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Abstract: This study aimed to produce starch esters by roasting potato starch with apple distillery
wastewater at various temperatures and aimed to determine the effects of esterification conditions
on selected properties of the modified preparations. Apple distillery wastewater was concentrated,
mixed with starch (30 g of dry matter per 100 g of starch), dried, and roasted at temperatures of
110, 130 or 150 ◦C for 3 h. The resulting preparations were rinsed 30 times with a 60% ethanol
solution, dried, and disintegrated. After that, the following analyses were performed: content of
substituted acids (after alkaline de-esterification) with high performance liquid chromatography
(HPLC); thermal characteristics with differential scanning calorimetry (DSC); swelling power and
solubility in water at 80 ◦C; color changes with a colorimeter; rheology of the pastes based on the
plotted flow curves; and the pastes’ resistance to amyloglucosidase. Starch treatments with apple
distillery wastewater at 130 and 150 ◦C caused significant changes to its properties when compared
to the control samples of native starch and starch roasted without wastewater, including: a lower
temperature and heat of pasting, lower swelling power and solubility in water, darker color, higher
resistance to amyloglucosidase, and the formation of pastes with a lower viscosity.

Keywords: potato starch; apple distillery wastewater; esterification; roasting; properties

1. Introduction

Starch, as the main component of cereal grains and tubers, is one of the most abundantly available,
inexpensive, and biodegradable polymers, commonly used in the food, pharmaceutical, textile, biomass
energy, and chemical industries [1–3]. Furthermore, it is the most important source of metabolic energy
in the human diet [4]. From a nutritional aspect, starch can be classified into three categories based
on digestibility: rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch
(RS) [5–7]. RS is starch that is not digested in the small intestine (of healthy individuals), and might
therefore be partially fermented by the gut microflora in the large intestine [5,7–9].
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At present, different methods have been applied to prepare RS, including chemical, physical
(hydrothermal), and enzymatic modification methods [10]. Among these techniques, the most
effective way to increase the resistant starch content is through chemical modifications, such as
carboxymethylation, esterification, and phosphorylation [4,5]. Recently, research on the reaction of
starch and organic acids (citric, malic, lactic, acetic) in combination with heat-moisture treatment (HMT)
as a means of manufacturing resistant starch in high yields has been increasingly favored [5,10–12].
During these reactions, the hydroxyl group on the glucose ring in the starch chain reacts with the
organic acid in order to form a cross-linked structure with a high content of resistant starch (RS) [12].
One of the acids, which, in recent articles, has been the most popular for the esterification procedure, is
malic acid [2,4,5,7,12]. The predicted reaction of starch and malic acid is shown in Figure 1, and it is
combined with a high temperature to improve the reaction efficiency.
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Figure 1. Mechanism of starch esterification by malic acid.

However, the use of chemical components in food production raises anxiety in a growing number
of consumers. This is due to their increasing awareness of the risks and impacts such products
have on the human body. The use, for starch esterification, of organic acids that occur naturally in
plant materials may offer an alternative to its chemical modification. An example for this could be
apple distillery wastewater, generally known as stillage or slops, which is a by-product of apple
brandy production and which is generated in large quantities. It is wet (3–6% d. m.) and acidic
waste (pH 3.5–3.9), in which various organic acids (malic, tartaric, citric, succinic, lactic) have been
identified [13,14]. Along with other wastewaters from the food industry, this by-product represents
a great ecological problem [15] because of the fact that food industry wastewaters are characterized
by significant values of Biological and Chemical Oxygen Demand concentrations (BOD and COD,
respectively). Therefore, the literature has reported a wide range of technologies and techniques for the
treatment of food industry wastewaters [16]. So far, to our knowledge, no research has been published
on the application of apple distillery wastewater in the starch modification process. In the investigation,
potato starch was used; it has been classified as part of middle or high glycemic index (GI) foods, since
it contains a high content of rapidly digestible starch (RDS) [17]. Because of the abovementioned, the
aim of this study was to examine the possibility of using apple distillery wastewater in combination
with roasting to produce potato starch esters with an increased content of RS, as well as to determine
the effects of different esterification conditions on the selected properties of modified starch, which is
important for its use in the food industry.
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2. Materials and Methods

2.1. Materials

The initial study material was Superior Standard potato starch produced by PEPEES S.A. (Łomża,
Poland) in 2018 and apple distillery wastewater obtained as a by-product after the distillation of
fermented apple juice in a laboratory distillation device (ILMA, Požega, Croatia) at the Faculty of Food
Technology Osijek.

