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Abstract

Stem cell therapies have been explored as a new avenue for the treatment of neurologic disease 

and damage within the CNS in part due to their native ability to mimic repair mechanisms in the 

brain. Mesenchymal stem cells have been of particular clinical interest due to their ability to 

release beneficial neurotrophic factors and their ability to foster a neuroprotective 

microenviroment. While early stem cell transplantation therapies have been fraught with technical 

and political concerns as well as limited clinical benefits, mesenchymal stem cell therapies have 

been shown to be clinically beneficial and derivable from nonembryonic, adult sources. The focus 

of this review will be on emerging and extant stem cell therapies for juvenile and adult-onset 

Huntington’s disease.
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Significant advances in stem cell therapies

The clinical use of stem cell therapies has gained approval for a variety of injuries and 

diseases of the CNS. While much work is still needed before the widespread use of stem 

cells in a clinical setting can be realized, this mode of therapy may be advantageous to treat 

neurological disorders than many others because of the ability of stem cells to accurately 
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mimic the normal cell repair and development process in the brain [1]. Although cell 

transplantation therapies have been fraught with technical and political problems, there are 

signs that this approach has considerable potential. Early work with Parkinson’s disease, 

where the first clinical trials were performed in the mid-1980s and a total of 300—400 

patients have been treated subsequently with fetal cell transplantation and in the open label 

studies, has yielded evidence of some functional improvement [for review [2,3]] as 

measured by withdrawal of anti-parkinsonian medications. Patients with Huntington’s 

disease (HD) have received clinical benefits from implants of fetal/embryonic stem cells as 

well, however, these effects have been shown to be temporal [4–6].

Another type of cells, mesenchymal stem cells (MSCs), have emerged for clinical 

transplantation studies due to their capacity to release neurotrophic factors and their ability 

to create a neuroprotective microenvironment through the release of specific ILs and 

cytokines. Clinical trials using MSCs in the CNS are now also underway, and are focused on 

the safety of the cells. MSCs have been autologously transplanted into the subventricular 

zone in patients with advanced Parkinson’s disease [7], intravenously in patients that had 

suffered a stroke [8,9], and umbilical cord MSCs have been administered intravenously in 

children with cerebral palsy [10] with no adverse side effects from the cells and observed 

clinical efficacy as measured by improvements in neurological domains and fractional 

anisotropy values in brain MRI-DTI.

Stem cell clinical trials for stroke, spinal cord injury and amyotrophic lateral sclerosis are 

already underway while additional studies utilizing adult stem cells are nearing clinical trials 

for Parkinson’s and Alzheimer’s and HD.

The goal of stem cell transplantation should focus on providing therapeutic benefit through 

two main mechanisms. Successful cell transplantation should be able to work synergistically 

with the endogenous microenvironment to upregulate intrinsic cell proliferation or 

neuroprotection via trophic factor secretion and immune modulation, potentially enhancing 

the overall regenerative capacity of the transplanted tissue [11], or by being capable of 

integrating into the endogenous host network and replacing or repairing the lost neurons. 

This review will focus on the potential of adult stem cells to provide neuroprotection and 

immune modulation in adult-onset and juvenile HD.

Huntington’s disease

HD is an autosomal-dominant disorder caused by an expanded and unstable CAG 

trinucleotide repeat that causes a progressive degeneration of neurons, primarily in the 

putamen, caudate nucleus and cerebral cortex [12]. In the USA, there is estimated to be 

approximately 30,000 individuals with HD while the Europe Union has a slightly higher 

prevalence of individuals with symptomatic HD with an estimated 45,000 patients [13]. 

