that might be expected given the imperfect processivity 
of pol II engaged in transcribing megabase-long genes. 

In an interesting flipping of the conventional way of thinking 
that termination feeds transcripts to the degradation machinery, a 
study in S. pombe suggests that the exosome complex can capture 
a specific paused and backtracked form of pol II and take it to the 
termination pathway38. Here, the exosome is thought to directly 

recognize the 3’ end of the extruded nascent transcript in arrested 
(‘backtracked’) complexes. Yet unresolved is whether the protein 
sets employed in conventional (polyA-coupled) pol II termina-
tion or short non-coding termination (such as the Nrd1-Nab3-Sen1 
system in S. cerevisiae) are required for this mode of stopping 
transcription.

Not only is the regulation of termination important for cellular 
genomes but also viruses can antagonize normal transcription 
termination during infection. Using 4-thiouridine labeling of RNA 
and ribosome profiling of newly made RNA following infection, 
Rutkowski et al. found that herpes virus inhibits the termination 
of host, but not viral, transcription39. The resulting readthrough 
RNAs became observable in a manner similar to those seen in other 
systems when the exosome or termination machineries become 
incapacitated by experimental manipulation24,28,37. These aberrant, 
even polygenic, transcripts were not spliced or translated properly, 
thus resulting in a form of host shut-off that may favor viral gene 
expression. How widespread the phenomenon of viral corruption of 
the integrity of the host’s transcription units is, and its mechanistic 
basis, remains to be elucidated.

Another case of a pathologically defeated transcription termination 
system was observed by Grosso et al. in a human cancer40. Through 
transcriptome profiling of various renal cell carcinoma samples, 
they found widespread transcriptional readthrough in many of the 
samples from patients with some of the worst prognoses. Again, 
chimeric transcripts spanning transcription units could be identified. 
The SETD2 gene, which encodes a histone methyltransferase, was 
frequently inactivated in these cancer lines. Knockdown of SETD2 
could recreate the readthrough phenotype. Ectopic expression of 
the wild-type protein could reverse it, thus implicating chromatin 
modifications in disease-related failure to terminate effectively. 
Interestingly, Bcl2, an anti-apoptotic protein often elevated in 
cancer, was upregulated, suggesting a possible mechanism by 
which mutation leads to loss of proliferative control.

Yet another version of a hybrid readthrough transcript called 
DoGs (downstream of genes containing transcripts) has been 
identified41,42. These transcripts have a 5’ end corresponding to 
an upstream gene and an aberrant 3’ extension of up to tens of 
kilobases. Hundreds of DoGs were detected following KCl treat-
ment of neuroblastoma cells whereupon their length and abun-
dance increased. These readthrough products, only some of which 
became polyadenylated, encountered fewer polyA sites down-
stream of the coding sequence, which could explain less efficient 
termination for the DoG transcript. It is not clear what func-
tional role the DoGs play; their strong association with chromatin 
suggests they become incorporated into the nuclear scaffolding 
during stress responses. Intuitively, this is an appealing model, 
as osmotic stress shrinks the cell nucleus and collapses chro-
matin. DoGs may mitigate such deleterious effects, as recently 
suggested for a set of non-coding, repeat-containing RNAs43. 
This finding emphasizes that terminator override plays an impor-
tant role across physiological states and reveals plasticity in our 
definition of a transcription unit.

The continued accumulation of instances of pervasive transcrip-
tion has changed our view of cellular RNA from one that is ‘open 
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reading frame centric’ to one with a greater appreciation for RNA 
arising from intergenic sequences, either constitutively or under 
specific physiological or pathological conditions.

Transcription termination in immunological systems
The transcription elongation complex has been of interest to 
immunologists for many years owing to transcription-dependent 
mutations introduced into immunoglobulin (Ig)-encoding genes 
during somatic hypermutation44. Somatic hypermutation is the 
process by which the variable regions of Ig genes change as the 
immune response matures, leading to selected antibodies with 
increasingly higher affinities. A mutagenic enzyme, activation- 
induced cytidine deaminase (AID), is thought to track with elon-
gating pol II and is associated with premature termination of 
transcription. This mechanism is proposed to link transcription to a 
specific hotspot for physiologically important mutations. A recent 
report extends this model and proposes that pervasive transcripts 
are functionally important for proper class switch recombination 
and somatic hypermutation in B lymphocytes45,46. The suggested 
model is that transcripts in paused, divergently facing elonga-
tion complexes become stabilized, offering the complex more of 
an opportunity to form short DNA-RNA hybrids called R-loops. 
These loops are part of the transcription termination reaction in 
which RNA is hybridized to the DNA from which pol II has just 
departed and can be considered an intermediate on the pathway to 
disintegration of the transcription bubble and the digestion of the 
short, anti-sense RNA. B lymphocytes appear to have evolved a 
mechanism to capture this nucleic acid framework with its exposed 
single-stranded DNA and make it a target for the AID mutagenesis 
machinery. In this manner, B cells can focus the genetic changes 
on the very specific region of Ig proteins that need to vary. We 
will come back to a discussion of the importance of R-loops in 
termination in the next section.

Wang et al. also present evidence in support of the idea that 
premature termination provides an opportunity for the single-
stranded DNA of the transcription bubble to become a substrate 
for localized mutation by AID47. They show via chromatin immu-
noprecipitation that pol II concentrates in the region that undergoes 
hypermutation. Subsequent manipulation of elongation factor Spt5 
by knockdown, which should facilitate premature termination, 
revealed that DNA strands in the region acquire a single-stranded 
character and are mutated at higher frequency. Early termination 
was suggested by the molar abundance of RNA from the 5’ variable 
region of the heavy chain locus versus the downstream sequences.