2.2. Modification Procedure

Apple distillery wastewater was concentrated (to 50 ◦Bx), mixed with potato starch (30 g of dry
matter per 100 g of starch), dried at 35 ◦C for 12 h, and then roasted at temperatures of 110, 130
or 150 ◦C for 3 h in a laboratory air dryer (Memmert, Büchenbach, Germany) in a thin layer with
occasional stirring. The resulting preparations were rinsed 30 times with a 60% ethanol solution,
dried, and disintegrated. Native starch was also roasted without apple distillery wastewater with
the application of the same roasting procedure. The modified preparations were named: R 110 ◦C, R
130 ◦C, R 150 ◦C—roasted starch without wastewater, and RW 110 ◦C, RW 130 ◦C, RW 150 ◦C—roasted
starch with wastewater.

2.3. Qualitative and Quantitative Analysis of Organic Acids by HPLC

The chromatographic analysis of organic acids was performed after refining the starch esters and
after their alkaline de-esterification, which allowed for the assumption that all free acids were removed
from the sample. Namely, a dose of starch roasted with wastewater (20 g per dry matter basis) was
transferred to a conical flask with 300 mL of distilled water. The flask was placed on a magnetic stirrer,
and the suspension was brought to the boiling point and then stirred for 10 min. After cooling, 1 L of
rectified ethanol was added to the flask to enable starch precipitation. The sample was left for 24 h, and
the excess of clear solution was decanted from above the precipitate. The refining process (dissolving
in water and precipitation with ethanol) was carried out three times. Finally, the precipitated starch
was dried in an air dryer at 35 ◦C, milled, and sieved through a 400-mm sieve.

Afterwards, alkaline de-esterification was conducted. For this purpose, 2 g of the refined starch
sample (per dry matter basis) and 100 mL of 0.5 M NaOH were mixed in a magnetic stirrer at a
temperature of 35 ◦C for 12 h. Then, 400 mL of rectified ethanol was added to the homogenous solution
to enable starch precipitation. The obtained filtrate was concentrated by evaporation on an evaporator
(BÜCHI Labortechnik AG, Flawil, Switzerland) to a volume of 10 mL. Next, a 1-mL aliquot of the
concentrated solution was filtered through a Millipore membrane filter with a mesh size of 0.45 µm and
analyzed with the technique of high-performance liquid chromatography (HPLC) (Hewlett-Packard
series 1100; Hewlett-Packard, Wilmington, DE, USA) according to the method of Hernández et al. [18].
The analysis was performed using a 0.1% buffer for elution with orthophosphoric acid, at a flow rate of
0.5 mL min−1, using a Supelcogel TM C–610H column (30 cm × 7.8 mm) with a pre-column (Supelguard
5 cm × 4.6 mm; Supelco, Inc., Bellefonte, PA, USA). The absorbance was measured at a wavelength of
210 nm with a diode array detector (DAD). Calibration curves (R2 = 0.9990) were plotted in triplicates,
using organic acid standards by Sigma-Aldrich (Poole, UK). The degree of substitution was expressed
as the percentage content of acid residues in the preparations, according to Zdybel et al. [19].

In the case of apple distillery wastewater, it was only centrifuged for the analysis, and after that,
1 mL of aliquot was passed through a 0.45 µm Millipore filter and was then used for the same HPLC
procedure. The results were expressed as the concentration in g per 100 mL of sample.

