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Abstract

Loss-of-function mutations in the Caenorhabditis elegans gene sup-18 suppress the defects in muscle contraction conferred
by a gain-of-function mutation in SUP-10, a presumptive regulatory subunit of the SUP-9 two-pore domain K+ channel
associated with muscle membranes. We cloned sup-18 and found that it encodes the C. elegans ortholog of mammalian
iodotyrosine deiodinase (IYD), an NADH oxidase/flavin reductase that functions in iodine recycling and is important for the
biosynthesis of thyroid hormones that regulate metabolism. The FMN-binding site of mammalian IYD is conserved in SUP-
18, which appears to require catalytic activity to function. Genetic analyses suggest that SUP-10 can function with SUP-18 to
activate SUP-9 through a pathway that is independent of the presumptive SUP-9 regulatory subunit UNC-93. We identified a
novel evolutionarily conserved serine-cysteine-rich region in the C-terminal cytoplasmic domain of SUP-9 required for its
specific activation by SUP-10 and SUP-18 but not by UNC-93. Since two-pore domain K+ channels regulate the resting
membrane potentials of numerous cell types, we suggest that the SUP-18 IYD regulates the activity of the SUP-9 channel
using NADH as a coenzyme and thus couples the metabolic state of muscle cells to muscle membrane excitability.
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Introduction

Hypothyroidism, one of the most common endocrine disorders,

can cause many different symptoms and can lead to defects in

brain development and maturation and retarded postnatal

development [1]. For thyroid hormone biosynthesis, iodide is

recycled by iodotyrosine deiodinase through the deiodination of

monoiodotyrosine and diiodotyrosine, two byproducts in the

generation of thyroid hormones [2–6]. In humans, this deiodin-

ation is catalyzed by human iodotyrosine dehalogenase (DE-

HAL1)/iodotyrosine deiodinase (IYD), an NADH oxidase/flavin

reductase [7–10]. Mutations in IYD cause congenital hypothy-

roidism [11–13]. How the activity of IYD is regulated in vivo and

whether IYD has other functions remain to be elucidated.

Four transmembrane/two-pore domain K+ channels play a key

role in establishing the resting membrane potentials of many cell

types and in modulating their responses to neurotransmitters and

second messengers [14–16]. To date, 15 human two-pore domain

K+ channels have been identified [14,16,17]. The activities of two-

pore domain K+ channels can be regulated by multiple chemical

and physical factors, including temperature [18], membrane

stretch [19,20], arachidonic acid [21], pH [22,23], volatile

anesthetics [24,25] and neurotransmitters [26,27].

The gene sup-9 of the nematode Caenorhabditis elegans encodes a

two-pore domain K+ channel [28]. sup-9(n1550) gain-of-function

(gf) mutants are egg-laying defective and display a flaccid

paralysis and a rubberband uncoordinated (Unc) behavior: when

prodded on the head, a sup-9(n1550gf) worm contracts and

relaxes along its entire body without moving backwards, while a

wild-type worm contracts its anterior end and moves away [29].

Loss-of-function (lf) mutations in sup-9 or two other genes, sup-10

and unc-93, completely suppress these sup-9(n1550gf) defects [29–

31]. In addition, gf mutations in sup-10 and unc-93 themselves

induce a rubberband Unc paralysis, which in turn are suppressed

by lf mutations in sup-9, sup-10 and unc-93 [30–32]. lf mutants of

unc-93, sup-9 and sup-10 do not have obviously abnormal

phenotypes [29–31,33]. The SUP-9 two-pore domain K+

channel is most closely related to human TASK-3 [28,34,35].

unc-93 encodes a conserved multi-pass transmembrane protein

[33]. An UNC-93 homolog, UNC93b1, is involved in innate

immune responses in mammals [36,37]. sup-10 encodes a novel

type-I transmembrane protein [35]. Genetic analyses and the

molecular identities of these genes suggest that in vivo SUP-10

and UNC-93 form a protein complex with the SUP-9 two-pore

domain K+ channel and modulate its activity as regulatory

subunits [28,33].
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Mutations in the gene sup-18 suppress the muscle defects caused

by gf mutations in these three genes, strongly suppressing the

locomotory defects of sup-10(n983gf) mutants, partially suppressing

the locomotory defects of the strong unc-93(e1500gf) mutants, the

weak unc-93(n200gf) mutants and the strong sup-9(n1550gf)/+
heterozygous mutants, and suppressing only the lethality of sup-

9(n1550gf) mutants [29,30] (also see Table 1 below). In this study

we report that sup-18 encodes the C. elegans ortholog of mammalian

iodotyrosine deiodinase/dehalogenase (IYD) [7,8,10]. Our find-

ings suggest that SUP-18 is a functional regulator of the SUP-9/

SUP-10/UNC-93 two-pore domain K+ channel complex in vivo

and that IYD might function with two-pore domain K+ channel

complexes in mammals.

Results

sup-18 has gene-specific effects on the rubberband Unc
phenotype

sup-10(n983gf) mutants have a reduced locomotory rate

(Table 1). A loss-of-function mutation in sup-18, n1030, restores

wild-type locomotion to sup-10(n983gf) mutants (Table 1) [30]. unc-

93(n200gf) causes a less severe rubberband Unc phenotype than

sup-10(n983gf), yet the unc-93(n200gf) phenotype is still only

partially suppressed by sup-18(n1030) (Table 1). unc-93(e1500gf)

mutants, which have a more severe rubberband Unc phenotype

than sup-10(n983gf) mutants, similarly are only weakly suppressed

by sup-18(n1030). These results suggest that the differential

suppression of the rubberband Unc mutants by sup-18(n1030) is

caused by gene-specific effects rather than by differential severity

of paralysis in these mutants.

We further tested this notion using weakly paralyzed double

mutants carrying the unc-93(e1500gf) mutation and a partial lf

allele of sup-10. Introduction of the sup-18(n1030) mutation into

partially suppressed unc-93(e1500gf); sup-10(n4025) or unc-

93(e1500gf); sup-10(n4026) mutants only weakly improved their

locomotory rates from approximately 14 to 19 body-bends/minute

(Table 1). These results confirm that sup-18(n1030) only weakly

suppresses gf mutations in unc-93.

The suppression of sup-10(n983gf) depends on the dosage of the

sup-18 allele [29]. We found that sup-18(n1030)/+; sup-10(n983gf)

males exhibit an intermediate phenotype (15.2 bends/min)

between those of the more severely paralyzed sup-10(n983gf) males

(4.7 bends/min) and the strongly suppressed sup-18(n1030); sup-

10(n983gf) males (31.7 bends/min) (Table 2). This dose-dependent

effect was observed for all lf alleles of sup-18 tested (Table 2). By

contrast, the suppression of sup-10(n983gf) by sup-9(n1913), a

channel null allele, was recessive.

Because the weak suppression of the locomotory defect of unc-

93(e1500gf) mutants by sup-18(lf) mutations (Table 1) [30] makes a

dosage analysis of sup-18(lf) suppression of unc-93(e1500gf) difficult,

we examined weakly paralyzed unc-93(e1500gf); sup-10(n4025)

males, which are more visibly suppressed by sup-18(n1030)

(Table 2). We found that the locomotory rate of unc-93(e1500gf);

sup-10(n4025) males heterozygous for sup-18(n1030) was similar to

that of males wild-type for sup-18 (10.0 vs. 9.8, respectively)

(Table 2). Similarly, sup-9(n1550gf)/+; sup-18(n1030)/+ males had

only slightly improved locomotion compared to sup-9(n1550gf)/+
males (5.0 vs. 3.8, respectively) (Table 2). We conclude that the

dose-dependent suppression of rubberband Unc mutants by sup-18

alleles is also gene-specific: the sup-10(n983gf) phenotype is much

more sensitive to sup-18 levels than is that of the other rubberband

mutants.

sup-18 encodes the C. elegans ortholog of mammalian
iodotyrosine deiodinase

sup-18 had previously been mapped to the interval between daf-

4 and unc-32 on LGIII [30]. Using three-point mapping we further

localized sup-18 to the interval between ncl-1 and unc-36 (see

Materials and Methods) (Figure 1A). Transgene rescue experi-

ments with cosmids spanning the ncl-1-to-unc-36 interval and with

smaller cosmid subclones identified a 4.5 kb minimal rescuing

fragment from cosmid C02C2: as a transgene, this fragment

restored the rubberband Unc phenotype to sup-18(n1010); sup-

10(n983gf) mutants (Figure 1A). This rescuing fragment contained

Table 1. sup-18(lf) mutations specifically suppress sup-
10(n983gf) locomotory defects.

