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Abstract: Water shortages have direct adverse effects on wheat productivity and growth worldwide,
vertically and horizontally. Productivity may be promoted using water shortage-tolerant wheat
genotypes. High-throughput tools have supported plant breeders in increasing the rate of stability
of the genetic gain of interpretive traits for wheat productivity through multidimensional technical
methods. We used 27 agrophysiological interpretive traits for grain yield (GY) of 25 bread wheat
genotypes under water shortage stress conditions for two seasons. Genetic parameters and multidi-
mensional analyses were used to identify genetic and phenotypic variations of the wheat genotypes
used, combining these strategies effectively to achieve a balance. Considerable high genotypic
variations were observed for 27 traits. Eleven interpretive traits related to GY had combined high
heritability (h2 > 60%) and genetic gain (>20%), compared to GY, which showed moderate values
both for heritability (57.60%) and genetic gain (16.89%). It was determined that six out of eleven traits
(dry leaf weight (DLW), canopy temperature (CT), relative water content (RWC), flag leaf area (FLA),
green leaves area (GLA) and leaf area index (LAI)) loaded the highest onto PC1 and PC2 (with scores
of >0.27), and five of them had a positive trend with GY, while the CT trait had a negative correlation
determined by principal component analysis (PCA). Genetic parameters and multidimensional
analyses (PCA, stepwise regression, and path coefficient) showed that CT, RWC, GLA, and LAI were
the most important interpretive traits for GY. Selection based on these four interpretive traits might
improve genetic gain for GY in environments that are vulnerable to water shortages. The membership
index and clustering analysis based on these four traits were significantly correlated, with some
deviation, and classified genotypes into five groups. Highly tolerant, tolerant, intermediate, sensitive
and highly sensitive clusters represented six, eight, two, three and six genotypes, respectively. The
conclusions drawn from the membership index and clustering analysis, signifying that there were
clear separations between the water shortage tolerance groups, were confirmed through discrimi-
nant analysis. MANOVA indicated that there were considerable variations between the five water
shortage tolerance groups. The tolerated genotypes (DHL02, DHL30, DHL26, Misr1, Pavone-76 and
DHL08) can be recommended as interesting new genetic sources for water shortage-tolerant wheat
breeding programs.

Keywords: water shortage stress; bread wheat; interpretive traits; agrophysiological traits; genetic
parameters; multidimensional analysis
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1. Introduction

Water shortages and changes in the world′s climate will lead to an increase in the
occurrence of drought phenomena in arid and semiarid areas [1–3], and it is important to
achieve a horizontal and vertical expansion of field crop production in such areas. These
phenomena will be a critically important to achieve sustainable development of crop
production, particularly due to farmers rapidly drain groundwater resources through the
drilling of deep wells, loss of agricultural lands to urban sustainable development, and
demographic pressure. The steady rise in population will, at the same time, continue to
require continuous increases in crop production. Improving farming practices and planting
drought-tolerant genetic resources are good solutions to sustaining crop production under
water deficiency. These solutions aim at greater productivity per valid unit of water than
per unit of area [4,5]. Water deficiency is a critical problem that causes abiotic stress and
is a nuisance for plant breeders. Therefore, researchers in the relevant fields are seeking
credible screening criteria for drought tolerance in wheat genotypes [6].

Plant breeding has proven successful in sustained improvement of drought tolerance
in rainfed crops and dry-land crops throughout the years. There are three approaches
that might be taken to improve yields with water shortage. The first approach is breeding
segregation for yield under water shortage (i.e., yield potential), assuming that this will
provide a yield advantage under water shortage conditions. The positive correlation
between yield under water shortage and optimal conditions [7–9], and indirect selection
based on performance under optimal conditions, may not be directly proportional to
the selection of drought-tolerant genetic resources [10,11]. The second approach is to
breed for better performance of yield under water shortage. However, this is far from
ideal, due to the instability of the water shortage constant. In addition, a significant
genotype × environment interaction for yield results in a low heritability [6,12]. A third
approach is the breeding of tolerance using interpretive yield traits.

Achieving complementarity between physiological and genetic information can pro-
vide a more comprehensive genotype model of environment interaction [13]. The inter-
pretive traits to yield offers the best possibility of improving grain yield under water
shortage conditions, given that the heritability of grain yield often declines, while the
heritability of some interpretive traits continues to be high [14,15]. Interpretive traits were
successfully used with a view to better the rate of genetic enhancement for wheat under
water shortage conditions [6,16,17]. Several drought screening tests were determined for
use in wheat breeding programs [5,17], and the methods for screening for water shortage
tolerance for a great number of genotypes should be quick, cost-neutral, stable, and easy
to measure [18–20]. Some studies are still treating water shortage tolerance as a trait con-
trolled by a single-gene and/or using a visual plant assessment tool, even though water
shortage is determined primarily by polygenic inheritance [21–23]. Hence, a pyramiding
of appropriate morpho-physiological traits was used effectively to evaluating the water
shortage tolerance of many crops. The interpretive traits could be evaluated and selected
simultaneously in the breeding program. Abdolshahi, et al. [6] introduced a model using
agrophysiological traits that were able to anticipate 73 to 80% of yield variation in water
shortage environments.