Juvenile HD (JHD) is defined by disease onset before the age of 20 years and occurs in less 

than 10% of all HD cases [14]; however, JHD may be further subdivided into patients that 

have disease onset prior to the age of 10 years or between 10 and 20 years of age as they 

present with different clinical characteristics [15].
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HD occurs when the gene that codes for the htt protein, located on the short arm of 

chromosome 4, shows an increased number of CAG repeats [16]. Typically, greater than 38 

CAG repeats correlate with an onset of the illness in adulthood. JHD is typically transmitted 

from the paternal allele and usually have more than 60 CAG repeats [14], although there is a 

reported case of a JHD patient with 250 CAG repeats [17]. Disease onset prior to the age of 

20 years is clearly dominated by paternal transmission (about 3:1 paternal–maternal), and 

paternal transmission is, to date, solely responsible for disease onset prior to the age of 10 

years [18].

Adult HD is dominated by chorea and other involuntary movements in the initial and middle 

stages of the disease, but it is becoming clearer that HD patients have cognitive and 

emotional deficits including slowing of psychomotor speed, impairment of attention and 

memory as well as executive and visuospatial functions that eventually degrade into 

dementia along with depression and apathy, although the emotional features are more 

variable than the motor or cognitive features [19,20]. Typically, HD eventually culminates in 

death around 15–20 years after the onset of motor symptoms. The disease progression is 

more rapid in children than in adults and has been described in three phases: initial phase of 

behavioural disorder, learning difficulty, gait disturbance and mild chorea; a florid phase 

with signs of mental deterioration, rigidity, speech disturbance and seizures; and a terminal 

phase of bed confinement, hypotonia and increasing seizures [15]. JHD patients typically 

have less chorea than adult onset HD with rigidity reported as the dominant clinical 

manifestation [14].

Historically, the neuroanatomical changes in the striatum have been the focus of 

neuropathological and neuroimaging studies, but recently, the presence of abnormalities 

throughout the cerebellum, specifically in JHD [21], including cortical thinning and 

decreased white matter volumes, in the prefrontal cortex, have gained significant interest 

[20,22]. Striatal atrophy as well as white matter loss, as measured by MRI studies, can detect 

HD-like degeneration 15 years prior to the onset of motor symptoms [23,24], suggesting that 

once the clinical onset of motor symptoms appear, significant striatal loss has already 

occurred.

Although HD and JHD have a single genetic cause, HD as a whole has a very complex 

pathology, with detrimental effects on a wide variety of cellular processes [25]. It has 

recently been uncovered that while conditional knockout of mutant huntingtin in the striatum 

of transgenic mice leads to partial motor and psychiatric recovery, silencing of mutant 

huntingtin in both the cortex and striatum is needed to ameliorate HD-like symptoms [26]. 

This is suggestive that symptomology is due to widespread dysfunction of the brain and even 

possibly in other organs as well [27–30].

Currently, only symptomatic treatments are available. Pharmacotherapy is difficult in HD 

due to the complexity and amount of damage to the brain. The symptomatology of JHD is 

complex and causes suffering in all domains of life and the pharmacological treatment is 

difficult as there are no studies to guide the current trial-and-error approach to treating these 

patients [21]. Clinical outlooks for HD patients and the care given to their family members 

have improved due to the increased recognition of the disorder, better access to genetic 
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counseling, and more availability to specialized care programs that utilize behavioral, 

neurological and psychiatric rehabilitation programs [13]. Treatment for patients suffering 

from HD generally comprises neuroleptics, anticonvulsants [31] or tetra-benazine. The latter 

of which involves a complicated prescribing process, specialty pharmacies for delivering the 

drug, strictly managed doses and annual costs exceeding US$70,000 which makes it 

prohibitively expensive for many patients [32].

Thus, due to the time and nature in diagnosing HD following neuronal loss and motor 

deficits, restorative therapies should focus on creating a neuroprotective environment to slow 

the loss of endogenous neurons as well as replacing lost neurons through either stimulating 

endogenous neurogenesis or transplanting cells capable of differentiating, integrating and 

replacing lost cells.