2.4. Determination of Swelling Power and Solubility in Water

A water suspension was prepared from a starch preparation that contained 1 g of starch per 100 g
of solution. The suspension was shaken at a temperature of 80 ◦C for 30 min. Afterwards, the sample
was cooled to 20 ◦C and centrifuged for 30 min using a Biofuge 28RS centrifuge (Heraeus Sepatech,
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Hanau, Germany) with an acceleration of 22,500× g. The separated supernatant was determined for
the dry matter content with the gravimetric method at 105 ◦C, and the precipitate left in the centrifuge
tubes was weighed [20].

2.5. Determination of Thermal Characteristics

Thermal properties were determined with a differential scanning calorimeter DSC 822E (Mettler
Toledo, Giessen, Germany), following the methodology provided by Gryszkin et al. [21]. Before the
measurement, the calorimeter was calibrated using a sample of indium and a sample of zinc. The
starch preparation (10 mg on a dry matter basis) was weighed into ME-51119871 medium-pressure
crucibles, and redistilled water was added at a ratio of 3:1 (water:starch). Afterwards, the crucible
was sealed and conditioned at a temperature of 25 ◦C for 30 min. The analysis was carried out in a
temperature range of 25–100 ◦C at a heating rate of 4 ◦C/min.

2.6. Determination of Flow Curves of Pastes

For the determination, the prepared suspensions contained 5 g of starch per 100 g of solution
and were then heated at a temperature of 96 ◦C for 30 min with continuous mixing. The analysis
was performed using a Haake Rheostress 6000 universal rheometer (Thermo Fisher Scientific Inc.,
Karlsruhe, Germany), according to the method of Gryszkin et al. [22]. The flow curves of pastes were
determined in a set of coaxial (Z32AL) cylinders at 50 ◦C, with a shear rate range of 1–300 s−1. The
flow curves were described by the following equations [23]:

Ostwald′s : τ = K·
.
γ

n (1)

Casson′s : τ0.5 = τ0C
0.5 + (ηC·

.
γ)

0.5 (2)

where: τ—shear stress (Pa),
.
γ—shear rate (s−1), K—consistency coefficient (Pa sn), τ0 (τ0C)—yield

stress (Pa), ηC—Casson’s plastic viscosity (Pa s), n—flow behavior index.

2.7. Determination of Resistance to Amyloglucosidase Activity

The prepared suspensions contained 0.36 g of starch per 100 g of solution. They were heated
to the boiling point with continuous mixing and then cooled to a temperature of 37 ◦C, at which
point hydrolysis with amyloglucosidase (Amigase by Genecor) (Danisco, Copenhagen, Denmark) was
conducted. Acetate buffer (pH = 4.5) was added to the prepared suspension of the starch preparation
at a ratio of 1:1. The flask was placed in a water bath with a shaker at a temperature of 37 ◦C (Memmert,
Büchenbach, Germany), and 4 mL of an enzyme solution was added (at an enzyme-to-buffer ratio of 1:4).
The concentration of the enzyme was selected so as to enable the complete saccharification of gelatinized
starch after 120 min of the process. Every hour, 1 mL of the hydrolysate was collected and mixed with
95% ethanol (20 mL) to stop enzymatic digestion. These solutions were centrifuged (MPW Instruments,
Poland) at a speed of 1825× g for 5 min. The supernatant was collected from the centrifuged sample and
mixed with the reagent GLUCOSE (containing glucose oxidase and peroxidase) from the Biosystem
company (Barcelona, Spain), and was then incubated at 20 ◦C for 15 min. Afterwards, the absorbance
was measured using a CECIL CE 2010 colorimeter (Cecil Instruments, Cambridge, UK) at a wavelength
of λ = 500 nm. The measurements were conducted against a blank sample constituted by a reagent
with an acetate buffer. The quantity of glucose was read out from a standard curve that was plotted as
above using glucose (p.a.) solutions. The degree of saccharification was computed with respect to
the theoretical quantity of glucose produced from the complete saccharification of a weighted portion
of starch. The result of the hydrolysis was considered final when three consecutive read-outs of the
absorbance did not differ from one another [23].
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2.8. Determination of the Color Difference

The color difference (darkening) was calculated from the results obtained in the CIE-Lab system
by measuring L* (whiteness/darkness), a* (redness/greenness), and b* (yellowness/ blueness). The
measurement was performed with a Chroma Meter CR-200 (Konica Minolta, Tokyo, Japan) by
using granular materials attachment. The total color change (∆E) was calculated with the following
equation [24]:

∆E =
(
∆L2 + ∆a2 + ∆b2

)0.5
(3)

where the difference of the parameters was calculated with reference to the native potato starch.