Water shortage increases in plants due to potential losses by evapotranspiration (the
aridity index) by preventing the flow of water from soil. Water phase-out from a week to
months occurs, depending on the soil characteristics in which plants are cultivated under
natural conditions [24]. Water shortages trigger many responses at different levels of plant
development, from the molecular to whole-plant level [25], which may include an escape
from stress, the capacity for adaptation and tolerance, or averting adverse effects, all of
which might occur in parallel [26]. The effect of water stress on photosynthesis can be a
direct effect, which increases limitation of the CO2-spread pathway via the stomata [27], or
an indirect effect, e.g., changes in biochemistry, photosynthetic metabolism, cell membrane
permeability [28] and raising oxidative stress [29]. It was determined that gas-exchange
measurements are useful indicators of photosynthesis in plants under drought conditions.
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Leaf mesophyll conductance to CO2 may considerably affect genotype performance, and its
responses differ from one plant to another, largely because of the differences of genotypic
influences on stomatal (stomatal closure) and nonstomatal (diffusional and biochemical)
limits of net CO2 assimilation rate [28].

It was found that water status measurements are useful indicators of tolerance to
water shortage stress in plants [19,20,30], and good tools for indirect selection for tolerance
to water shortage stress. These researchers also found a significant correlation of different
agrophysiological traits with water shortage stress. A tolerant genotype has the capability
of decreasing stress through the conservation of turgid leaves under stress, which has
physiological advantages such as growth and stomatal activity, and protects and main-
tains the photosystem complex [31]. Remotely-sensed infrared canopy temperature (CT)
measurements are a cost-effective for rapid, non-destructive monitoring of whole-plant
response to water stress [32]. CT relies on the significant inverse association between
leaf temperature and transpirational cooling. Genotypes with the capacity to maintain
lower CT, transpiration and gas exchange compared to other genotypes under the same
stress can be described as tolerant [30,33,34]. Therefore, water status measurements can
be used as an indirect selection criterion for tolerance to water shortage stress in wheat
breeding. The breeding of water shortage-tolerant genotypes to yield is the main goal
of plant breeders. Interpretive traits are plant attributes associated with final grain yield
(GY) under water shortage conditions, and may provide a greater amount of information
for plant breeders for the selection process of drought-tolerant genotypes [35]. There is
now a crucial need to improve the comprehensive understanding of an indirect approach,
and the mechanisms of deep-rooted adaptive behavior, based on incorporating multiple
morphophysiological plant traits associated with drought tolerance with yield and its
components. This can assist in targeting major traits that may enhance genetic gain for
grain yield in drought-prone areas [5,11].

The inaccurate depiction of interpretive (physiological, morphological and destructive)
traits related to water shortage stress, and low genetic variation of available wheat varieties,
is currently one of the leading causes for limited success when breeding drought-tolerant
wheat varieties [19,36]. Breeding improvement strategies for drought-tolerant genotypes
rely on the use of multidimensional methods to obtain a more reliable assessment of a
great number of genotypes (varieties and lines) and traits. These strategies include an
integrative approach that combines various parameters of physiological traits at the level
of leaves, and of whole-plant, agronomic traits [6,37,38]. Providing useful information
for plant breeders to determine the adaptive conduct of plants under water shortage
stress requires the use of a combination of reliable phenotypic traits and high-powered
computer modelling of multidimensional data to provide a greater understanding of
the complicated mechanisms that function under abiotic stress [6,12,34,36,37]. Therefore,
screening tests are required for statistical analysis with the capacity to precisely explain
tolerant and sensitive genotypes under water shortage. Therefore, multivariate analysis
techniques (e.g., multicollinearity, multiple regression, principal component analysis, path
analysis, MANOVA and discriminant analysis) could serve as a useful instrument to
identify sources of variation in water shortage-tolerance using precise, reliable and multiple
selection criteria [5,6,19].