Genotype LR ± SEM n

Wild-type 27.360.5 36

sup-9(n1550gf)* Inviable

sup-9(n1550gf)/+ 1.360.4 16

sup-10(n983gf) 5.160.5 16

unc-93(e1500gf) 0.260.1 32

unc-93(n200gf) 16.160.5 24

sup-18(n1030) 25.360.7 16

sup-9(n1550gf); sup-18(n1030) 0.060.0 12

sup-9(n1550gf)/+; sup-18(n1030) 4.660.5 16

unc-93(e1500gf) sup-18(n1030) 1.060.3 35

unc-93(n200gf) sup-18(n1030) 21.460.5 36

sup-18(n1030); sup-10(n983gf) 26.460.6 16

sup-9(n1913); unc-93(e1500gf) 27.160.5 11

unc-93(e1500gf); sup-10(n4025) 13.960.6 30

unc-93(e1500gf) sup-18(n1030); sup-10(n4025) 19.160.4 30

unc-93(e1500gf); sup-10(n4026) 14.960.5 30

unc-93(e1500gf) sup-18(n1030); sup-10(n4026) 19.660.4 30

Young adult hermaphrodites were assayed for the number of body bends made
on a bacterial lawn in 1 min interval.
*: sup-9(n1550gf) homozygous animals are inviable [35].
LR: locomotory rate (bodybends/min).
doi:10.1371/journal.pgen.1004175.t001

Author Summary

Iodotyrosine deiodinase (IYD) controls the recycling of
iodide in the biogenesis of thyroid hormones that regulate
metabolism. Defects in IYD result in congenital hypothy-
roidism, a multisystem disorder that can lead to growth
failure and severe mental retardation. We identified the
gene sup-18 of the nematode Caenorhabditis elegans as a
regulator of the SUP-9/UNC-93/SUP-10 two-pore domain
potassium channel complex and showed that SUP-18 is an
ortholog of IYD, a member of the NADH oxidase/flavin
reductase family. SUP-18 IYD is required for the activation
of the channel complex by a gain-of-function mutation of
the SUP-10 protein. SUP-9 channel activation by SUP-18
requires a conserved serine-cysteine-rich region in the C-
terminus of SUP-9 and is independent of the function of
the conserved multi-transmembrane protein UNC-93. We
propose that SUP-18 uses NADH as a coenzyme to activate
the SUP-9 channel in response to the activity of SUP-10
and the metabolic state of muscle cells.

SUP-18 Interacts with a Two-Pore Domain K+ Channel
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a single predicted gene, C02C2.5 [www.wormbase.org]. We

screened a mixed-stage cDNA library [38] using the smallest

cosmid subclone with sup-18 rescuing activity and obtained a

single partial cDNA of this predicted gene. We defined the

structure of this gene from RT-PCR and RACE experiments (see

Materials and Methods) (Figure 1B).

sup-18 encodes a predicted protein of 325 amino acids. This

protein is the only C. elegans ortholog of mammalian iodotyrosine

deiodinase (IYD), which belongs to the NADH oxidase/flavin

reductase superfamily (Fig. 1C) [7–10]. IYD catalyzes the

recycling of iodide by deiodinating 39-monoiodotyrosine and 39,

59-diiodotyrosine, the main byproducts in the process of thyroid

hormone biogenesis [2–5,7,8]. The identity between SUP-18 and

human IYD protein variant 2 (also named DEHAL1) [8] is 31%

overall and 45% over the NADH oxidase/flavin reductase domain

(Figure 1C). Like IYDs of Drosophila, mouse and human, SUP-18

has a hydrophobic region that precedes the NADH oxidase/flavin

reductase domain and might serve as a transmembrane domain.

We identified molecular lesions in the sup-18 coding sequence of

all 18 mutant strains analyzed (Table 3, Fig. 1C). The sup-

18(n1033) mutation leads to the substitution of an isoleucine for

the initiator methionine, which should cause any translational

products to be nonfunctional. (The next three ATG sequences in

the sup-18 cDNA are out of frame.) The sup-18(n1030) and sup-

18(n1548) mutations cause premature stop codons that likely

generate truncated protein products. Four mutations (n1038, n527,

n463, n1539) cause a frameshift. Another four mutations (n1036,

n1035, n1015, n1558) affect splice donor or acceptor sites. The

remaining seven missense mutations (n1010, n1554, n1471, n1556,

n1014, n1022, n528) disrupt residues within the NADH oxidase/

flavin reductase domain.

SUP-18 and SUP-10 are similarly localized within muscles
To examine the expression pattern of sup-18, we introduced the

coding sequence of gfp between codons 88 and 89 of a genomic

clone of sup-18, generating a sup-18 translation fusion transgene

(see Materials and Methods). Similar to transgenic animals

expressing a Psup-10::gfp translational fusion transgene, Psup-

18::gfp transgenic animals displayed GFP fluorescence in body-wall

(Fig. 2A, D), defecation (Fig. 2B, E) and vulval muscles (Fig. 2C, F).

In body-wall muscle cells (Fig. 2A, D), the SUP-10::GFP and SUP-

18::GFP fusion proteins both localized to cell-surface regions

aligned with dense bodies, the functional analogs to vertebrate Z-

lines that connect the myofibril lattice to the cell membrane [39].

In addition to muscles, three neurons in the head of Psup-18::gfp

transgenic animals also displayed GFP staining (I. de la Cruz and

H. R. Horvitz, unpublished observations). We previously reported

expression of a Psup-9::gfp reporter in the four SIA interneurons

[28]. We stained the Psup-18::gfp transgenic animals with an anti-

CEH-17 antibody, which labels the four SIA neurons and the

ALA neuron [40], and found that the neurons expressing the SUP-

18::GFP fusion protein were not the SIAs (I. de la Cruz and H. R.

Horvitz, unpublished observations).

We generated a rabbit anti-SUP-18 antibody (see Materials and

Methods). In immunostained animals, this antibody could detect

overexpressed SUP-18 but failed to detect endogenous SUP-18,

probably because of the low level of SUP-18 expression. We next

generated transgenic animals co-expressing a Psup-10::gfp fusion

transgene and sup-18 under control of a myo-3 promoter [41] and

examined the subcellular expression of SUP-18 using the antibody

and of SUP-10::GFP using GFP fluorescence. We found that SUP-

10 and SUP-18 colocalize in subcellular structures, including the

dense bodies in the body-wall muscles (Fig. 2G, H, I). Since GFP

fusions to SUP-9 and UNC-93 localize similarly [28], this result

suggests that SUP-18 colocalizes with a SUP-9/UNC-93/SUP-10

complex.

SUP-18 is a type-I transmembrane protein that can
function independently of membrane anchoring

Mammalian IYD is a transmembrane protein [7,8]. The

presence of a possible transmembrane domain in the predicted

SUP-18 protein sequence (Fig. 1C) suggests that SUP-18 is also a

transmembrane protein. To distinguish whether the NADH

oxidase/flavin reductase domain of SUP-18 resides intracellularly

or extracellularly, we generated transgenic animals expressing

different SUP-18::b-galactosidase fusion proteins and assayed b-

galactosidase activity in vivo in fixed animals (Fig. 3A). When b-

galactosidase is localized intracellularly it is enzymatically active,

whereas extracellular localization results in loss of b-galactosidase

activity [42,43]. The use of b-galactosidase activity to elucidate the

membrane topology of C. elegans proteins in vivo has been reported

previously for the presenilin SEL-12 protein [44] and for the

MEC-4 sodium channel subunit [45].

Fixed transgenic animals expressing b-galactosidase fused to

either the C-terminal region of SUP-18 or immediately C-terminal

to the putative transmembrane domain showed robust b-

galactosidase activity (Fig. 3A). Introduction of a synthetic

transmembrane domain [45] between SUP-18 and b-galactosidase

in these chimeras eliminated b-galactosidase enzymatic activity,

presumably because the membrane orientation of b-galactosidase

had been reversed (Fig. 3A).

These results strongly suggest that SUP-18 is a transmembrane

protein and that the NADH oxidase/flavin reductase domain of

SUP-18 resides intracellularly. But they do not distinguish between

a type-I transmembrane protein (single-pass transmembrane

protein with the N-terminal domain located extracellularly) and

Table 2. sup-18(lf) mutations exhibit dosage-dependent
suppression of the locomotory defects of sup-10(n983gf)
mutant.

Genotype LR ± SEM n

Wild-type 33.061.2 36

sup-10(n983gf) 4.760.9 25

sup-18(n1030); sup-10(n983gf) 31.760.7 15

sup-18(n1030)/+; sup-10(n983gf) 15.260.7 25

sup-18(n1033)/+; sup-10(n983gf) 13.860.6 25

sup-18(n1014)/+; sup-10(n983gf) 14.660.6 25

sup-18(n1036)/+; sup-10(n983gf) 12.360.7 25

sup-18(n1471)/+; sup-10(n983gf) 14.060.7 25

sup-9(n1913); sup-10(n983gf) 33.261.1 15

sup-9(n1913)/+; sup-10(n983gf) 5.660.6 20

unc-93(e1500gf); sup-10(n4025) 10.060.5 30

unc-93(e1500gf) sup-18(n1030)/+; sup-10(n4025) 9.860.7 20

unc-93(e1500gf) sup-18(n1030); sup-10(n4025) 17.560.9 30

sup-9(n1550gf)/+ 3.860.5 24

sup-9(n1550gf)/+; sup-18(n1030)/+ 5.060.5 39

sup-9(n1550gf)/+; sup-18(n1030) 9.860.5 22

Young adult males were assayed for the number of bends made on a bacterial
lawn during 1 min interval. LR: locomotory rate (bodybends/min).
doi:10.1371/journal.pgen.1004175.t002
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Figure 1. sup-18 encodes the C. elegans ortholog of mammalian iodotyrosine deiodinase. (A) Top, genetic map of the sup-18 region of
linkage group III (LG III). Horizontal lines below sup-18 represent the cosmids tested for rescue of sup-18(n1010); sup-10(n983gf) mutants. Bottom,
physical map of cosmid C02C2. Open boxes, coding regions; horizontal brackets, cosmid subclones. Rescued lines, number of independently derived
transgenic lines/total number of lines scored. Rescue was scored as the appearance of animals with the phenotype of rubberband Unc paralysis. (B)
Intron-exon structure of sup-18 as inferred by comparison of the cDNA and genomic sequences. Dark boxes, coding regions; open boxes,
untranslated regions; arrow, direction of transcription. The sup-18 open reading frame is 978 bp, the 59 UTR is 57 bp and the 39UTR is 44 bp. (C)
Sequence alignment of SUP-18 and iodotyrosine deiodinases from other species. Amino acids conserved in at least three species are darkly shaded,
while amino acids with similar physical properties in at least three species are lightly colored. *: sup-18 missense mutations (see Table 3). Residues
mutated in human hypothyroidism patients are indicated by red boxes. The FMN cofactor binding residues in mouse IYD are indicated by yellow
boxes. The transmembrane domain and NADH oxidase/flavin reductase domain are underlined and labeled. Genebank accession numbers are as
follows: SUP-18, JX978835; Drosophila, AAM11009; M. musculus, AAH23358; H. sapiens, NP_981932.
doi:10.1371/journal.pgen.1004175.g001
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a cytoplasmic protein that simply localizes at the cell surface, e.g.,