2.9. Statistical Analysis

The results obtained in the study were analyzed statistically using the software STATISTICA 13.3
(StatSoft, Inc., Tulsa, OK, USA). Based on the statistical calculations (from at least three parallel
repetitions), the Duncan’s least significant differences (LSD) test was determined for selected
relationships at p < 0.05 and standard deviations.

3. Results and Discussion

Cider is an alcoholic beverage made from apple juice, which, in addition to ethanol, contains:
unfermented sugars, glycerol, organic acids [25], and small amounts of phenolic compounds [26], fatty
acids [27], and easily volatile compounds that define the aroma of the drink [28]. The wastewater
obtained during the production of brandy is free of ethanol and volatile compounds. In the experiment
we carried out, substances in the distillery wastewater–organic acids may, as a practical matter, be
relevant as starch modifiers. In cider, malic acid is present in the greatest quantity, and other organic
acids are present in much smaller quantities, and their content depends on the type of raw material
and the method of fermentation [29].

The concentrated apple distillery wastewater (used in the experiment) contained 15.96 g/100 mL
of malic acid, 3.34 g/100 mL of lactic acid, and trace amounts of succinic, malonic, and oxalic acids
(results not presented).

The content of organic acids in fruit varies widely and depends, among other things, on the type,
variety, degree of ripeness, vegetation conditions, time, and storage conditions [30]. Most fruit is
mainly rich in malic acid, which is the predominant organic acid in apples [31] or pears [32] and which,
on average, accounts for up to about 85% of all organic acids [31].

Starch roasting with apple distillery wastewater allowed for the production of a starch ester
mainly substituted by malic acid residues and trace amounts of other acids (Figure 2). The heating at
the lowest tested temperature resulted in a negligible starch substitution (0.05 g/100 g), whereas the
roasting at a higher temperature led to a ten-fold higher degree of substitution, with a more significant
effect obtained for starch roasted at 130 ◦C (Figure 2). The impact of the roasting temperature on the
course of starch esterification with organic acids has been extensively discussed in the literature [33,34].
So far, pure acid solutions have been used for esterification, while the novelty of the present study lies
in starch modification with a natural waste material from apple brandy production.
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Figure 2. Degree of substitution determined in the modified starch preparations roasted with apple
distillery wastewater. The results are expressed as the mean ± standard deviation (SD) (n = 3). Different
letters above the bars indicate that the values are significantly different at p < 0.05. RW—roasted starch
with wastewater.

As a result of roasting, native starch undergoes thermal depolymerization and
transglycosidation [35]. Consequently, the water solubility of starch increases, and its swelling
power decreases as the process temperature increases [34,36]. An analogous tendency was observed in
the present study due to native starch (R) roasting at various temperatures (Figures 3 and 4). Starch
esterification with apple distillery wastewater resulted in values of starch solubility in water of ca. 21%
for all preparations, similar to the values obtained for native potato starch (Figure 3). On the other hand,
we determined a few-fold decrease (to a few g/g) in the swelling power of esters produced by roasting
with wastewater at 130 or 150 ◦C (Figure 4). The roasting at the lower temperature caused a smaller
loss of the swelling power, presumably due to a low degree of substitution of the modified preparation.
The esterification of starch carried out in the experiment, despite its relatively low substitution (up to
about 0.5%), caused unexpectedly large changes in the discussed starch characteristics. The effect of a
negligible (about 0.1%) natural esterification of potato starch with residual phosphoric acid on the
properties of the prepared glues is commonly known [37]. It should also be remembered that even the
smallest differences in the chemical structure (e.g., amylose content [38], degree of polymerization [39]),
physical structure (e.g., porosity of the surface of the starch granules [40], its size [41], degree of
crystallinity [42]), or the presence of other substances (e.g., protein, fat [43], this being an integral part
of the starch granules) factor significantly into starch properties [37,44]. However, the addition of
even small amounts of salts, sugars, or hydrocolloids causes significant changes in the rheological
properties of prepared starch pastes [45,46]. Shi et al. [5] concluded that starch esterification with
malic acid causes a significant decrease in both its water solubility and swelling power. Changes in
these properties are determined by the reagent type and conditions of the modification process [47–59].
In addition, starches with a low degree of substitution are usually characterized by a higher solubility
in water and a higher swelling power when compared to starch with a high substitution degree [60–65].
A decrease in the values of the discussed properties is also attributable to starch crosslinking [66],
which leads to the production of a water-insoluble preparation from starch with a high degree of
substitution [37,67–69].