The principal aim of this study was to describe the characteristics of double haploid
wheat lines compared to numerous cultivars in response to water shortage stress, and
to identify interpretive traits associated with water shortage tolerance based on their
heritability, genetic gain and multidimensional evaluation. Another aim was to identify
genotypes with higher water shortage tolerance that can be utilized to breed water shortage-
tolerant varieties.
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2. Material and Methods
2.1. Plants and Experimental Design

A set of 25 genotypes (seven varieties and 18 lines) of bread wheat were used in this
study (Table S1). The varieties were chosen from different ecological regions based on the
presence of broad genetic differences between them with respect to drought tolerance and
drought sensitivity. Five of them were provided by the Agricultural Research Center, Egypt.
Seeds of the other two, KSU 106 and Pavone-76, were collected from College of Food and
Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia. The 18 double haploid
lines (DHLs) were provided through the Agronomy Department, Faculty of Agriculture,
Al-Azhar University, Nasr City, Cairo, Egypt, and from published literature [39]. All
genotypes were sown in two consecutive seasons (2018/19; S1 and 2019/20; S2) as five-row
(3.0 m long) plots, with a distance between rows of 0.17 m, at the King Saud University
Agricultural Research Station (24◦42′ N, 44◦46′ E, 400 m asl) in a split-plot design with
three replications. Seedling rate was 360 germinating kernels m−2, and the fertilizing rates
used were 1.2 kg m−2 N and 0.8 kg m−2 P2O5. During the growing season, the temperature
and rain were 12.9–32.2 ◦C, and 8.0–25.0 mm, respectively. The soil texture was classified
by electrical conductivity as sandy loam (2.89 dS m−1). Two irrigation regimes were
used two weeks after sowing. The first regime (full irrigation) was watered to 100% field
capacity upon reaching a cumulative evaporation of 50 mm, and the second regime (limited
irrigation) was watered to 33% field capacity upon reaching a cumulative evaporation of
150 mm. The main plots were allocated to two irrigation regimes, while the subplots were
allocated to the genotypes.

2.2. Measurements of Morpho-Physiological and Agronomic Traits and Data Collection
2.2.1. Leaf Water Status Parameters

Leaf water status was measured by canopy temperature (CT), leaf water content
(LWC), relative water content (RWC) and leaf equivalent water thickness (LEWT) at the
flowering stage on the flag leaf. CT was measured under a cloudless sky before noon
(11:30 to 12:00 h) using an infrared thermometer (Therma CAM SC 3000 infrared camera,
FLIR System Inc., North Billerica, MA, USA). The images were captured at a height of
approximately 1 m over the top of the ear and converted into CT using the FLIR Quick
Report 1.2 software package. LWC and RWC were measured for five leaves collected
randomly from each genotype, and then weighed directly to capture data related to fresh
weight (FW). The same leaves were flooded with water at 25 ◦C until they were fully turgid,
then dehydrated with tissue paper to remove any excess water, and weighed to capture
data on turgid weight (TW). Finally, the same leaves were oven-dried for 48 h at 70 ◦C and
weighed to capture data on dry weight (DW). Data taken from FW, TW and DW were used
to calculate LWC, RW, and LEWT, according to the following equations [40–42]:

LWC = FW − DW/FW × 100 (1)

RWC = FW − DW/TW − DW × 100 (2)

LEWT = FW − DW/Flag leaf area (3)

2.2.2. Photosynthetic Parameters

Photosynthetic parameters were measured in the grain-filling stage using a Li-6400
gas exchange system (Li-Cor, Inc., Lincoln, Nebraska, USA), starting at 10:00 AM until
12 noon. The upper third of the flag leaves was used. Photosynthesis rate (Pn), transpiration
rate (E), stomatal conductance (Gs), intracellular CO2 concentration (Ci), and atmospheric
CO2 concentration (Ca) were measured at a saturating photosynthetic photon flux density
of 700 µmol photons m−2 s−1. Temperature, CO2 concentration, and relative humidity
were measured at 26 ± 2 ◦C, 485 ± 23 µmol/L and 65 ± 7%, respectively. Instantaneous
water use efficiency (WUE), intrinsic water use efficiency (WUEi), and stomatal limitation
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value (Ls) were calculated using data taken from Pn, E, Gs, Ci and Ca, according to the
following equations [43]:

WUE = Pn/E (4)

WUEi = Pn/Gs (5)

Ls = 1 − Ci/Ca (6)

2.2.3. Morphological Parameters

Five plants from the middle rows of each pilot module were randomly selected to
calculate green leaf number (GLN), flag leaf area (FLA), and green leaf area (GLA) at the
mid anthesis stage. All green leaves were removed from the five plants and run through an
area meter (LI 3100; LI-COR Inc., Lincoln, NE, USA) to calculate surface GLA. Thereafter,
all parts of the five plants (stem, green and complete brown leaves, sheath parts and spike)
were oven-dried at 70 ◦C for 72 h to a constant weight and then weighed to obtain dry
stem weight (DSW), dry leaf weight (DLW), and total dry weight (TDW). Data taken from
GLA (A), number of plants in 1 m (B), number of plants used (C = 5, in this study), and
distance between rows (D = 17 cm, in this study) were used to calculate leaf area index
(LAI), according to this equation [5]:

LAI = (A × B)/(C × D) (7)

2.2.4. Agronomic and Yield Traits Measurements

The middle rows were used to lower the environmental impact in each plot for
measuring agronomic and yield traits. Days to heading (DH, days) were recorded when
50% of plants had headed and flowered, and days to maturity (DM, days) were recorded
when the tops of the peduncles of 50% of plants were yellow. Grain filling duration (GFD,
days) was calculated during the period from DM and DH. Plant height (PH, cm plant−1)
and spike length (SL, cm) were measured in 10 plants chosen randomly from each plot after
excluding awns and upon reaching maturity. The number of spikes (NS, m−2), and number
of spikelets (NSS, spike−1) were counted at the same time. The plants were threshed to
measure the number of kernels (NKS, spike−1), thousand-kernel weight (HKW, g), and
grain yield (GY, ton ha−1). Three rows (2 m long) were used to estimate GY.

2.2.5. Statistical Analysis

Analysis of variance for all traits was performed using the SAS v9.2 software package
(SAS Institute, Inc., Cary, NC, USA) for each individual season with full and limited irriga-
tion. A combined analysis was performed across the two seasons to test the homogeneity
of error variance assuming season is a random effect, and genotypes and irrigation regimes
are both fixed effects. The results indicated homogenous variance across two seasons for
all measured traits, and based on this test the data of the two seasons were combined
and analyzed according to Gomez and Gomez [44]. Subsequently, the mean squared
values of genotype, genotype × environment, error and replicates were used to calculate
the variance components following the methods proposed by Fehr [45] and described by
Al-Ashkar, et al. [37], which allowed for the calculation of genetic parameters for all traits
as follows:

Heritability
(

h2, broad sense
)
=
(
σ2

g

)
/

(
σ2

g +
σ2

g×e

e
+

σ2
re

r× e

)
(8)

Genetic advance (GA) =
σ2

g

σ2
p
×
√

σ2g × k (9)

Genetic gain (%) =
GA
X
× 100 (10)
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Genotypic coefficient of variability (GCV) =

√
σ

2
g

X
× 100 (11)

Phenotypic coefficient of variability (PCV) =

√
σ

2
p

X
× 100 (12)

where σ2
g is the genotypic variance, σ2

P is the phenotypic variance, σ2
g×e is the

genotype × environment variance, σ2
re is the residual variance (error), r is the number of

repetitions, e is the number of environments, X is the overall mean for each trait and k is
the selection differential (and value of 2.06) at 5% selection intensity.

The multicollinearity test was used to uncover multicollinearity sources in a correlation
matrix of interpretive traits to their exclusion. Multidimensional modeling was used to
better understand correlations between a large number of measured traits, their Path
coefficient analysis to partition variation into multiple direct and indirect effects, depending
on SMLR output and path coefficient analysis and a membership index, was used to
characterize the drought tolerance index (DTI) values of all tested genotype contributions
and their encapsulation into major components. Principal component analysis (PCA) was
performed, based on data provided by the correlation matrix, to reduce the dimensions of
the data space and reliance on the first two components of PCA. Stepwise multiple linear
regression analysis (SMLRA) was used to determine the most powerful interpretive traits
that contribute to the most variability in the intrigued variable (GY), depending on the
output of PCA. The DTI values of the genotypes were calculated using four influential
interpretive traits (LAI, RWC, CT and GLA), and the membership index was used in the
computation [46]. The membership index value (Fij) was counted to every interpretive
trait per genotype as the ratio of limited irrigation values to full irrigation values per year.
The overall mean of the membership index of these the traits (Fi) was used as the tolerance
index to water shortage stress.

Fij =
xij − xmin

xmax − xmin
and Fi = average of Fij (13)

where xij is the ratio of the ith genotype, jth trait, and xmin and xmax are the minimum and
maximum ratios of the trait. All genotypes were classified into five ranks, as being highly
tolerant (HT, Rank 1: Fi > 0.8), tolerant (T, Rank 2: 0.6 ≤ Fi < 0.8), moderately tolerant (MT,
Rank 3: 0.4≤ Fi < 0.6), sensitive (S, Rank 4: 0.2≤ Fi < 0.4), and highly sensitive (HS, Rank 5:
Fi < 0.2).