In another immunologically interesting system, the Zfp318 protein 
has been postulated to regulate termination site selection during the 
transcription of the gene that encodes both the μ and δ heavy chains 
in B lymphocytes48. Typically, a precursor transcript is synthesized 
that encodes the μ heavy chain constant region exons and, further 
downstream, the corresponding δ constant region exons. Alterna-
tive splicing appends one or the other sets of exons to the VDJ-
encoding exons, thereby yielding mRNAs for complete IgM or IgD 
heavy chains. This regulatory event has been known for some time, 
although the responsible trans-acting factors have been elusive49,50. 
By engineering a conditional Zfp318 deficiency into the bone 
marrow lineage of mice, Pioli et al. showed that Zfp318 normally 
serves to repress an apparent transcriptional termination event at 

the end of the μ exon series. Thus, there is normally some 
readthrough into the δ exons, thereby generating a primary tran-
script that can yield either μ- or δ-encoding mRNA, depending on 
the splicing pattern48. In the absence of Zfp318, it is suggested that 
the termination event becomes so strong that transcripts hardly 
extend into the δ exons, leaving cells with a pool of precursor 
transcripts ending near the polyA site for the upstream μ exons, 
and giving B cells no option of making IgD. This was one of the 
few shifts observed in that transcriptome, showing a very specific 
consequence following the loss of Zfp318. An independent set of 
experiments confirmed that incapacitating Zfp318 resulted in a 
shift from IgD and IgM production to mainly IgM production51. 
Enders et al. attributed this effect to the rate of pol II elongation 
and a change in the efficacy of competition between polyade-
nylation at the end of the μ exons vs. alternative splicing around 
them to append the δ exons. It will be interesting to learn how the 
Zfp318 protein, which may bind nucleic acids and could be a key 
regulator of this process, operates and if it directly influences a 
true transcription termination event.

R-loops, dicer, and genomic stability
The role of the R-loop in somatic hypermutation and recombina-
tion associated with heavy chain class switching is a specialized 
use of a common feature of the transcription termination zone. One 
hypothesized function of the senataxin protein, which is the human 
orthologue of the Sen1 termination factor initially discovered in 
yeast, is to provoke termination by unraveling the R-loop using a 
helicase activity1,52. However, these structures may also be involved 
in coordinating chromatin remodeling, as elucidated in a recent 
study in which repressive chromatin marks were induced over 
terminators53. In one example, an RNA duplex is suggested to form 
from anti-sense transcription of the R-loop, which recruits dicer 
to the region, leading to trimethylation of H3K9 at the termina-
tion zone, thereby linking the termination system to chromatin and 
the RNAi system in human cells.

Interestingly, Castel et al. show a role for Dicer1 in termination 
for all three nuclear polymerases, but this function appears to be 
independent of the rest of the RNAi machinery in S. pombe54. dcr1Δ 
cells show increased polymerase occupancy at the end of genes, 
implying stalling of polymerase. Deletion of other RNAi machin-
ery or generating a catalytically dead Dicer1 mutant did not give 
similar results, suggesting the process is not RNAi mediated. The 
genes regulated by this mechanism seem to be restricted to those at 
sites of replicative stress, where high transcription levels result in 
collision of the transcription bubble and the replication fork. Since 
DNA-RNA hybrids at these sites are recombinogenic, Dcr1 may 
be important for maintaining genome integrity, similar to the way 
senataxin resolves the problem in mammalian cells, although the 
latter is thought to do so through a helicase activity55,56. The role 
for dicer in termination could also be related to prior findings that 
Rnt1, another RNAse III-type enzyme in S. cerevisiae, can provoke 
termination57.

R-loop-mediated termination is also proposed to play a role in 
Friedrich’s ataxia. It was suggested that R-loops aberrantly form 
in the frataxin gene as a result of expansion of GAA repeats in 
its first intron58,59. Mutated frataxin exhibits features of hetero-
chromatin, H3K9 methylation, and decreased acetylation of H3 
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and H4, thus a reduced level of expression is to be expected. 
However, the altered gene also shares many characteristics of 
canonical R-loop-terminated genes, including a polyA-signal-like 
sequence upstream of the expansion, followed by a GU-rich 
sequence similar to the downstream element of polyA signals. This 
has led to a proposal that the mutated frataxin allele is the victim of 
premature termination, which contributes to its low level of expres-
sion in patients59. While experimental verification is still needed, 
this is an interesting model for a role of termination in disease.

In a final case of R-loop involvement in termination, Zhao et al. 
studied the modification of the repeat region of pol II’s largest 
subunit60. They found that dimethylation of a specific arginine 
serves to recruit the survival of motor neuron (SMN) protein to 
the elongation complex. This protein, in turn, associates with 
senataxin, which resolves R-loops and recruits the torpedo nucle-
ase Xrn2 during termination. Both SMN and senataxin have been 
found to suffer mutations in neurodegenerative diseases, again 
highlighting the importance of the termination reaction in human 
health and the imperative to understand its molecular basis.

Our understanding of the role of transcription termination across 
biological systems has expanded significantly with recent advances 
in experimental techniques and with growing interest in the topic 
across biological systems. New findings have yielded fresh insight 
into the longstanding questions of termination mechanism and 
somatic hypermutation and have provided new paradigms with 

the identification of cases in which the stringency of termina-
tion is relaxed during specific regulatory events or accidentally in 
pathological examples of dysfunction.
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