Polymers 2020, 12, 1668 7 of 15
Polymers 2020, 12, x FOR PEER REVIEW 7 of 15 

 

 

Figure 3. Solubility in water determined in the native and modified starch preparations. The results 
are expressed as the mean ± SD (n = 3). Different letters above the bars indicate that the values are 
significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch with 
wastewater. 

 

Figure 4. Swelling power determined in the native modified starch preparations. The results are 
expressed as the mean ± SD (n = 3). Different letters above the bars indicate that the values are 
significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch with 
wastewater. 

The thermal characteristics of gelatinization depend on the roasting temperature of starch [70]. 
The characteristic temperature range for this process is from 60 to 70 °C, and the heat of the phase 
transition reaches approximately 17 J/g on average [71,72]. In both cases (with or without 
wastewater), the roasting of native starch caused a decrease of all gelatinization parameters, with the 
exception of starch roasted with apple distillery wastewater at 130 °C. In the case of starch roasted 
without wastewater (R), various temperatures caused negligible changes in the thermal 
characteristics of gelatinization (Table 1), which were attributable to the reduction of the initial 
gelatinization temperature and to a slight increase in the heat of the phase transition along with a 

a

b
c

d

a a a

0

5

10

15

20

25

30

35

40

Native 110 °C 130 °C 150 °C 110 °C 130 °C 150 °C

starch R RW

So
lu

bi
lit

y 
[%

]

c

f
e d d

b

a

0

5

10

15

20

25

30

35

40

45

Native 110 °C 130 °C 150 °C 110 °C 130 °C 150 °C

starch R RW

Sw
el

lin
g 

po
w

er
 [g

 w
at

er
 / 

g 
st

ar
ch

]

Figure 3. Solubility in water determined in the native and modified starch preparations. The results
are expressed as the mean ± SD (n = 3). Different letters above the bars indicate that the values
are significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch
with wastewater.
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Figure 4. Swelling power determined in the native modified starch preparations. The results
are expressed as the mean ± SD (n = 3). Different letters above the bars indicate that the values
are significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch
with wastewater.

The thermal characteristics of gelatinization depend on the roasting temperature of starch [70]. The
characteristic temperature range for this process is from 60 to 70 ◦C, and the heat of the phase transition
reaches approximately 17 J/g on average [71,72]. In both cases (with or without wastewater), the
roasting of native starch caused a decrease of all gelatinization parameters, with the exception of starch
roasted with apple distillery wastewater at 130 ◦C. In the case of starch roasted without wastewater
(R), various temperatures caused negligible changes in the thermal characteristics of gelatinization
(Table 1), which were attributable to the reduction of the initial gelatinization temperature and to a
slight increase in the heat of the phase transition along with a roasting temperature increase. A similar
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tendency was reported by Kapelko-Żeberska et al. [34] in a study on starch roasted with citric acid. In
the present study, the produced starch esters were capable of paste formation. Starch roasting with
apple distillery wastewater (RW) caused changes in the initial and final temperatures of gelatinization,
which depended on the degree of substitution (Table 1). It was noticed that the initial gelatinization
temperature decreased along with an increasing degree of esters substitution. When compared to the
roasted native starch without wastewater, the ester that was obtained by roasting starch with apple
distillery wastewater at the lowest tested temperature (RW 110 ◦C) was characterized by a higher
initial gelatinization temperature, whereas the ones obtained by roasting at the higher temperatures
were characterized by a lower initial gelatinization temperature. In turn, the ester of the starch roasted
with the apple distillery wastewater at 130 ◦C was characterized by the lowest initial gelatinization
temperature due to the highest degree of esterification. An analogous tendency was observed for the
final temperature of gelatinization.