by interacting with another membrane protein or by linking to a

GPI anchor [46]. To test if the putative transmembrane domain of

SUP-18 can indeed behave as a transmembrane domain, we

inserted a signal sequence at the N-terminus of SUP-18 (see

Materials and Methods). While a fusion containing the presump-

tive extracellular domain of SUP-18 but lacking the putative

transmembrane domain resided intracellularly as expected, the

introduction of a signal sequence led to its secretion and loss of b-

galactosidase enzymatic activity (Fig. 3A). By contrast, when either

the SUP-18 putative transmembrane domain or the synthetic

transmembrane domain [45] was added to this SUP-18::b-

galactosidase fusion, the enzymatic activity was restored. These

results indicate that the putative transmembrane domain of SUP-

18 can indeed function as a transmembrane domain and suggest

that SUP-18 is likely a type-I integral membrane protein, like IYD.

To establish an assay for in vivo SUP-18 activity, we expressed

the sup-18 coding sequence under the control of the myo-3

promoter [41] in sup-18(n1033); sup-10(n983) mutant animals.

While sup-10(n983gf) mutant animals are defective in locomotion,

double mutants carrying the sup-18(n1033) null mutation had

improved locomotory rates (Fig. 3B). Expression of Pmyo-3 gfp in

sup-18(n1033); sup-10(n983gf) animals had little effect on their

locomotory rate, whereas expression of a Pmyo-3 sup-18(+) transgene

restored sup-10(n983gf) paralysis (Fig. 3B). By contrast, expression

of two Pmyo-3 sup-18 mutant constructs containing either the n1554

missense mutation or the n1010 mutation (which affects a

conserved amino acid in the NADH oxidase/flavin reductase

domain; Fig. 1C and Table 3) did not restore the rubberband Unc

phenotype to sup-18(n1033); sup-10(n983gf) mutants (Fig. 3B).

Table 3. sup-18 loss-of-function mutations.

Allele Mutation Effect Mutagen Background

n1033 ATG to ATT M1I EMS sup-10(n983gf)

n1030 CGA to TGA R65stop EMS sup-10(n983gf)

n1038 916 bp deletion 97+frameshift EMS unc-93(e1500gf)

n527 13 bp deletion 154+frameshift Spont unc-93(e1500gf)

n1548 TGG to TAG W170stop EMS sup-10(n983gf)

n463 4 bp deletion 175+frameshift Spont unc-93(e1500gf)

n1539 Tc3 Insertion 320+frameshift Spont sup-10(n983gf)

n1036 agGT to aaGT 3rd splice acceptor EMS sup-10(n983gf)

n1035 agGC to aaGC 5th splice acceptor EMS sup-10(n983gf)

n1015 GTgt to GTat 8th splice donor EMS sup-10(n983gf)

n1558 agAT to aaAT 8th splice acceptor EMS sup-10(n983gf)

n1010 AGT to AAT S137N EMS sup-10(n983gf)

n1554 GGC to AGC G258D EMS sup-10(n983gf)

n1471 GGC to GAC G258S Gamma sup-10(n983gf)

n1556 ACT to ATT T271I EMS sup-10(n983gf)

n1014 GGA to AGA G280R EMS sup-10(n983gf)

n1022 AGG to AAG R289K EMS sup-10(n983gf)

n528 ACC to CCC T322P Spont unc-93(e1500gf)

DNA sequences were determined for both strands of sup-18 exons and intron/
exon boundaries of each mutant. For splice-junction mutants, the intron
sequence is indicated by lowercase and the exon sequence by uppercase
letters. EMS, ethyl methanesulfonate; Spont, spontaneous. Frameshift,
mutations causing frameshift after the indicated codons.
doi:10.1371/journal.pgen.1004175.t003

Figure 2. SUP-18 is expressed predominantly in muscles and
co-localizes subcellularly with SUP-10. Epifluorescence images of
worms carrying (A–C) a Psup-10::gfp translational fusion transgene or
(D–F) a Psup-18::gfp translational fusion transgene. (A, D) Body-wall
muscle cells displaying GFP fluorescence in dense body-like structures.
(B, E) Tail regions of transgenic animals showing fluorescence in the
anal depressor muscles (arrows). (C, F) Ventral views of transgenic
animals showing fluorescence in vulval muscles (arrows). (G, H, I)
Confocal microscopic images of an animal expressing a Psup-10::gfp
translational fusion transgene and a Pmyo-3sup-18 transgene. SUP-
10::GFP fusion protein (G) was visualized by GFP signals and SUP-18 (H)
was detected by immunostaining with a rabbit anti-SUP-18 polyclonal
antibody (see Materials and Methods). (I) The merged picture indicates
colocalization of SUP-10::GFP and SUP-18 in the dense bodies (arrows).
Scale bars, 10 mm.
doi:10.1371/journal.pgen.1004175.g002
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We found that the mouse IYD gene could not substitute for sup-

18 in vivo in restoring the rubberband Unc phenotype of sup-

18(n1033); sup-10(n983gf) animals (Figure 3B). We tagged mouse

IYD with GFP at its C-terminus and found that C. elegans

expressing the fusion protein displayed GFP fluorescence in body-

wall muscle structures similar to that observed for the SUP-

18::GFP fusion (I. de la Cruz and H. R. Horvitz, unpublished

observations). These results suggest that mouse IYD had been

expressed properly and that mouse IYD might be inactive or

otherwise incapable of substituting for SUP-18 in C. elegans.

Interestingly, transgenic expression of the SUP-18 intracellular

domain alone (amino acids 66–325) was sufficient to restore

rubberband Unc paralysis to sup-18(n1033); sup-10(n983gf) ani-

mals, although the rescue was less robust than that conferred by

full-length SUP-18 (Fig. 3B). This finding suggests that the

extracellular and transmembrane domains of SUP-18 are not

essential for its in vivo function and is consistent with the conclusion

that the NADH oxidase/flavin reductase domain is intracellular.

Increased sup-18(+) expression in body-wall muscles
specifically enhances the behavioral defects of sup-
10(n983gf) mutants

The overexpression of sup-18(+) from a Pmyo-3 sup-18(+)

transgene in sup-18(n1033): sup-10(n983gf) mutants not only

restored the rubberband Unc phenotype but also apparently

enhanced that phenotype beyond that of sup-10(n983gf) single

mutants (Fig. 3B). This finding indicates a dose-dependent effect of

sup-18(+) and is consistent with our gene-dosage observation that

sup-18(lf)/+ can partially improve the locomotory rate of sup-

10(n983gf) mutants (Table 2). Overexpression of sup-18(+) with the

coinjection marker lin-15(+) in lin-15 mutant animals did not cause

Figure 3. SUP-18 is a type-I transmembrane protein with an NADH oxidase/flavin reductase domain that resides intracellularly and
can function without plasma membrane localization. (A) Transgenes expressing a SUP-18::b-galactosidase fusion protein were transformed
into wild-type animals using the dominant rol-6 coinjection marker. b-galactosidase assays were performed as described [77]. At least 100 animals per
transgenic line were scored for lacZ staining using Nomarski optics. Quantification was as following: staining of adult vulval muscles and larvae easily
observed at 106magnification in .30% of animals (++); staining of 3–30% of animals (+); staining of fewer than 3% of animals (2); no transgenic
lines, not labeled. Schematic: open boxes, SUP-18 transmembrane domain; black boxes, a synthetic transmembrane domain; EC, SUP-18 extracellular
domain; SS, signal sequence; NR, NADH oxidase/flavin reductase domain. (B) Lines of sup-18(n1033); sup-10(n983gf) animals carrying transgenes (Tgs)
driven by the myo-3 promoter, as indicated, were scored for locomotory rates. Pmyo-3 gfp (pPD93.97) was used as a coinjection marker to allow the
identification of transgenic animals by their GFP fluorescence. Non-transgenic sup-10(n983gf) and sup-10(n1033); sup-10(n983gf) mutants were scored
as controls. Error bars, mean 6 SEM; n = 12 for each transgenic line or control genotype. sup-18(intra): transgenes expressing the SUP-18 intracellular
domain (amino acid 66–325) fused with GFP.
doi:10.1371/journal.pgen.1004175.g003
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obvious differences in locomotion compared to animals injected

with lin-15(+) alone (Table 4), indicating that overexpression of

sup-18(+) itself did not slow locomotion.