MSCs for HD

At the time of manuscript preparation, 16 published articles have implicated improvement of 

either behavioral or neuropathological deficits in rodent models of HD following treatment 

with MSCs (Table 1). These studies have used MSCs from multiple sources including 

autologous transplantation of unpurified whole bone marrow from rats [33], purified rat 

MSCs [34–38], mouse bone marrow-derived MSCs [39,40], mouse umbilical cord-derived 

MSCs [41], human adipose derived MSCs [42–44] and human bone marrow MSCs [45–47].

These studies have demonstrated improvement in motor function [34–36,39–40,42–46,48], 

cognition [33,40,48], anxiety-like behaviors [42] and the ability to extend the lifespan of 

these animals [44]. Decreases in the striatal lesion size, less neuronal and medium spiny 

neuron loss, stimulation of endogenous neurogenesis and reduction of huntingtin 

aggregation has also been observed following transplantation of MSC [34,37,39–41,43–47].

Several groups have reported that MSCs have the ability to differentiate into neuronal 

lineages in vitro [49–52] and following transplantation into the brain [53–58]. However, the 

stance that MSCs have the ability to transdifferentiate into mature neuronal phenotypes in 
vitro or in vivo remains controversial [59] and none of the aforementioned studies observed 

neuronal differentiation of the transplanted MSC.

There are several possible mechanisms that MSCs may provide in lieu of neuronal 

differentiation such as trophic support and immunomodulation. These hypotheses are 

supported from studies of other neurological disorders (Huang et al., [60]; Lin et al., [61]; 

Han et al., [62] Uccelli et al. [63]) and were observed in many HD studies following MSC 

transplantation (Table 1).

One of the most common mechanism of action postulated following MSC transplantation in 

HD is that the cells are capable of providing trophic support, specifically BDNF [33–35,37–

41,43–44,46,48]. As a reduction in BDNF levels has been noted in HD patients [64,65] and 

BDNF targeted therapies have shown to ameliorate partial disease pathology [66–93] 

upregulating BDNF in the HD brain has become a lead therapeutic candidate.
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As trophic support is speculated to be the main contributor to behavioral and histological 

recovery following transplantation of MSC, the potential of MSCs as a delivery vehicle for 

gene therapy has been examined [94–97]. Due to the nature in which MSC can be 

engineered in vitro, a study tested MSCs that overproduced either BDNF, nerve growth 

factor or a combination of both [39]. YAC128 transgenic mice that received transplantations 

of the MSC to overexpress BDNF displayed a reduction in motor deficits and had 

significantly more NeuN- and Darpp32-positive cells (mature and medium spiny neurons, 

respectively) in the striatum than all other YAC128 groups [39]. The results from this study, 

along with the previously discussed literature of successful pre-clinical trials has led to 

translational studies using engineered human MSC in the preparation of a clinical trial [98]. 

However, many of the successful pre-clinical studies only examine the efficacy of the MSC 

treatment for a period of days to weeks (refer to Table 1), and the long-term efficacy of this 

strategy needs to be examined.

Clinical cell transplantation in HD

As mentioned previously, several clinical studies have been conducted to assess the viability 

of fetal cells as a therapeutic treatment for HD. However, there have been varying results for 

the long-term viability of fetal cells for HD (Table 2). Bachloud-Levi, et al., found that three 

out of five patients transplanted with ganglionic eminence cells showed metabolically active 

graft cells 10 years following transplantation [99] and these results correlated with a slowing 

of the progressive nature of the disease, with even some functional recovery observed at the 

early time points; however, in another study the transplanted ganglionic eminence underwent 

a similar neurodegeneration associated with HD [5], likely due to accumulation of mutant 

huntingtin in the neuronal graft [100,101]. It has since been postulated that mutant 

huntingtin is transneuronally propagated along neuronal networks, likely contributing to the 

pathophysiology of HD [102]. This theory has been reported in other disease models and it 

is thought that the mutant protein is transferred from the host into the transplanted fetal 

neurons via retrograde transfer [103]. Even in studies where the transplanted cells were still 

viable, their effect on behavioral recovery began to diminish between 2 and 4 years 

following the treatment [99,101,104]. While ganglionic eminence transplantations into HD 

patients have shown considerable promise as a treatment for HD there are many problems 

with the continued use of fetal cells for transplantation therapies such as ethical, logistical 

and availability issues [105–107].