Table 1. Parameters of the phase transition of the native and modified starch preparations determined
from thermal characteristics (DSC).

Sample Initial Temperature [◦C] End Temperature [◦C] Heat of Transition [J/g]

Native starch 56.93 ± 0.03 f 69.27 ± 0.02 c 13.26 ± 0.41 a, b

R
110 ◦C 55.61 ± 0.20 e 68.13 ± 0.39 b 12.14 ± 0.21 a

130 ◦C 54.58 ± 0.09 d 67.39 ± 0.16 a, b 12.81 ± 0.52 a, b

150 ◦C 54.29 ± 0.27 c 67.88 ± 0.52 b 13.56 ± 1.34 b

RW
110 ◦C 59.00 ± 0.10 g 70.66 ± 0.36 d 12.10 ± 0.21 a

130 ◦C 51.97 ± 0.06 a 66.84 ± 0.29 a 12.44 ± 0.55 a, b

150 ◦C 53.56 ± 0.15 b 67.52 ± 0.66 a, b 12.77 ± 0.29 a, b

The results are expressed as the mean ± standard deviation (SD) (n = 3). Values with different letters (a–f) in the
same column are significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch
with wastewater.

Considering the functionality of starch preparations, the rheological properties of pastes that are
made from them play a key role in the food production process. The obtained results are presented in
the form of flow curves (Figure 5). It is evident from the obtained results that the lowest changes were
caused by roasting at a temperature of 110 ◦C, as in the cases both with or without wastewater.
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Figure 5. Flow curves of the native and modified starch preparations. The results are expressed as the
mean (n = 3). R—roasted starch without wastewater; RW—roasted starch with wastewater.
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Table 2 provides the values of the consistency coefficient (K), this being a measure of the paste
viscosity at the initial stage of shearing [72,73], as well as the values of the yield stress (τoc) and plastic
viscosity (ηc), described with the Casson’s model. The yield stress is a measure of the maximum paste
stress at the null shear rate, whereas Casson’s plastic viscosity indicates the paste viscosity at the
final stage of shearing [21]. Among the starch pastes prepared from roasted native starch without
wastewater (R), the highest viscosity in the entire course of the flow curve was demonstrated for the one
made of native starch roasted at the lowest temperature (R 110 ◦C). The pastes made of native starch
roasted at the higher tested temperatures (R 130 ◦C or R 150 ◦C) were characterized by a significantly
lower viscosity (Figure 5). Analogous tendencies were observed for the rheological coefficients (Table 2).
Presumably, this was due to the progressing thermolysis of starch and, consequently, to the lower
viscosity of the pastes. The impact of the molecular weight of starch on the viscosity of pastes was
reported by Praznik et al. [74]. The paste made of native starch roasted with apple distillery wastewater
at the lowest analyzed temperature (RW 110 ◦C) was characterized by the highest viscosity in the whole
course of the flow curve (Figure 5). An increase in viscosity was probably due to the esterification
reaction at the relatively small thermo-acidic hydrolysis of starch. The roasting at the higher tested
temperatures (RW 130 ◦C or RW 150 ◦C) caused a drastic decrease in the paste viscosities in the entire
course of the flow curve, which could have been caused by the acidic hydrolysis and thermolysis of
starch proceeding in these conditions despite the high esterification degree. An analogous tendency
was observed for the rheological coefficients (Table 2). Due to the low viscosity of the pastes prepared
from the esters obtained at 130 or 150 ◦C, it turned out to be impossible to determine the values of
the rheological coefficients described according to Casson’s model (Table 2), whereas the value of
the flow coefficient n determined from the Ostwald de Waele model was higher than 1, which is not
typical for starch pastes. The other starch pastes made of the native and roasted native starch (R) and
of the ester produced at the lowest temperature with apple distillery wastewater exhibited properties
of shear-thinned non-Newtonian fluids (Table 2). Many literature sources claim that this rheological
character of starch pastes is typical [75–80].