The membership index value (score) used in the calculation of the genetic similarity
matrix (cluster analysis) between genotypes from three interpretive traits was based on
the Euclidean distance dissimilarity coefficient using UPGMA (Unweighted Pair Group
Method with Arithmetic Mean). The matrix of Euclidean distance dissimilarity coefficient
was used in the calculation of the principal coordinate analysis (PCoA) to reduce the
dimensions of data space. Discriminant function analysis (DFA) and MANOVA used the
same data as the DTI score per genotype (the four traits as quantitative variables, with
the five classes HT, T, MT, S, and HS as qualitative variables) in order to confirm the
categorization of genotypes. All genotypes were then given an equal prior probability to
be classified into the five classes of drought tolerance. Statistical analysis (Multicollinearity
test, PCA, SMLRA, cluster analysis, PCoA, DFA and MANOVA) was carried out using the
XLSTAT statistical software package (vers. 2019.1, Excel Add-ins soft SARL, New York,
NY, USA).
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3. Results
3.1. Phenotypic Variability of Measured Traits Across Seasons and Genotypes

All measured traits presented highly significant differences (p < 0.01) for treatments
(irrigation levels and genotypes) and their interaction in each season, based on ANOVA.
The only exception was interaction of DH in S1, irrigation levels of NKS in S2, and levels of
irrigation of Pn in S1 and S2, being nonsignificant (Table S2). Across the two seasons all
interactions were significant for NS, PH, FLA, GLA, LAI, NSS, RWC, HKW, CT, LEWT, GS,
WUE and WUEi traits, and nonsignificant for DH, DM, GFD, Pn, SDW, DLW, and TDW
traits. Interaction (seasons × levels irrigation) were nonsignificant for GLN, SL, LWC, Ci, E
and LS (Table 1).

Table 1. Combined analysis of variance for 28 measured traits of 25 wheat genotypes (G) in two seasons (S) under two
irrigation regimes (I).

Source DF LWC RWC CT LEWT Pn Gs Ci E WUE

S 1 302.284 ** 68.392* 0.589 ** 0.00010 ** 37.002 ** 0.0047 ** 16593.14 ** 2.869 ** 5.763 **
rep(S) 4 7.271 15.656 0.121 0 0.098 0.0001 1739.11 ** 0.087 * 0.049

I 1 1095.88 ** 3711.21 ** 516.17 ** 0.00007 ** 2.869* 0.1647 ** 125277.99 ** 30.033 ** 30.630 **
S*I 1 0.301 184.836 ** 5.057 ** 0.00013 ** 0.029 0.0007 ** 320.974 0.019 1.109 **

rep(I*S) 4 2.992 6.914 0.107 0 0.287 0.0005 794.38 0.035 0.018
G 24 82.303 ** 124.998 ** 2.985 ** 0.00026 ** 24.174 ** 0.0074 ** 4028.503 ** 1.400 ** 2.856 **

S*G 24 87.854 ** 89.304 ** 0.793 ** 0.00002 ** 0.414 0.0003 ** 402.104 * 0.072 ** 0.769 **
I*G 24 19.435 ** 20.881 ** 1.692 ** 0.00003 ** 4.500 ** 0.0000 ** 2244.551 ** 0.835 ** 1.163 **

S*I*G 24 23.334 ** 38.558 ** 1.014 ** 0.00002 ** 0.443 0.0049 ** 212.418 0.052 0.655 **
Error 192 9.543 12.659 0.078 0 0.627 0.0001 294.977 0.038 0.06

Source DF WUEi LS GLN FLA GLA LAI DSW DLW TDW DH

S 1 3923.432 ** 0.108 ** 4.844 ** 2.519 4633.31 ** 11.13 ** 1.371 * 0.019 ** 1.72 ** 8.670 **
rep(S) 4 13.004 0.0008 0.185 ** 1.827 85.068 ** 0.035 0.518 0.008 * 0.421 0.227

I 1 17840.78 ** 0.478 ** 5.206 ** 701.02 ** 45628.4 ** 300.42 ** 40.85 ** 0.710 ** 52.35 ** 145.60 **
S*I 1 2952.544 ** 0.0001 0.113 8.653 ** 1757.88 ** 16.55 ** 0.59 0.008 0.73 0.03

rep(I*S) 4 8.258 0 0.05 1.997 28.21 0.054 0.324 0.011 0.306 3.147
G 24 1089.461 ** 0.019 ** 1.457 ** 190.58 ** 2308.83 ** 9.163 ** 48.01 ** 0.537 ** 52.62 ** 164.83 **

S*G 24 287.937 ** 0.002 ** 0.487 ** 9.922 ** 544.106 ** 2.863 ** 0.023 0 0.026 0.121
I*G 24 649.685 ** 0.015 ** 0.135 ** 16.613 ** 205.589 ** 1.771 ** 2.416 ** 0.071 ** 2.753 ** 2.721 **

S*I*G 24 174.860 ** 0.001 ** 0.151 ** 4.897 ** 133.676 ** 1.216 ** 0.035 0.001 0.041 0.079
Error 192 16.693 0.0004 0.039 1.184 14.539 0.034 0.298 0.004 0.321 0.926