Embryonic cell transplantation in HD

Preclinical research using ganglionic eminence transplanted into rodent models of HD has 

yielded similar results in that the cells can differentiate into mature neurons and astrocytes 

[119], rescue the behavioral deficits [120], but that these effects are not long lasting [121]. It 

has been observed that HD animals receiving pluripotent embryonic stem cells (ESCs) show 

transient recovery of motor deficits, but this effect rarely extends beyond 8 weeks [121]. 

Similar to what is observed in animals receiving transplants of fetal tissue, ESCs are either 

rejected by the host immune system or overpro-liferate, disrupting the host cytoarchitechure 

and causing teratoma formation [122]. This short-term effect of the cells is likely due to a 

failure of the graft to successfully rebuild or replace the lost cellular connections, or due to 
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the grafts being systematically rejected by the host immune system. Induced pluripotent 

stem cells have recently been transplanted into a 3-nitropropionic acid (3-NP) toxic lesion 

models of HD [123] and in the transgenic YAC128 [124] with both studies reporting 

significant behavioral improvement and that the transplanted cells were capable of 

differentiating into neuronal phenotypes. However, more work is still needed to characterize 

the safety and immunological profile of these cells following transplantation before they 

could be considered for clinical use.

Neuronal cell transplantation in HD

Another stem cell type that has been shown to be a potential avenue for cell replacement 

therapy in HD is neuronal stem cells (NSCs). Immortalized human [125], mouse [126] and 

rat [127] embryonic NSCs have all shown considerable promise when transplanted into 

various models of HD. In both transgenic mice and toxic lesion rat models of HD, NSCs 

have been shown to survive up to 8 weeks following transplantation, differentiate into 

mature neurons and astrocytes and show behavioral recovery, specifically in apomorphine-

induced rotational tests [121,127–130], beam walking [126] and in the amount of time on 

the rotarod [120]. However, Johann et al., found that NSCs were rapidly rejected after 28 

days in the R6/2 and after 14 days in a quinolinic acid (QA) mouse model of HD [131]. A 

large inflammatory immune response was observed following NSCs transplantation in a 

transgenic rat model of HD 40 weeks following transplantation [36], suggesting that these 

cells elicit an extended immune response. While it is possible to globally suppress the 

immune system with cyclosporine or other immune-suppressors to enhance the graft 

survival, there are several side effects associated with long-term immunosuppressive 

treatments [132]. For pluripotent or adult NSCs to be a viable therapeutic option for HD, 

local immune suppression or genetically engineering the cells to avoid rejection from the 

host is necessary along with the ability to direct the cells into the correct lineage following 

transplantation (Table 3).

While transplantation of embryonic, neural and mesenchymal stem cells have shown to be 

effective both clinically and experimentally, they are not effective cures for the natural 

progression of HD due to the gene mutation and the ability of the mutant protein to 

propagate into the transplanted cells, specifically neuronal linages and are thought to only 

delay the onset or change the trajectory of the disease.

Ongoing challenges

An ongoing challenge to the clinical development of stem cell therapies for HD and JHD is 

navigating the immune response to the transplant. Although the brain has often been 

considered an ‘immune privileged’ organ, there are several reported cases suggesting a 

strong immune response with the brain that can lead to the rejection of the graft and the 

subsequent halting of beneficial effects [138] While it has been suggested in previous work 

that MSC provide immune modulation in the area around the transplant, many of these 

studies use an allotransplantation paradigm, thus reducing the extent of neuroinflammation 

[139]. While this can be addressed by using species-specific cells to avoid rejection of the 

xenograft, this strategy includes several caveats that impede the clinical relevancy of these 
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studies. It is known that mouse stem cells express many different surface expression markers 

than human cells [140], and behave differently following in vitro expansion protocols [141–

143].