We introduced the extrachromosomal arrays containing the

transgenes from two independently-derived strains carrying sup-

18(+) and the lin-15(+) coinjection marker into sup-10(n983gf)

lin-15 double mutants by mating, so that each resulting strain

would contain the same transgenes as the parental strain and

therefore would overexpress sup-18(+) at equivalent levels. sup-

18(+) overexpression caused a severe paralysis of sup-10(n983gf)

lin-15 animals relative to control transgenic animals expressing lin-

15 alone (0.1 and 0.0 vs. 5.7 and 5.4, bends/minute, respectively)

(Table 4). sup-10(n983gf) mutants overexpressing sup-18(+) were

smaller in size (Fig. 4A–D) and resembled severely paralyzed

mutants carrying a sup-9(n1550gf) mutation (compare Figs. 4B and

4D).

We next tested if overexpression of sup-9(+), unc-93(+) or sup-

10(n983gf) itself could enhance the sup-10(n983gf) defect as did

overexpression of sup-18(+). Overexpression of these other genes

under the control of the myo-3 promoter did not affect the

locomotory rate of transgenic sup-10(n983gf) mutant animals

compared to animals transgenic for lin-15 alone (Table 4). These

results suggest that the activity of SUP-18 might be enhanced by

increased expression, while increased expression of SUP-9,

UNC-93 and SUP-10 does not increase the biological effects of

these proteins.

We tested if overexpression of sup-18(+) could enhance the

defects of unc-93(e1500gf) mutants and found no obvious difference

in appearance compared to control animals overexpressing lin-15

alone (Fig. 4E, F). Because the locomotory rate of unc-93(e1500gf)

mutants transgenic for either sup-18(+) or lin-15(+) transgenes was

zero (Table 4) and an enhancement of locomotory defects could

not be scored, we turned to a different aspect of the phenotype of

rubberband mutants, a reduced brood size [29]. Consistent

with the enhancement of locomotory defects, overexpression of

sup-18(+) reduced the brood size of sup-10(n983gf) mutants by

three-fold, from an average of 74 and 75 progeny for the two

transgenic lines, to 17 and 27, respectively (Table 4). These low

brood sizes are comparable to those of severely paralyzed sup-

9(n1550gf); sup-18(n1030) mutants (Table 4). By contrast, the brood

sizes of unc-93(e1500gf) mutants did not change in response to sup-

18(+) overexpression (35 and 43 vs. 37 and 40, respectively). Thus, the

effects of sup-18(+) overexpression on the locomotion and brood

size of rubberband Unc mutants are gene-specific: the sup-

10(n983gf) phenotype is more sensitive to increased sup-18 levels

than is that of unc-93(e1500gf) mutants.

Table 4. Overexpression of sup-18 in body-wall muscles
enhances the defects of sup-10(n983gf) but not unc-
93(e1500gf) mutants.

Genotype LR ± SEM
Brood
size

Wild-type 26.860.4 ND

lin-15; nEx[lin-15(+)#1] 26.560.9 ND

lin-15; nEx[lin-15(+)#2] 27.360.7 ND

lin-15; nEx[lin-15(+); sup-18(+)#1] 27.160.8 ND

lin-15; nEx[lin-15(+); sup-18(+)#2] 26.960.8 ND

lin-15; nEx[lin-15(+); sup-10(+); sup-18(+)#1] 24.560.8 ND

lin-15; nEx[lin-15(+); sup-10(+); sup-18(+)#2] 25.260.8 ND

sup-10(n983gf) lin-15; nEx[lin-15(+)#1] 5.760.4 7465

sup-10(n983gf) lin-15; nEx[lin-15(+)#2] 5.460.4 7564

sup-10(n983gf) lin-15; nEx[lin-15(+); sup-18(+)#1] 0.160.1 2763

sup-10(n983gf) lin-15; nEx[lin-15(+); sup-18(+)#2] 0.060.0 1763

sup-10(n983gf) lin-15; nEx[lin-15(+); sup-
10(n983gf)#1]

5.961.2 ND

sup-10(n983gf) lin-15; nEx[lin-15(+); sup-
10(n983gf)#2]

6.660.8 ND

sup-10(n983gf) lin-15; nEx[lin-15(+); sup-9(+)#1] 6.060.6 ND

sup-10(n983gf) lin-15; nEx[lin-15(+); sup-9(+)#2] 5.160.4 ND

sup-10(n983gf) lin-15; nEx[lin-15(+); unc-93(+)#1] 5.160.3 ND

sup-10(n983gf) lin-15; nEx[lin-15(+); unc-93(+)#2] 5.860.5 ND

unc-93(e1500gf); lin-15; nEx[lin-15(+)#1] 0.060.0 3562

unc-93(e1500gf); lin-15; nEx[lin-15(+)#2] 0.060.0 4362

unc-93(e1500gf); lin-15; nEx[lin-15(+); sup-18(+)#1] 0.060.0 3762

unc-93(e1500gf); lin-15; nEx[lin-15(+); sup-18(+)#2] 0.060.0 4063

sup-9(n1550gf); sup-18(n1030) 0.060.0 2461

Locomotion rate, mean for 12 animals. Brood size, mean for 10 animals. Four
extrachromosomal arrays (nEx) were generated, two containing lin-15(+) alone
and two containing both lin-15(+) and sup-18(+), and were introduced into the
different genetic backgrounds by mating to ensure consistent gene dosage
among experiments. ND, not determined. LR: locomotory rate (bodybends/
min).
doi:10.1371/journal.pgen.1004175.t004

Figure 4. Overexpression of a sup-18 transgene enhances the
rubberband Unc phenotype of sup-10(n983gf) but not unc-
93(e1500gf) mutants. Hermaphrodites were photographed at least
2 min after being placed on a fresh Petri plate to allow animals that can
move to leave tracks on the bacterial lawn. Scale bars, 100 mm.
Genotypes were as follows: (A) sup-10(n983gf). (B) sup-18(n1030); sup-
9(n1550gf). (C) sup-10(n983gf); lin-15(n765); nEx[lin-15(+)]. (D) sup-
10(n983gf); lin-15(n765); nEx[lin-15(+), Pmyo-3 sup-18(+)]. (E) unc-
93(e1500gf); lin-15(n765); nEx[lin-15(+)]. (F) unc-93(e1500gf); lin-
15(n765); nEx[lin-15(+), Pmyo-3 sup-18(+)].
doi:10.1371/journal.pgen.1004175.g004
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The sup-9(n1435) mutation specifically suppresses the
behavioral defects of sup-10(n983gf) mutants

Like sup-18 mutations, the sup-9 allele n1435 strongly suppresses

the locomotory defects of sup-10(n983gf) but not those of unc-

93(e1500gf) mutants (Table 5) [29]. By contrast, null mutations in

sup-9, such as sup-9(n1913), completely suppress the defects caused

by gf mutations in both sup-10 and unc-93 (Table 5) [30,31]. To

determine if other sup-9 alleles exhibit similar gene-specific effects,

we assayed 13 previously isolated sup-9 missense mutations

[34,35,36,39]. Four sup-9 mutations that had been isolated as

sup-10(n983gf) suppressors and nine that had been isolated as unc-

93(e1500gf) suppressors all strongly suppressed unc-93(e1500gf) and

sup-10(n983gf) defects equally well (Table 5), confirming that sup-

9(n1435) represents a rare class of sup-9 mutations.

The similarity of sup-18(lf) mutations and sup-9(n1435) in

preferentially suppressing sup-10(n983gf) defects compared to those

of unc-93(e1500gf) mutants suggests that sup-18(lf) mutations and

the sup-9(n1435) mutation might act via the same mechanism. If

so, n1435 might have no suppressive activity in the absence of sup-

18. Indeed, the locomotory rate of the sup-9(n1435); unc-

93(e1500gf) sup-18(n1030) triple mutant was similar to that of

either the sup-9(n1435); unc-93(e1500gf) or the unc-93(e1500gf) sup-

18(n1030) double mutant (Fig. 5A). This effect appears to be

specific for sup-9(n1435), as a different weak sup-9 allele, n264, was

enhanced by sup-18(n1030) (Fig. 5A). We also assayed the brood

size of unc-93(e1500gf) mutants in the presence of either or both

sup-18(n1030) and sup-9(n1435). For example, although the low

brood size of unc-93(e1500gf) mutants was restored to wild-type

levels by the null mutation sup-9(n1913) (Fig. 5B), sup-9(n1435) and

sup-18(n1030) single mutations or sup-9(n1435); sup-18(n1030)

double mutations only partially rescued the brood size of unc-

93(e1500gf) mutants and the double mutations acted similarly to

the sup-18(n1030) single mutation (Fig. 5B). As was the case for

locomotion, for brood size sup-18(n1030) enhanced the effect of

the weak loss-of-function allele, sup-9(n264) on unc-93(e1500gf)

mutants (Fig. 5B). The lack of an additive effect of sup-18(n1030)

and sup-9(n1435) in suppressing the locomotion and brood size

defects of unc-93(e1500gf) mutants suggests that sup-9(n1435) and

sup-18(n1030) mutations likely act through the same pathway.

To further examine this hypothesis, we tested for an additive

effect between sup-18(n1030)/+ and sup-9(n1435)/+ in their

suppression of the locomotory defects of sup-10(n983gf) mutants.