Table 2. Parameters of Ostwald’s and Casson’s model describing the flow curves of the native and
modified starch preparations.

Sample Ostwald’s Model

K [Pa sn] n R2

Native starch 4.1889 ± 0.0270 e 0.6397 ± 0.0016 d 0.9835 ± 0.0012 a

R
110 ◦C 3.9073 ± 0.3026 d 0.6122 ± 0.0120 c 0.9998 ± 0.0001 d

130 ◦C 1.2867 ± 0.0350 b 0.5948 ± 0.0017 b 0.9996 ± 0.0001 c, d

150 ◦C 1.8697 ± 0.0586 c 0.5731 ± 0.0014 a 0.9993 ± 0.0001 c, d

RW
110 ◦C 3.8730 ± 0.0324 d 0.6351 ± 0.0007 d 0.9987 ± 0.0001 c

130 ◦C 0.0051 ± 0.0003 a 1.1770 ± 0.0030 e 0.9974 ± 0.0005 b

150 ◦C 0.0031 ± 0.0000 a 1.3170 ± 0.0000 f 0.9997 ± 0.0000 d

Sample Casson’s Model

τ0C [Pa] ηC [Pa s] R2

Native starch 11.0167 ± 0.1815 c 0.2190 ± 0.0041 c 0.9872 ± 0.0049 a

R
110 ◦C 10.4920 ± 0.8342 c 0.2254 ± 0.0072 c 0.9986 ± 0.0005 b

130 ◦C 3.5380 ± 0.1047 a 0.0640 ± 0.0011 a 0.9992 ± 0.0001 b

150 ◦C 5.1363 ± 0.1609 b 0.0777 ± 0.0019 b 0.9993 ± 0.0001 b

RW
110 ◦C 10.7533 ± 0.1102 c 0.2634 ± 0.0029 d 0.9998 ± 0.0000 b

130 ◦C n. d. n. d. n. d.
150 ◦C n. d. n. d. n. d.

n. d.—not detected; The results are expressed as the mean ± SD (n = 3). Values with different letters (a–f) in the
same column are significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch
with wastewater.
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The resistance of roasted native starch to the activity of amyloglucosidase increased significantly in
comparison to the native potato starch, with a more significant impact at higher roasting temperatures
(Figure 6), which was due to the repolymerization occurring during starch roasting [81]. The esters
produced by native starch roasting with apple distillery wastewater revealed a significantly higher
resistance when compared to the samples roasted without wastewater. The resistance was observed
as increasing along with the increasing temperature of roasting, whereas the starch roasted at the
highest temperature was characterized by an enzymatic resistance of approximately 36%. A pea
starch ester with malic acid, which has a significantly higher degree of substitution (DS = 0.146, which
corresponds to ca. 10 g of acid residues/100 g preparation) than the esters produced in this study,
contains about 41% of RS [5]. The resistance of RS4 type starch depends mainly on the type of chemical
modification and the substitution degree [81]. Starch resistance increases along with the increase in the
substitution degree [82]. However, like in the case of the properties described earlier, the resistance of
the produced esters was mostly determined by the roasting temperature. A similar conclusion was
drawn by Kapelko-Żeberska [34] in their study on the production of resistant starch by roasting potato
starch with citric acid. The resistance of acetylated retrograded starch preparations to amylolysis
is determined not only by the total degree of substitution but also by the substitution at the carbon
atoms 2 and 3 neighboring the 1,4-glycosidic bond that is being hydrolyzed [83]. From the perspective
of food technology, the resistant starch preparations analyzed in this study were not produced via
chemical modification because they were obtained from natural raw materials without a chemical
reagent. For this reason, they do not have to be treated as food additives when considering their
potential industrial application.
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Figure 6. Resistance to amyloglucosidase determined in the native and modified starch preparations.
The results are expressed as the mean ± SD (n = 3). Different letters above the bars indicate that the
values are significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch
with wastewater.