The challenge of the immune response following transplantation into the brain raises an 

interesting dichotomy when developing stem cell therapies for clinical trials. While the ideal 

candidate for preclinical studies would be the type of cell planned to be used in a theoretical 

trial, the immune response following xenotransplantation may potentially mask some of the 

beneficial effects. On the contrary, conducting studies using an allotransplantation paradigm 

to avoid the immune response to the xenograft may lead to false discovery as cells isolated 

from mice or rats may be inherently different than human cells.

A second challenge that exists with translating successful stem cell therapies for HD or any 

other neurodegenerative disease is the accuracy of the animal model in recapitulating the 

human disease phenotypes. HD is a unique disease in that it is caused by a single gene 

mutation that can be mimicked in transgenic animals (Table 4). Transgenic mouse models 

can be useful tools for the study of biochemical, morphological and functional changes 

associated with the mutant htt [16]. The R6/2, with the N-terminal portion of human htt, 

containing a highly expanded glutamine repeat (145—155; [144], the yeast artificial 

chromosome (YAC) with the full-length human mutant htt gene carrying 128 CAG repeats 

[16,25] and knock-in (KI) mice, typically with 92–140 CAG repeats generated by the 

insertion in the endogenous htt gene, mimic the disease manifestation and show several 

phenotypical alterations, resembling those observed in HD patients [16]. While these mouse 

models capture some of the phenotypes of HD, none of the mouse models recapitulates the 

substantial striatal neuronal cell loss that is characteristic in HD patients, thereby limiting 

the effectiveness of translational research [145]. Specifically in the human disease, 

approximately 50% atrophy of the caudate and putamen is observed prior to the onset of 

clinically classified motor dysfunction [146,147]. 3-NP crosses the blood–brain–barrier and 

can be administered systematically to induce cell death in the brain, through excitatory 

mechanisms closely correlated with HD [148] and create the neuropathology and behavioral 

abnormalities of HD [149]. QA administration recapitulates many histopathological and 

neurochemical features of HD neuropathy and also causes memory deficits, leading many 

researchers to use QA models to explore striatal neurodegeneration as well as to evaluate 

neuroprotective strategies against HD [48,150–152]. The 3-NP and QA models of HD are 

useful tools for studying the motor dysfunction associated with clinical or late stage HD, but 

may not be appropriate to study the early cognitive deficits and presymptomatic pathology 

associated with HD patients. The number of transgenic rat models recapitulating key 

pathological hallmarks of HD is still limited [153–156] and these models have many of the 

same limitations of the transgenic mice.

While these models can provide a great deal of information on the behavioral-, histological- 

and molecular-level abnormalities associated with HD, no singular model can fully capture 

the diverse phenotypes associated with the disease. Many of the transgenic models currently 

available are unable to recapitulate both behavioral deficits and the associated 

neuropathology. While it is possible to study the progressive behavioral deficits in several of 

the transgenic mouse models, typically these models do not display neuronal loss that 
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correlates to the human condition. Alternatively, the animal models that provide 

reproducible neuronal cell loss and striatal atrophy are either toxic lesion models not 

carrying the mutant gene or transgenic animals that have late disease onset (greater than 12 

months) and display subtle motor deficits. The usefulness of rodent models is also limited by 

other translational constraints. Namely, the brains of rodents differ significantly from 

humans in both their small size and their neuroanatomical organization [167]. The second 

major concern using a transgenic animal model to study a prodromal disease that extends 

over a long period of time is that the animals have a significantly shorter lifespan [167]. Due 

to these specific shortfalls, large animal models of HD have been created and are now being 

studied. A transgenic minipig carrying 105 CAG repeats displays some neuropathology 

associated with HD, specifically apoptotic neurons in the striatum [164]. However, 

behavioral testing for minipigs has not been well established. Transgenic sheep have also 

been created carrying 73 CAG repeats. These animals showed reduction of GABA A 

receptors and expression of medium spiny neuron marker DARPP-32 in the striatum but 

behavior deficits have not been reported and are not well established in ovine models [165]. 