(A test for an additive effect of sup-18(n1030) and sup-9(n1435)

homozygous mutations would not be informative, as both

mutations fully suppress the locomotory defect of sup-10(n983gf)

mutants.) We found that sup-10(n983gf) males heterozygous for

Table 5. Suppression of sup-10(n983gf) and unc-93(e1500gf)
locomotory defects (bodybends) by sup-9 mutations.

sup-9 alleles sup-10(n983gf) unc-93(e1500gf)

Wild-type 5.160.5 0.160.1

n1913 (null) 25.860.7 26.860.8

n1435 26.460.8 0.360.1

n1016 25.960.9 25.660.8

n1025 23.660.8 26.960.4

n1472 24.560.5 22.360.9

n1557 24.860.9 28.460.8

lr35 24.960.5 26.460.7

lr45 26.560.6 23.460.8

lr100 24.360.6 24.660.7

lr129 26.060.7 23.360.5

lr142 24.160.5 25.660.4

n213 27.260.7 24.260.5

n264 22.460.6 22.360.6

n233 26.160.6 26.760.7

lr38 26.760.5 26.460.6

Each assay represents the mean 6 SEM of hermaphrodite bodybends assayed
in 1 min intervals. n = 12 for all strains.
doi:10.1371/journal.pgen.1004175.t005

Figure 5. The sup-9(n1435) and sup-18(lf) mutations act similarly
in suppressing rubberband Unc mutant phenotypes. (A) The
effects of sup-9(n1435) and sup-18(n1030) mutations on the locomotion
(body bends) of unc-93(gf) mutants are not additive. At least 12 young
hermaphrodites were assayed for each genotype. Error bars, means 6
SEMs. (B) The suppressive effects of sup-9(n1435) and sup-18(n1030) on
the brood size defects of unc-93(e1500gf) mutants are not additive.
Brood sizes of hermaphrodites were determined by picking L4
hermaphrodites to single plates, passaging them each day to a new
plate and scoring the number of progeny on each plate. At least 11
animals were assayed for each genotype. Error bars, means 6 SEMs. (C)
Body bend assays of young males. At least 15 animals were assayed for
each genotype. Error bars, means 6 SEMs.
doi:10.1371/journal.pgen.1004175.g005
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either sup-9(n1435)/+ or sup-18(n1030)/+ are partially suppressed

for the locomotory defects (Fig. 5C). The sup-9(n1435)/+; sup-

18(n1030)/+; sup-10(n983gf) male triple mutant moved only

slightly better than sup-9(n1435)/+; sup-10(n983gf) mutants

(23.760.6 vs. 21.660.9, mean 6 SEM, respectively) (Fig. 5C),

suggesting a very weak additive effect of sup-18(n1030)/+ and sup-

9(n1435)/+. [This small effect might be caused by the presence in

these animals of wild-type SUP-9 dimers at a fourth the wild-type

level; this SUP-9 would respond to sup-18(n1030)/+ effects.] To

verify the specificity of the interaction between sup-18(n1030) and

sup-9(n1435), we tested sup-9(n264). sup-9(n264)/+ is as strong as sup-

9(n1435)/+ in suppressing the locomotory defects of sup-10(n983gf)

mutants. However, unlike sup-9(n1435)/+; sup-18(n1030)/+; sup-

10(n983gf) mutants, sup-9(n264)/+; sup-18(n1030)/+; sup-10(n983gf)

mutants moved better than sup-9(n264)/+; sup-10(n983gf) mutants

(28.560.5 vs. 21.360.6 bends/minute, mean 6 SEM, respectively)

(Fig. 5C). This result is consistent with the finding that sup-18(n1030)

and sup-9(n1435) lack an obviously additive effect in suppressing the

locomotion and egg-laying defects of unc-93(e1500gf) mutants (Fig. 5A

and B) and supports our conclusion that sup-9(n1435) and sup-18(lf)

alleles act in the same pathway in affecting rubberband Unc

mutants.

The sup-9(n1435) mutation affects a conserved region in
the C-terminal domain of SUP-9

We determined the sup-9 coding sequences in sup-9(n1435)

mutants and identified a C-to-T transition within codon 292,

leading to a serine-to-phenylalanine substitution within the

predicted intracellular C-terminal domain of SUP-9 (Fig. 6A).

Although SUP-9 is 41%–47% identical in amino acid sequence

over its entire region to several TASK-family two-pore domain K+

channels [28], the C-terminal cytoplasmic domain of SUP-9 is

poorly conserved among these channels (Fig. 6A). However, the

serine affected by the n1435 mutation is located in a small

conserved stretch of amino acids with the sequence SxxSCxCY

(Fig. 6A). We named this region the SC (Serine-Cysteine-rich)-

box. The residues in the SC-box do not correspond to any

reported motifs, including phosphorylation sites, as defined by the

protein motif database PROSITE [47]. Variations of the SC-box

are found in the human TASK-1 and TASK-3 channels and in

two Drosophila two-pore domain K+ channels (Fig. 6A). We have

not found an SC Box in other human two-pore domain K+

channels (I. de la Cruz and H. R. Horvitz, unpublished

observations) or in TWK-4 (C40C9.1), a C. elegans two-pore

domain K+ channel that is 41% identical to and the most closely

related C. elegans channel to SUP-9 (Fig. 6A).

To determine if other residues in the SC-box of SUP-9 might

function like the S292F substitution, we performed an in vivo

mutagenesis study of the SC-box. We mutated residues S289,

C293, C295 and Y296 to alanine individually and compared their

effects in suppressing the egg-laying defects of the sup-10(n983gf)

and unc-93(e1500gf) sup-18(n1030) double mutants. When assayed

over a 3 hr period, both mutant strains laid fewer than three eggs,

and a sup-9(n1913) null mutation drastically increased egg laying

by both strains (Fig. 6B, C). As a control, overexpression of a sup-

9(+) cDNA driven by the myo-3 promoter (Pmyo-3 sup-9(+)) in either

sup-10(n983gf) or unc-93(e1500gf) sup-18(n1030) mutants did not

increase egg-laying in each of three independent transgenic lines.

By contrast, overexpression of a sup-9 cDNA containing the n1435

mutation (Pmyo-3 sup-9(n1435)) dominantly suppressed the egg-laying

defects of sup-10(n983gf) mutants (Fig. 6B) but not those of unc-

93(e1500gf) sup-18(n1030) animals (Fig. 6C). These results establish

an in vivo assay for identifying mutations in sup-9 that preferentially

suppress sup-10(n983gf) over unc-93(e1500gf) mutations.

A Pmyo-3 sup-9(S289A) and a Pmyo-3 sup-9(Y296A) transgene

suppressed the defects of sup-10(n983gf) mutants but not of unc-

93(e1500gf) sup-18(n1030) mutants, suggesting that the S289A and

Y296A mutations act similarly to n1435 to mediate the gene-

specific effects of sup-18(lf) mutations. By contrast, the cysteine-to-

alanine mutations at residues 293 and 295 of SUP-9 suppressed

both sup-10(n983gf) and unc-93(e1500gf) sup-18(n1030) mutants

(Fig. 6B, C). We suggest that these mutations when overexpressed

have a dominant-negative effect on the wild-type sup-9 allele.

To further understand how its C-terminal domain affects SUP-9

activity, we deleted in the sup-9 cDNA the region encoding the

SUP-9 C-terminal cytoplasmic domain. We also replaced this

region with the corresponding region of twk-4, which encodes a

two-pore domain K+ channel without an SC-box, or of TASK-3, a

mammalian homolog that contains an SC-box (Fig. 6). Deletion of

the SUP-9 C-terminal domain caused suppression of both the

sup-10(n983gf) and unc-93(e1500gf) sup-18(n1030) mutant pheno-

types, suggesting that the truncated form of SUP-9 acts as a

dominant-negative protein. Interestingly, both the sup-9::twk-4 and

sup-9::TASK-3 fusion transgenes suppressed the sup-10(n983gf) egg-

laying defect (Fig. 6B) but failed to suppress that of the unc-

93(e1500gf) sup-18(n1030) mutants (Fig. 6C), suggesting that these

fusion transgenes act similarly to sup-9(n1435) and affect rubber-

band Unc mutants in a gene-specific manner.

To identify more sup-9 mutations that act similarly to sup-

9(n1435), we performed a genetic screen for mutations that

semidominantly suppressed the sup-10(n983gf) rubberband phe-

notype (see Materials and Methods). We isolated eight mutations

of sup-9 that define seven novel alleles (n3975 (n4265), n3976,

n3977, n3935, n4259, n4262 and n4269) (Fig. 7A) and three

additional mutations (n3942, n4253, n4254) that contained the

same C-to-T transition and therefore caused the same S292F

substitution as sup-9(n1435). As heterozygotes, five of the seven

novel alleles (n3977, n3935, n4259, n4262, n4269) were stronger

suppressors of sup-10(n983gf) mutants like sup-9(n1435)/+ (,23

bends/minute), while the other two (n3975, n3976) were weaker

(Fig. 7B). These mutations affect six different regions of SUP-9

(Fig. 7A), including the first (n3975) and second (n3977)

transmembrane domains, the first pore domain (n3976), the

beginning of the C-terminal cytoplasmic domain (n3935), the

Figure 6. sup-9(n1435) is mutated in a conserved SC box at the C-terminus of two-pore domain K+ channels. (A) Top, schematic diagram
of the proposed structure of the SUP-9 channel. Cylinders represent the four presumptive transmembrane domains. Middle, alignment of the C-
terminal cytoplasmic tail of SUP-9 (amino acids 247–329) and related channels: human TASK-1 (aa 248–394) Genebank Acc#NP_002237; human
TASK-3 (aa 248–374) Genebank Acc#Q9NPC2; Drosophila predicted protein CG9637 (aa 238–398) Genebank Acc# AAF54970; Drosophila predicted
protein CG9361 (aa 249–340) Genebank Acc# AAF54374; C. elegans TWK-4 (aa 255–334) Genebank Acc#AAC32857. Residues conserved among at
least four of the channels are shaded. Box, SC box; black triangle, site of the n1435 mutation; white triangle, site of SUP-9::TWK-4 C-terminal fusion.
Bottom, alignment of SC boxes from SUP-9 and related channels. Residues conserved among SUP-9 and at least two other channels are shaded. (B, C)
Mutant animals of the indicated genotypes were assayed for egg-laying rate. Young adult hermaphrodites were allowed to lay eggs for 3 hrs on a
bacterial lawn, and eggs or larvae on the plate were counted. Independently derived transgenic lines of (B) sup-10(n983gf) lin-15 or (C) unc-
93(e1500gf) sup-18(n1030); lin-15 animals containing both a lin-15-rescuing transgene and the Pmyo-3 sup-9 derivatives are indicated. Error bars, means
6 SEMs of at least 14 animals.
doi:10.1371/journal.pgen.1004175.g006
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SC-box (n4259 and n4262), and a region C-terminal to the SC-box