Source DF DM GFD NSP PH SL NSS NG HW GY

S 1 6.750 ** 5.880 * 590875.3 ** 21.87 137.783 ** 173.95 ** 367.37 ** 2363.38 ** 3.272 **
rep(S) 4 3.307 * 0.807 411.987 17.667 0.126 1.346 ** 4.756 5.208 0.13

I 1 1352.6 ** 622.1 ** 933645.6 ** 2296.3 ** 27.731 ** 64.255 ** 1578.9 ** 1700.23 ** 92.596 **
S*I 1 0.27 0.48 58408.65 ** 383.07 ** 0.431 1.952* 1309.0 ** 362.362 ** 0.536 **

rep(I*S) 4 3.277 0.764 849.35 12.719 0.188 0.533 2.252 0.797 0.029
G 24 150.73 ** 38.06 ** 53328.17 ** 440.15 ** 7.170 ** 18.001 ** 227.47 ** 314.603 ** 11.965 **

S*G 24 0.076 0.144 18636.06 ** 83.814 ** 7.029 ** 13.620 ** 45.081 ** 53.422 ** 0.713 **
I*G 24 5.501 ** 5.844 ** 10219.66 ** 33.791 ** 0.861 ** 0.597 38.455 ** 29.064 ** 1.714 **

S*I*G 24 0.194 0.341 10869.40 ** 20.360 ** 0.394 ** 1.348 ** 41.090 ** 20.545 ** 0.302 **
Error 192 1.341 1.692 680.423 10.701 0.196 0.379 4.409 4.39 0.078

* and ** indicate significance at p < 0.05 and 0.01, respectively, Leaf water content (LWC), relative water content (RWC), canopy temperature
(CT), leaf equivalent water thickness (LEWT), photosynthesis rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci),
transpiration rate (E), instantaneous water use efficiency (WUE), intrinsic water use efficiency (WUEi), stomatal limitation value (Ls), green
leaf number (GLN), flag leaf area (FLA), and green leaf area (GLA), leaf area index (LAI), dry stem weight (DSW), dry leaf weight (DLW),
total dry weight (TDW), days to heading (DH), days to maturity (DM), grain filling duration (GFD), plant height (PH), spike length (SL),
number of spikes (NS), number of spikelets (NSS), number of kernels (NKS), thousand-kernel weight (HKW), and grain yield (GY).

Interestingly, in each and across the two seasons, there was great variation between
the lowest value and the highest value for the measured traits, with certain exceptions for
some traits, which presented a narrow variation between the lowest value and the highest
value. The maximum values were nearly two times higher than the minimum values for
most measured traits (Table 2), indicating high genetic diversity between genotypes used.
Most measured trait values decreased under limited irrigation compared to full irrigation,
with the exception of traits CT, WUE, WUEi, and LS, which showed the opposite direction,
as shown in Table 2.
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Table 2. Means± standard deviation, ranges of the 25 genotypes of two seasons and their combined for 28 traits.

Traits Seasons
Full Limited Combined Data

Min Max Mean Min Max Mean Min Max Mean

LWC
Season1 69.18 85.52 74.48 ± 4.02 ** 61.39 79.27 70.66 ± 3.52 **

68.89 78.69 73.55 ± 2.08 **Season2 68.59 82.62 76.44 ± 3.31 ** 67.42 76.12 72.64 ± 2.29 **

RWC
Season1 77.35 89.42 84.18 ± 3.03 ** 69.96 83.01 78.83 ± 3.13 **

73.11 85.62 81.01 ± 2.53 **Season2 71.34 91.71 84.82 ± 4.76 ** 68.44 81.78 76.21 ± 3.98 **

CT
Season1 16.29 18.58 17.38 ± 0.55 ** 18.88 20.40 19.73 ± 0.43 **

17.78 19.08 18.51 ± 0.42 **Season2 15.47 18.25 17.02 ± 0.79 ** 18.75 21.17 19.91 ± 0.61 **

LEWT
Season1 0.011 0.028 0.025 ± 0.00 ** 0.013 0.025 0.024 ± 0.00 **

0.011 0.025 0.022 ± 0.00 **Season2 0.010 0.026 0.024 ± 0.00 ** 0.011 0.021 0.018 ± 0.00 **

Pn
Season1 8.67 12.93 11.39 ± 1.00 ** 8.24 13.27 11.17 ± 1.37 **

8.44 12.49 10.93 ± 1.05 **Season2 8.24 11.97 10.67 ± 1.00 ** 8.15 12.84 10.49 ± 1.35 **