The use of large animals raises housing issues and a limited number of labs are capable of 

performing studies on sheep or minipigs, but they do present relevant large animal models 

for studying distribution and pharmacokinetics of therapeutic modalities.

Transgenic nonhuman primates have also been created by microinjection of a lentivirus 

carrying the human exon 1 fragment with 84 CAG repeats [166]. These nonhuman primates 

have shown behavioral deficits similar to the human condition such as chorea and dystonia 

and evidence of widespread mutant htt inclusions upon histological analysis. Furthermore, 

nonhuman primates have established cognitive and motor tests, albeit these have not been 

optimized for HD. However, the availability of these animals is at a premium and would 

prove to be cost prohibitive for most studies.

While HD is advanced in terms of creating rodent and large-scale models that recapitulate 

the genetic mutation known to cause the disease, the models need to be refined to better 

mimic the cognitive, motor and emotional phenotypes along with the associated 

neuropathology. As more therapies near clinical trials for HD, the need for animal models 

that more accurately predict clinical efficacy in humans is needed. While the initial costs of 

nonhuman primate studies may be prohibitive, they may prove more valuable for predicting 

promising therapeutics to take forward to clinical trials.

Unmet needs

Translational research for HD could benefit by having standardized tests and endpoints, 

agreed upon by the HD research community, for the different animal models on what would 

constitute a promising therapeutic study. While several behavioral tests, such as the rotarod, 

are generally accepted as a reliable measure of motor dysfunction in HD, other tests such as 

the limb clasping response are vague in their external validity to HD. Other histological and 

molecular analyses also differ between various animal models and the relative effect size 

observed is often difficult to extrapolate to the human condition. The rate of disease 

progression also plays a large role to the extent in which the respective animal model can be 

used to test therapeutic products. For example, many studies utilize the R6/2 mouse model to 
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characterize behavioral deficits and the ability of a target therapy or compound to extend the 

lifespan of these animals; however it is widely accepted that this mouse recapitulates JHD 

and as such, therapies aimed at preventing neuronal loss would be unsuccessful due to the 

lack of neuropathology in this model. Conversely, therapies aimed at the metabolic 

dysfunction or at extending the lifespan of the mice might be unsuccessful in either the 

YAC128 or bacteria artificial chromosome HD mouse models as they exhibit weight gain 

uncharacteristic of the human condition and have a normal lifespan when compared with 

nongene carrying littermates.

As mentioned above, many genetic large animal models of HD are being developed. These 

new animal models should create an avenue for large animal safety and toxicology studies. 

The rodent brain lacks some of the major neuroanatomical characteristics relevant to the 

human HD brain; specifically mice and rats do not have separate caudate and putamen or the 

dark pigment, neuromelanin, in the substantia nigra [167]. Mice also have smooth 

(lisencephalic) cortices whereas the human cortex has convoluted (gyrencephalic) anatomy 

[167], which contributes to targeting difficulties if the planned therapeutic involving 

intracranial transplantation. These issues indicate a need to conduct large animal safety 

studies to accurately assess the delivery of the stem cells and to perform long-term 

toxicology studies.

Conclusion

In conclusion, stem cell therapies, particularly engineered MSC transplantation, holds great 

promise to slow the progression of HD. While many advances are being made in the field of 

stem cell research, the strong clinical safety profile of MSC make them a strong candidate to 

move forward with clinical trials for this devastating disease.