(n4269)

To determine if these novel sup-9 mutations conferred resistance

to sup-18 activation or if they were simply dominant-negative lf

mutations, we tested their responsiveness to changes in sup-18

levels in a similar manner to that used for testing sup-9(n1435)

(Table 2 and Fig. 5). By comparing the locomotion of sup-9(mut)/+;

sup-18(n1030)/+; sup-10(n983gf) mutants to that of sup-18(n1030)/

+; sup-10(n983gf) mutants, we found that sup-9(n3935)/+, sup-

9(n4259)/+, sup-9(n4262)/+ and sup-9(n4269)/+ caused a weak

effect similar to that by sup-9(n1435)/+, while n3975/+, n3976/+
and n3977/+ caused a significant improvement in locomotory rate

in response to a change in sup-18 levels (Fig. 7B). This result

suggests that the channels generated by the three mutations n3975,

n3976 and n3977 have impaired ability to generate K+ currents

but retain regulation by SUP-18.

In addition to its sup-18 insensitivity, sup-9(n1435) was also a

weak suppressor of the unc-93(e1500gf) locomotory defect, while

the null mutation sup-9(n1913) completely suppressed the

unc-93(gf) defect (Tables 1 and 5). Similarly, sup-9(n4259), sup-

9(n4262) and sup-9(n4269) only weakly suppressed the locomotory

defects of unc-93(e1500gf) animals (Fig. 7C), suggesting that these

mutations belong to the class of sup-9 alleles defined by sup-

9(n1435). However, sup-9(n3935) completely suppressed the

locomotory defects of unc-93(e1500gf) animals (Fig. 7C), indicating

that sup-9(n3935) was not only insensitive to sup-18 but also

resistant to the activating effects of unc-93(e1500gf). Thus,

mutations affecting different residues of SUP-9 confer differential

channel sensitivity to its regulatory subunits.

Discussion

sup-18 encodes a transmembrane protein orthologous to
mammalian iodotyrosine deiodinase

Two-pore domain K+ channels are widely expressed and play

important roles in regulating resting membrane potentials of cells

[15,17]. However, very little is known about protein factors with

which these channels interact. We previously identified UNC-93

and SUP-10 as presumptive regulatory subunits of the SUP-9 two-

pore domain K+ channel. We now suggest that SUP-18 also

regulates the SUP-9/UNC-93/SUP-10 channel complex.

sup-18 encodes the C. elegans ortholog of mammalian iodotyr-

osine deiodinase (IYD), which belongs to the NADH oxidase/

flavin reductase superfamily [7,8]. By oxidizing NADH using

flavin mononucleotide (FMN) as a cofactor, IYD catalyzes the

recycling of iodide from monoiodotyrosine and diiodotyrosine, two

major byproducts in the synthesis of thyroid hormones [7,8]. Lack

of IYD function can lead to congenital hypothyroidism [12,13]. In

C. elegans, no SUP-18 function besides regulating the SUP-9

channel has been identified. The enzymatic activity of SUP-18

remains to be defined.

Little is known about the metabolism and function of iodide in

nematodes. The C. elegans genome contains two genes, ZK822.5

and F52H2.4, that encode homologs of the mammalian sodium/

iodide symporter, which enriches iodide in the thyroid cells by

active membrane transport [48]. The presence of both SUP-18

IYD and sodium/iodide symporter-like proteins suggests that

iodide functions biologically in C. elegans. Although iodide appears

not to be an essential trace element in the culture medium of C.

elegans [49], it is possible that residual iodide in components of that

medium can provide sufficient nutritional support for survival. C.

elegans lacks homologs of mammalian iodothyronine deiodinase

(I. de la Cruz, L. Ma and H. R. Horvitz, unpublished

observations), enzymes that remove the iodine moieties from the

precursor thyroxine (T4) and generate the more potent thyroid

hormone 3, 5, 39-triiodothyronine [50], which suggests that

thyroid hormones might not be synthesized in C. elegans.

IYDs across metazoan species share a similar enzymatic activity

in reductive deiodination of diiodotyrosine [51], and it seems likely

that SUP-18 acts similarly in C. elegans. Like mammalian IYDs,

SUP-18 contains a presumptive N-terminal transmembrane

domain that is required for full activity. Interestingly, the SUP-

18 intracellular region lacking the transmembrane domain could

still partially activate the SUP-9 channel, suggesting that

membrane association is not absolutely required for SUP-9

activation by SUP-18. Membrane association is important for

mammalian IYD enzymatic activities [5,52,53].

The presence of a transmembrane domain suggests that SUP-18

IYD might interact with other transmembrane proteins. The

genetic interactions we observe between sup-18 and the genes that

encode the SUP-9/UNC-93/SUP-10 two-pore domain K+

channel complex support this hypothesis. Based on expression

studies, we conclude that SUP-18 and SUP-10 localize to similar

subcellular structures within muscle cells, further supporting the

idea that SUP-18 and the channel complex interact physically. We

found that transgenic expression of the SUP-18 intracellular

domain could enhance the expression of the rubberband

phenotype, suggesting that plasma membrane localization is not

essential for SUP-18 function. Nonetheless, the expression of the

full-length SUP-18 was more potent than the expression of the

SUP-18 intracellular domain in rescuing the rubberband Unc

phenotypes of sup-18(lf); sup-10(n983gf) mutants, suggesting that

the presence of a transmembrane domain in SUP-18 IYD could

enhance the activity of SUP-18 by targeting SUP-18 to the plasma

membrane.

The crystal structure of mouse IYD reveals that eight residues

contact the FMN cofactor: R96, R97, S98, R100, P123, S124,

T235 and R275 [54]. Except T235, which is replaced by a serine

in SUP-18, these residues are completely conserved (Figure 1C,

yellow boxes). Furthermore, the sup-18(n1010) missense mutation

leads to an S137N substitution at the position equivalent to the

mouse S98 residue, likely disrupting the binding of FMN. This

high degree of conservation at the cofactor binding site suggests

that SUP-18 likely retains the ability to bind FMN and likely has a

catalytic activity.

Three IYD missense mutations that cause hypothyroidism

(R101W, I116T, and A220T) affect residues that are conserved in

SUP-18 [12,55] (Fig. 1C, red boxes). A fourth human mutation

replaces F105 and I106 with a leucine [8]. The phenylalanine at

position 105 is conserved in SUP-18 (Fig. 1C). The conservation of

residues associated with IYD function supports the hypothesis that

SUP-18 regulates the SUP-9 two-pore domain K+ channel

complex via an enzymatic activity. The SUP-18 substrate remains

to be elucidated.

That SUP-18 might function as a NADH oxidase/flavin

reductase raises the intriguing possibility that SUP-18 might

couple the metabolic state of muscle cells with membrane

excitability. Mammalian Kvb voltage-gated K+ channel regulatory

subunits [56], which belong to the aldo-keto reductase superfamily

[57,58], have similarly been proposed to couple metabolic state

with cell excitability based on indirect evidence. Kvb2 has an

NADP+ cofactor bound in its active site and a catalytic triad

spaced appropriately to engage in enzymatic activity [58].

Although suggestive of an enzymatic activity, no substrate has

been reported for Kvb subunits. While Kvb2 knockout mice have

seizures and reduced lifespans, mice carrying a catalytic null

mutation in Kvb2 have a wild-type phenotype, suggesting that if

an enzymatic activity for Kvb2 exists, it is functionally dispensable
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in vivo [59]. By contrast, the predicted catalytic mutation sup-

18(n1010) behaves like a null mutation in its inability to activate

the SUP-9 channel, even though the SUP-18(n1010) protein is

synthesized and localized normally to the cell surface of muscle

cells (I. de la Cruz and H. R. Horvitz, unpublished observations).

Five other sup-18 mutations affecting highly conserved residues in

the NADH oxidase/flavin reductase domain also behave like null

mutations, consistent with the hypothesis that SUP-18 enzymatic

activity is essential for its function.

sup-18(lf) mutations define a new class of gene-specific
suppressors of the rubberband Unc mutants

sup-18(lf) mutations strongly suppress sup-10(n983gf) mutants

and weakly suppress unc-93(e1500gf) mutants. Certain specific

mutations of sup-9, including n1435, n4259, n4262, and n4269, act

similarly to sup-18(lf) and are strong suppressors of sup-10(n983gf)

mutants and weak suppressors of unc-93(e1500gf) mutants.