Gs
Season1 0.15 0.24 0.19 ± 0.03 ** 0.09 0.18 0.14 ± 0.02 **

0.13 0.20 0.16 ± 0.02 **Season2 0.12 0.24 0.18 ± 0.03 ** 0.08 0.18 0.13 ± 0.02 **

Ci
Season1 281.51 378.75 330.98 ± 19.35 ** 247.41 325.01 287.9 ± 21.3 **

276.80 331.33 302.0 ± 13.4 **Season2 284.10 343.27 314.03 ± 13.16** 228.71 305.86 275.1 ± 19.9**

E
Season1 2.55 3.95 3.27 ± 0.39 ** 1.96 3.30 2.62 ± 0.28 **

2.31 3.52 2.85 ± 0.27 **Season2 2.26 3.79 3.07 ± 0.36 ** 1.75 3.13 2.45 ± 0.34 **

WUE
Season1 2.90 4.50 3.57 ± 0.41 ** 3.44 5.47 4.33 ± 0.51 **

3.12 4.58 3.81 ± 0.35 **Season2 2.67 4.56 3.41 ± 0.44 ** 2.50 4.75 3.94 ± 0.59 **

WUEi
Season1 50.53 78.66 61.92 ± 8.11 ** 63.87 107.11 83.8 ± 12.60 **

59.29 81.23 69.21 ± 6.67 **Season2 46.83 85.33 61.04 ± 9.95 ** 55.56 86.80 70.10 ± 8.51 **

Ls
Season1 0.19 0.36 0.26 ± 0.04 ** 0.26 0.48 0.34 ± 0.05 **

0.28 0.39 0.32 ± 0.03 **Season2 0.22 0.39 0.30 ± 0.04 ** 0.29 0.45 0.38 ± 0.04 **

GLN
Season1 32.07 45.67 38.53 ± 3.69 ** 18.03 44.00 29.78 ± 5.04 **

29.71 44.82 35.27 ± 3.27 **Season2 30.65 43.94 36.57 ± 3.34 ** 26.84 45.92 36.20 ± 4.12 **

FLA
Season1 17.82 33.06 23.54 ± 3.50 ** 15.93 25.42 20.14 ± 2.34 **

16.39 29.36 21.76 ± 2.91 **Season2 16.17 32.73 23.03 ± 3.72 ** 14.09 27.61 20.35 ± 3.05 **

GLA
Season1 66.00 113.83 88.14 ± 12.22 ** 40.06 83.98 58.52 ± 10.81 **

54.36 102.68 77.24 ± 10.72 **Season2 56.75 131.18 91.08 ± 15.64 ** 47.16 96.10 71.22 ± 10.96 **

LAI
Season1 2.45 5.40 3.80 ± 0.94 ** 1.17 3.10 2.12 ± 0.64 **

2.13 3.65 2.96 ± 0.60 **Season2 2.11 5.11 3.45 ± 0.83 ** 1.29 3.23 2.30 ± 0.49 **

DSW
Season1 6.18 11.37 8.44 ± 1.37 ** 5.48 9.57 7.62 ± 1.16 **

6.01 10.41 7.97 ± 1.22 **Season2 6.18 10.95 8.23 ± 1.31 ** 5.27 9.74 7.58 ± 1.24 **

DLW
Season1 0.64 1.34 1.01 ± 0.20 ** 0.70 1.16 0.90 ± 0.14 **

0.67 1.23 0.95 ± 0.16 **Season2 0.64 1.32 0.99 ± 0.19 ** 0.69 1.20 0.90 ± 0.15 **

TDW
Season1 6.82 12.49 9.46 ± 1.45 ** 6.26 10.73 8.52 ± 1.24 **

6.68 11.55 8.92 ± 1.30 **Season2 6.82 12.03 9.21 ± 1.39 ** 6.03 10.95 8.48 ± 1.32 **

DH
Season1 71.00 80.33 75.40 ± 2.73 ** 70.00 78.33 74.04 ± 2.64 **

70.67 79.50 74.88 ± 2.67 **Season2 71.33 80.67 75.71 ± 2.79 ** 70.33 78.67 74.39 ± 2.63 **

MD
Season1 118.33 127.00 121.61 ± 2.71 ** 114.67 121.67 117.28 ± 2.16 **

117.00 123.83 119.59 ± 2.36 **Season2 118.67 126.33 121.84 ± 2.69 ** 115.33 122.00 117.63 ± 2.12 **

GFD
Season1 42.67 49.67 45.95 ± 1.52 ** 40.00 45.33 43.00 ± 1.60 **

41.50 47.50 44.61 ± 1.41 **Season2 43.00 50.00 46.13 ± 1.47 ** 40.33 45.67 43.35 ± 1.55 **

NSP
Season1 433.33 770.00 579.07 ± 93.35 ** 349.67 570.00 440.39 ± 54.31 **

384.08 544.17 465.55 ± 43.54 **Season2 393.33 573.33 462.93 ± 48.38 ** 286.67 496.67 379.80 ± 44.76 **

PH
Season1 73.00 97.00 83.45 ± 7.04 ** 67.92 84.67 75.56 ± 4.46 **

71.71 87.47 79.25 ± 4.75 **Season2 71.33 91.00 80.67 ± 5.34 ** 66.67 85.67 77.31 ± 5.21 **
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Table 2. Cont.