Future perspective

With the initiation of several clinical trials for the use of MSC in the CNS, the future of this 

therapy will focus on the clinical follow-up of these patients to demonstrate the safety and 

feasibility of such a trial. If these cells follow the same safety profile that they have 

demonstrated preclinically, the initiation of Phase II and III trials will hopefully be underway 

with larger cohorts of patients to test the efficacy of these treatments. It is likely that 

following the initial trials of MSC treatments that the preclinical focus will be on the 

development and optimization to improve the efficacy of these cells. The ease in which MSC 

can be engineered will likely shape the transplantation field in the next 5–10 years. The 

ability for MSCs to act as a biological delivery system will enable researchers to test 

different therapeutic targets for gene delivery using a reliable delivery platform. Several 

clinical trials have initiated testing the potential safety of adult stem cells in the CNS.

Conversely, the sustained engraftment of MSCs may be a potential obstacle in development 

of longterm cellular therapy. Allogeneic MSC engraftments in macaque monkeys have been 

shown to have varying success as a result of immunogenicity. Special care must be taken 

into account for future MSC engraftment studies in this regard. Transient engraftment of 
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MSCs may prove to be a potential boon rather than a limitation insofar as a potential 

safeguard from a prolonged immune response [168–170].

As adult and juvenile HD have subtle but significant differences in disease progression and 

symptoms, it is important to consider these when developing a stem cell therapy. This review 

has focused mainly on the concept of neuroprotection in adult HD with the use of 

genetically engineered MSC, but in specific cases of juvenile HD, where the disease 

progression is too rapid; there may be too widespread neuronal loss for neuroprotection to 

be effective. It is likely that a polytherapy or multiple types of cell transplantation would be 

needed to address the multifaceted nature of the disease.

The company Brain-Storm Cell Therapeutics, Inc., based at the Hadassah University 

Medical Center in Jerusalem, reported in early 2015 that it treated the first patients with 

amyotrophic lateral sclerosis with a modified stem cell (NurOwn) isolated from the bone 

marrow and enhanced to resemble glial-derived neurotrophic factor astrocyte-like cells by 

exposure to specific growth factors [171].

In December 2014, Athersys concluded patient enrolment of a Phase IIa clinical study for 

ischemic stroke patients treated with an MSC-like stem cell therapy referred to as 

MultiStem. This stem cell trial has the potential to substantially improve neurological and 

functional recovery following ischemic stroke by providing neuroprotection to the damaged 

host neurons, immune-modulation, releasing factors that support neuronal recovery and 

regrowth and restoring immune system homeostasis [172].

Asterias Biotherapeutics, Inc. received approval by the US FDA in 2014 to begin a Phase 

I/IIa clinical trial to test the safety and efficacy of oligodendrocyte progenitor cells (AST-

OPC1) for patients who have suffered spinal cord injuries. This study is an extension of a 

trial started by Geron in 2010, in which five patients treated showed no serious side effects 

[173].
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Executive summary

Significant advances in stem cell therapies

• Stem cell therapies for diseases of the CNS are underway and hold significant 

clinical benefit.

Huntington’s disease

• Stem cell therapies hold great potential for adult and juvenile Huntington’s 

disease (HD).

Mesenchymal stem cells for HD

• Mesenchymal stem cells (MSCs) have a long, robust history in animal models 

of HD for providing behavioral and histological benefits.

Ongoing challenges

• A major hurdle in developing stem cell therapies is addressing/managing the 

immune response following transplantation.

Unmet needs

• Transgenic animal models need to be improved to help facilitate translational 

research to get to clinical trials.

• MSCs have long displayed promising therapeutic effects and strong safety 

profiles in preclinical studies and are now gaining US FDA approval to 

clinically test for diseases and disorders of the CNS. Intrastriatal 

transplantation of MSCs in rodent models of HD has led to improvements of 

behavioral function and has proven capable of slowing the rate of 

neurodegeneration by creating a neuroprotective environment, likely through 

the release of trophic factors. These positive results have led to the proposed 

clinical use of MSCs engineered to release BDNF. However, more work is 

needed to optimize the safety and delivery of these cells in large animal 

models that more closely resemble the human brain.
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