Together these sup-9 mutations and sup-18(lf) mutations represent

a novel class of mutations that exhibit gene-specific suppression of

the rubberband Unc mutants and are distinct from another class of

gene-specific suppressors we identified previously, mutations in

three splicing factor genes that strongly suppress unc-93(e1500gf)

and sup-10(n983gf) but do not obviously suppress unc-93(n200gf) or

sup-9(n1550gf) [60–62]. The difference between sup-18(lf) and sup-

9(n1435, n4259, n4262, n4269) mutations and the splicing factor

mutations in their patterns of suppressing the rubberband Unc

mutants suggests that these two classes of suppressors function by

distinct mechanisms.

Figure 7. Characterization of novel sup-9 alleles. (A) Schematic of proposed SUP-9 functional domains and identified missense mutations. (B)
Effects of various combinations of sup-9 and sup-18 alleles on the locomotion of sup-10(n983gf) animals. (C) Effects of sup-9 alleles on the locomotion
of unc-93(e1500gf) animals.
doi:10.1371/journal.pgen.1004175.g007
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SUP-18 is an activator of the SUP-9 two-pore domain K+

channel
SUP-9 is closely related to the subfamily of two-pore domain K+

channels that include human TASK-1 and TASK-3 [28]. TASK-

1 is activated by multiple factors, including extracellular pH

[22,23,63], inhalational anesthetics such as halothane [24] and

oxygen [64]. TASK-1 is directly inhibited by sub-micromolar

levels of the cannabinoid neurotransmitter anandamide [65] and

by neuromodulators such as thyrotropin releasing hormone (TRH)

[27]. A histidine residue in the first P-domain of TASK-1

modulates its sensitivity to pH [66], while a six amino acid stretch

following its fourth transmembrane domain is required for both

halothane activation and TRH suppression [24,67]. Deletion of

the TASK intracellular C-terminal domain, which contains the

SC-box, does not change its basal activity or activation by

halothane [24,67], suggesting that the TASK-1 C-terminal

domain and probably the SC-box represent an activation region

that is required by some types of channel activator (e.g., human

IYD) but not by others (e.g., halothane and pH). It remains to be

determined whether IYD is involved in the inhibition of TASK-1

channel activity by TRH.

From our genetic analysis of the sup-9(n1435) mutation and site-

directed mutagenesis of sup-9, we have defined the SC-box, a

domain of SUP-9 required for SUP-10(n983gf)-specific activation.

The importance of the SC-box in mediating this activation is

supported by the results of a genetic screen in which we isolated

additional sup-9 mutations (Fig. 7) that act like sup-9(n1435) and

cause distinct amino acid changes in (n4259 (S292A), n4262

(S294A)) or near (n4269 (L303P)) the SC-box. Although conserved

in the human TASK-1 and TASK-3 channels (Fig. 6A), no

function has yet been assigned to the SC-box. Our analyses suggest

that the SC-box and the C-terminal domain of SUP-9 likely

mediate the functional interaction between SUP-9 and SUP-10/

SUP-18 but are dispensable for interaction with UNC-93. We

found that replacing the C-terminal domain of SUP-9 with the

corresponding region of TWK-4 (which lacks an SC-box) or of

TASK-3 (with an SC-box) makes the fusion channels behave like

SUP-9(n1435), consistent with the model that the SC-box is

required for SUP-9 activation by SUP-10(n983gf) and SUP-18

(based on the TWK-4 data) and suggests that SC-box-dependent

activation requires one or more nearby residues in the C-terminal

domain (based on the TASK-3 data). The unc-93(e1500gf)

mutation results in a glycine-to-arginine substitution at amino

acid 388 in one of the putative transmembrane domains [33],

suggesting that the UNC-93(gf) protein activates SUP-9 through

an interaction involving transmembrane domains, without a need

for the SC-box or the rest of the cytoplasmic domain.

We describe three important properties of the unusual sup-

9(n1435) mutation. First, SUP-9(n1435) channels cannot be

activated by SUP-10(n983gf). Second, SUP-9(n1435) channels

are insensitive to SUP-18 activity. Third, SUP-9(n1435) channels

can be activated by UNC-93(e1500gf). The existence of a channel

mutation that is insensitive to both SUP-18 and SUP-10(n983gf)

suggests that these two inputs act through a common pathway. A

mutant channel that can be activated by UNC-93(e1500gf) but not

by SUP-10(n983gf) suggests that there is an independent pathway

for SUP-9 activation by UNC-93.

We propose a model to explain the functional interactions

between SUP-18 and SUP-9/UNC-93/SUP-10 (Fig. 8). In this

model, SUP-10 and UNC-93 have an essential role in and are

both required for activating SUP-9 channel, since the n1550 gf

mutation in sup-9 is completely suppressed by sup-10(lf) and unc-

93(lf) mutations [38]. SUP-18 activates SUP-9 only weakly and

relies on SUP-10 for this activation (Fig. 8). SUP-10(n983gf)

enhances the activity of SUP-18 and results in over-activation of

SUP-9 by SUP-18. Our model is consistent with the genetic and

molecular evidence described in this and previous studies [28–

31,33] and should provide a framework for understanding the

interactions of SUP-18 and the SUP-9/UNC-93/SUP-10 channel

complex. Our results do not distinguish whether SUP-18 regulates

the SUP-9/UNC-93/SUP-10 complex via a direct physical

interaction or indirectly through an unknown factor or factors.

In short, we identified SUP-18 IYD as a functional regulator of

the SUP-9/UNC-93/SUP-10 two-pore domain K+ channel

complex. We also defined an evolutionarily conserved serine-

cysteine-rich domain, the SC-box, in the C-terminal region of

SUP-9 and showed that this region is required for activation of the

channel by SUP-18. Since IYD is likely to be an NADH oxidase/

flavin reductase that uses the ubiquitous energy carrier molecule

NADH as a coenzyme, our study suggests that IYD might couple

cellular metabolic state to two-pore domain K+ channel activities.

Future molecular analyses should reveal the mechanism underly-

ing the interaction between the SUP-9 two-pore domain K+

channels and SUP-18 IYD.

Materials and Methods

Strains and genetics
C. elegans strains were cultured as described [49], except that E.

coli strain HB101 was used instead of OP50 as a food source.

Strains were grown at 20uC unless otherwise noted. The following

mutations were used in this study:

LGII sup-9(n213, n233, n264 [31], n1016, n1025 [30], n1435,

n1550gf [29], lr35, lr38, lr45, lr100, lr129, lr142, n1472, n1557,

n1913 [28], n3935, n3942, n3975, n3976, n3977, n4253, n4254,

n4259, n4262, n4265, n4269 (this study)).

LGIII unc-93(e1500gf, n200gf) [31], sma-3(e491) [49], mec-

14(u55) [68], ncl-1(e1865) [69], unc-36(e251) [49]. sup-18(n463,

n527, n528, n1010, n1014, n1015, n1022, n1030, n1033, n1035,

n1036 [30], n1038, n1471, n1539, n1548, n1554, n1556, n1558 (this

study)).

LGX sup-10(n183 [31], n1008, n983gf [30], n4025, n4026 (this

study)), lin-15(n765ts) [70].

Isolation of partially suppressed unc-93(e1500gf) mutants
Since lf mutations in sup-10 completely suppress the paralysis of

unc-93(e1500gf) mutants [31], we reasoned that partial lf mutations

of sup-10 would partially suppress the unc-93(e1500gf) locomotory

phenotype. To isolate such partial lf sup-10 mutations, we

Figure 8. A model for activation of the SUP-9 channel by
multiple subunits. In this model, SUP-10 and UNC-93 act indepen-
dently of SUP-18 to activate SUP-9. In addition, SUP-10 enhances SUP-
18, which activates SUP-9 through a distinct pathway. SUP-10(n983gf)
over-enhances SUP-18, which over-activates SUP-9 and leads to
paralysis. The widths of the arrows pointing at SUP-9 are representative
of their relative strengths in sustaining gf activity, with thicker arrows
representing a larger contribution.
doi:10.1371/journal.pgen.1004175.g008
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performed an EMS F2 genetic screen for partial suppressors of the

locomotory defects of unc-93(e1500gf) mutants. From 17,500

haploid genomes screened, we isolated over 30 strong suppressors

and seven weak suppressors. We assigned two of the seven weak

suppressors, n4025 and n4026, to the sup-10 locus by complemen-

tation tests and three others to the unc-93 locus. All seven were

saved for future analyses.

Mapping and cloning of sup-18
34 Sma non-Unc and 23 Unc non-Sma progeny were isolated

from a sma-3 mec-14 ncl-1 unc-36/sup-18 parent. Scoring of the ncl-

1 and sup-18 phenotypes identified the 57 recombination events to

be distributed in the three relevant intervals as follows: sma-3 (30/

57) ncl-1 (3/57) sup-18 (24/57) unc-36. A pool of cosmids C33C3,

C08C3, C27D11, C02C2, C39F10 and C44C9 at 1 ng/mL each

and a rol-6 marker [71] at 80 ng/mL were injected into sup-

18(n1010); sup-10(n983gf) animals. Two Rol transgenic lines were

obtained, one of which generated rubberband Unc animals. The

four middle cosmids were injected separately, and C02C2 yielded

5/5 rescued lines, while transgenes containing cosmids C08C3 (0/

7), C27D11 (0/5) or C39F10 (0/9) showed no rescue.