According to the results obtained for the color, it is evident that all the measured parameters
changed significantly with the increase of the roasting temperature (Table 3). Higher temperatures
caused a darkening of the samples, which could be concluded from the decrease in the L* values with
an increasing temperature. Compared to the native starch and starch roasted without wastewater, the
changes in the color of the starch roasted with apple distillery wastewater were significantly higher.
This was probably due to the caramelization reaction that proceeded with high intensity in the acidic
medium [84]. It is important to emphasize that, in the samples roasted with apple distillery wastewater,
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the b* values (yellowness) were higher and the a* values were in positive, which indicates the presence
of a red hue in these starches. The roasting of starch without wastewater caused a negligible total
color change (∆E) in comparison with native potato starch, while these changes were significantly
higher in the starch roasted with apple distillery wastewater. The higher roasting temperatures led to
significant changes in the color of the produced preparations, with the most significant effect occurring
at a temperature of 130 ◦C.

Table 3. Color differences determined in the modified starch preparations.

Sample L* a* b* ∆E

Native starch 97.13 ± 0.02 g
−0.24 ± 0.04 c 1.58 ± 0.07 a -

R
110 ◦C 96.13 ± 0.02 f

−0.27 ± 0.03 b, c 1.85 ± 0.03 b 1.04 ± 0.01 a

130 ◦C 96.09 ± 0.02 e
−0.32 ± 0.04 b 2.00 ± 0.05 c 1.13 ± 0.03 b

150 ◦C 95.68 ± 0.02 d −0.43 ± 0.03 a 3.60 ± 0.04 d 2.49 ± 0.02 c

RW
110 ◦C 88.58 ± 0.03 c 1.75 ± 0.05 d 9.31 ± 0.04 e 11.70 ± 0.00 d

130 ◦C 72.33 ± 0.04 a 5.02 ± 0.05 f 15.59 ± 0.04 g 28.97 ± 0.06 f

150 ◦C 74.95 ± 0.01 b 4.55 ± 0.02 e 15.16 ± 0.03 f 26.44 ± 0.01 e

The results are expressed as the mean ± SD (n = 3). Values with different letters (a–g) in the same column are
significantly different at p < 0.05. R—roasted starch without wastewater; RW—roasted starch with wastewater.

4. Conclusions

The study results lead to the conclusion that it is feasible to produce starch esters via the roasting
of native potato starch with a natural waste product—in this case, apple distillery wastewater—and
that the properties of the modified preparations predispose them for use in the food industry, as well
as in pharmacy or medicine. Namely, it is known that esterified starches have various applications,
such as being used as thickeners, additives, stabilizers, emulsifiers, flavoring ingredients, or as fillers,
coatings, binders, etc. The preparation obtained by roasting at 110 ◦C, characterized by an approx. 30%
resistance to amyloglucosidase activity and the formation of pastes with a relatively high viscosity,
could be used as a novel type of resistant starch with texture-forming properties in the production of
new food products. Finally, it is important to emphasize that the obtained results represent a significant
scientific contribution, since no research to date has been published on apple distillery wastewater
application in starch modification processes. The production of resistant starch (RS) using natural raw
materials combined with physical modifications could have a positive effect on the health-promoting
value of food products and, in doing so, would satisfy consumer expectations. This research is part of
one project: in the future we plan to investigate other similar by-products from the food industry for
potential applications in the modification procedures of different starches. Furthermore, many other
conditions and analyses will be included in order to obtain a better insight into the properties and
potential applications of obtained starches.
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