RT-PCR was performed on cDNA from the wild-type N2

strain using the primers 59-TTGAAAACCCCTGTTAAATAC-39

and 59-CGAGTTTCTAATAAAAATAAACC-39. PCR products

were cloned into pBSKII (Stratagene), and their sequences

determined. 59 and 39 RACE were performed using the

corresponding kits (Gibco).

Molecular biology
Genomic subclones of cosmid C02C2 were generated in

pBSKII (Stratagene). The subclones, in the order shown in

Figure 1, spanned the following sequences (Genebank Ac-

c#L23649): EcoRV (9,790) - EcoRV (21,098); PstI (23,699) - PstI

(32,833); PstI (23,699) - SacI (28,185); BstBI (24,448)-SacI (28,185);

and HindIII (24,671) - HindIII (27,169).

All PCR amplifications used in plasmid constructions were

performed using Pfu polymerase, and the sequences of their

products were determined. The Pmyo-3 sup-18 vectors for ectopic

expression of wild-type or mutant sup-18 alleles were generated by

PCR amplification of the respective coding regions from sup-18

cDNAs using primers that introduced NheI and SacI sites at the 59

and 39 ends, respectively, and cloned into vector pPD95.86 (from

A. Fire). Pmyo-3 sup-18(intra) was similarly constructed, except that

the 59 primer began at codon 66 of sup-18. The gfp-tagged version

of this vector was created by PCR amplification of the gfp coding

sequence from vector pPD95.77 (from A. Fire) and subcloned into

Pmyo-3 sup-18(intra) just prior to the start codon of the sup-18

sequence.

Pmyo-3 mIYD (mouse IYD) was generated by PCR amplification of

the coding region of the mouse cDNA (Gene Bank AK002363)

with 59 and 39 primers containing NheI and EcoRV sites,

respectively, and subcloning the PCR products into pPD95.86 at

the NheI and SacI (blunted) sites. Pmyo-3 mIYD::gfp was generated by

a similar strategy using a 59 primer containing an NheI site and a 39

primer that did not include the stop codon of mIYD but instead

contained a BamHI site. The myo-3 promoter from pPD95.86 was

subcloned into pPD95.77, such that upon subcloning of the mIYD

PCR fragment into the NheI and BamHI sites of the vector the myo-

3 promoter drove expression of the mIYD gene fused in-frame at its

39 end to gfp.

The sup-18::gfp genomic fusion was constructed by introducing

SphI sites at the ends of a gfp cassette by PCR amplification of

plasmid pPD95.77 (from A. Fire) and subsequent subcloning into

the single SphI site contained within a 9.1 kb PstI genomic sup-18

rescuing fragment. The resulting fusion contained 6.5 kb of

promoter sequence, the entire sup-18 coding region with gfp

inserted between the transmembrane and NADH oxidase/flavin

reductase domains and 1.1 kb of 39 UTR and downstream

sequence.

The sup-10::gfp fusion used in colocalization studies was

constructed by subcloning a 7.3 kb MfeI genomic fragment from

cosmid C27G6 containing sup-10 into the EcoRI site of pBSKII.

A 6.4 kb Pst I fragment was subcloned from this vector into

pPD95.77, which contained 3.5 kb of promoter sequence and the

sup-10 coding region. Using PCR, we introduced a SalI site

immediately preceding the stop codon of sup-10 to create an in-

frame fusion with the gfp coding sequence.

sup-18::b-galactosidase fusions were created by PCR amplification

of 1869 bp of 59 sup-18 promoter sequence and subcloning the

product into the SphI and PstI sites of pPD34.110 (from A. Fire) to

generate Psup-18 TM-b-Gal, which contains a synthetic transmem-

brane sequence [45] followed by the b-galactosidase coding

sequence [72]. sup-18 genomic coding sequence spanning codons

1–42, 1–70 and 1–301 were PCR-amplified from the minimal

rescuing fragment with 59 and 39 primers that contained PstI and

BamHI sites, respectively, and subcloned into these sites in Psup-18

TM-b-Gal. The synthetic transmembrane domain was deleted

from these plasmids by excising the KpnI fragment containing this

domain. A signal sequence [73] was inserted into these vectors

using standard PCR techniques.

The GST::sup-18(N) and MBP::sup-18(N) fusion genes used to

generate and purify anti-SUP-18 antibodies were generated by

PCR amplification of codons 1–258 of the sup-18 cDNA and

subcloning the products into pGEX-2T (Pharmacia) and pMal-2c

(NEB) vectors.

The full-length twk-4 cDNA was cloned by RT-PCR with

primers 59-CTCTGCTAGCAATGCATCAAATTGACGGAA-

AATCTGC-39 and 59-AGAGGATCCATATAGTTCAAGATC-

CACCAGATG-39 from wild-type mixed-stage RNA. The se-

quence of the twk-4 cDNA obtained was in agreement with its

predicted sequence (GenBank Acc#AF083646). The C-terminal

cytoplasmic domain of sup-9 from the Pmyo-3 sup-9 vector (codons

257–329 of sup-9) was replaced by twk-4 codons (265–365) using

standard PCR ligation techniques to generate Pmyo-3 sup-9::twk-4.

Site-directed mutagenesis of the SC-box in the Pmyo-3 sup-9 vector

was likewise performed.

Body-bend assay
Young adults were individually picked to plates with HB101

bacteria, and body-bends were counted for one minute using a

dissecting microscope as described [74].

Antibody and immunostaining
A GST::SUP-18(N) fusion protein was expressed in E. coli and

the insoluble protein was purified by SDS-PAGE and used to

immunize rabbits. Antisera were purified by binding to the

MBP::SUP-18 protein immobilized on nitrocellulose strips and

elution with 100 mM glycine-HCl (pH 2.5). This antibody could

detect SUP-18 overexpressed in the body-wall muscles (Fig. 2H)

but failed to detect endogenous SUP-18.

For immunofluorescence experiments, worms at mixed stages

were fixed in 1% paraformaldehyde for 2 hrs at 4uC and

permeabilized as described [75]. For colocalization studies,

transgenic worms were stained with primary antibodies at 1:200

dilution and a secondary goat-anti-rabbit antibody conjugated

with Texas Red (Jackson Labs). Worms were viewed using

confocal microscopy.
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Transgenic animals
Germline transformation experiments were performed using

standard methods [71]. Transgenic strains carrying the lin-

15(n765ts) mutation contained the coinjection marker pL15EK(-

lin-15(+)) at 50 ng/mL [70], and transgenic animals were identified

by their non-Muv phenotype at 22.5uC. The dominant rol-6

plasmid [71] was used at 100 ng/ml during cosmid rescue

experiments, and transgenic animals were identified by their Rol

phenotype. The dominant myo-3::gfp fusion vector pPD93.97 (from

A. Fire) was used where indicated at 80 ng/ml, and transgenic

animals were identified by GFP fluorescence. Experimental DNA

was injected at 30–50 ng/ml.

Isolation of novel sup-9 alleles
One plausible genetic strategy for isolating sup-9 alleles similar

to sup-9(n1435) would be to perform an F2 screen for suppressors

of the sup-10(n983gf) locomotory defect and then test these

suppressors for their effects on the locomotory defect of unc-

93(e1500gf) mutants. Most sup-9 alleles isolated from such a screen

would be typical lf alleles rather than rare alleles that would result

in a SUP-9 protein specifically impaired in activation by SUP-

10(gf) and SUP-18(+). We therefore opted for an alternative

strategy based on the semidominance of the sup-9(n1435)

mutation. While sup-9 null mutations, such as n1913, recessively

suppress the locomotory defects of sup-10(n983gf) mutants, sup-

9(n1435) caused a strong semidominant suppression (Fig. 5C). As

two-pore domain K+ channels are homodimers [66,76], this

semidominance likely reflects the formation of nonfunctional

heterodimers composed of n1435 and wild-type SUP-9 proteins.

The strength of this semidominance (,23 vs. ,5 bends/minute

for sup-9(n1435)/+; sup-10(n983gf) vs. sup-10(n983gf) mutants,

respectively) formed the basis of an F1 screen for suppressors of

the sup-10(n983gf) locomotory defect.

sup-10(n983gf) L4 hermaphrodites were mutagenized with EMS,

and approximately 550,000 F1 progeny (1.16106 genomes) were

screened for improved locomotion on agar plates. From 89

candidate suppressors, 35 mutants retested in the next generation,

representing at least 31 independent isolates. To quantify the

semidominant character of these mutants (sup(new)), wild-type males

were crossed with homozygous mutant hermaphrodites to generate

sup(new)/+; sup-10(n983gf)/0 males, and their locomotory rate was

scored. Because sup-10 is on the X chromosome, this strategy

generates males hemizygous for sup-10(n983gf) while heterozygous

for autosomal mutations, providing a convenient assay of

semidominance. Four mutations completely suppressed the rubber-

band Unc phenotype of males, with locomotory rates very similar to

that of wild-type animals (,33 bends/minute). We reasoned that

these four mutants were likely lf alleles of sup-10, as such animals

would be hemizygous for sup-10. We confirmed this assignment by

determining the sequences of the sup-10 locus and found mutations

in all four strains (I. de la Cruz and H. R. Horvitz, unpublished

observations). For the remaining strong mutants, we performed

complementation tests with sup-9, sup-18 and unc-93 strains and

identified 11 semidominant alleles of sup-9 (see Results).
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