Traits Seasons
Full Limited Combined Data

Min Max Mean Min Max Mean Min Max Mean

SL
Season1 8.73 11.27 10.06 ± 0.75 ** 8.17 10.83 9.38 ± 0.70 **

8.01 9.84 9.04 ± 0.50 **Season2 6.67 10.60 8.63 ± 0.93 ** 6.33 9.53 8.10 ± 0.84 **

NSS
Season1 13.60 17.56 16.01 ± 1.06 ** 13.61 16.83 15.25 ± 0.85 **

13.09 16.32 14.88 ± 0.94 **Season2 11.67 17.11 14.66 ± 1.56 ** 10.80 15.90 13.59 ± 1.40 **

NG
Season1 32.07 45.67 38.53 ± 3.69 ** 18.03 44.00 29.78 ± 5.04 **

29.71 44.82 35.27 ± 3.27 **Season2 30.65 43.94 36.57 ± 3.34 ** 26.84 45.92 36.20 ± 4.12 **

HW
Season1 42.32 61.97 51.72 ± 5.26 ** 35.81 52.38 44.88 ± 4.70 **

37.24 52.68 45.53 ± 3.97 **Season2 32.89 50.57 44.01 ± 4.45 ** 32.72 46.91 41.51 ± 3.98 **

GY
Season1 3.71 7.24 5.15 ± 0.86 ** 2.90 5.99 3.99 ± 0.68 **

3.50 6.49 4.68 ± 0.66 **Season2 3.80 7.19 5.31 ± 0.83 ** 3.27 6.20 4.25 ± 0.61 **

** indicate significance at p < 0.01, Leaf water content (LWC), relative water content (RWC), canopy temperature (CT), leaf equivalent
water thickness (LEWT), photosynthesis rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci), transpiration rate (E),
instantaneous water use efficiency (WUE), intrinsic water use efficiency (WUEi), stomatal limitation value (Ls), green leaf number (GLN),
flag leaf area (FLA), and green leaf area (GLA), leaf area index (LAI), dry stem weight (DSW), dry leaf weight (DLW), total dry weight
(TDW), days to heading (DH), days to maturity (DM), grain filling duration (GFD), plant height (PH), spike length (SL), number of spikes
(NS), number of spikelets (NSS), number of kernels (NKS), thousand-kernel weight (HKW), and grain yield (GY).

3.2. Estimation of Genetic Parameters for Measured Traits

The results showed that the five genetic parameters (i.e., heritability (h2), genotypic
(GCV), and phenotypic coefficient of variability (PCV), genetic advance (GA), and genetic
gain (GG)) varied greatly for all measured traits. The h2 demonstrated a wide range
between measured traits, which varied from 29.99% for WUEi to 97.82% for DH. The ratio
of PCV to GCV was proximate for some traits and the GCV was smaller than the PCV,
except for ten traits (NS, LAI, SL, NSS, LWC, GY, Gs, Ci, E, WUEi, and LS), which showed
a greater percentage of PCV to GCV. Genetic advance (GA) and genetic gain (GG) showed
high diversity for all measured traits (Table 3). GA and GG ranged from 0.01 (LEWT) to
90.46 (NS) and from 3.14 (LWC) to 51.71% (LEWT), respectively (Table 3).

Table 3. Estimates of heritability (h2), genotypic coefficient of variance (GCV), phenotypic coefficient
(PCV), genetic advance (GA), and genetic gain (GG) for 28 measured traits of 25 wheat genotypes in
two seasons under two irrigation regimes genotypes.

Traits h2 GCV PCV GA GG

LWC 36.06 2.76 4.60 2.51 3.14
RWC 86.36 10.73 11.55 16.64 20.55

CT 88.39 10.33 10.99 3.70 20.01
LEWT 88.30 26.71 28.42 0.01 51.71

Pn 80.81 11.73 13.05 2.37 21.73
Gs 30.37 8.53 15.48 0.02 9.69
Ci 38.81 3.82 6.13 14.79 4.90
E 38.92 7.48 11.99 0.27 9.61

WUE 55.30 9.52 12.80 0.56 14.58
WUEi 29.99 7.54 13.78 5.89 8.51

Ls 41.37 9.80 15.24 0.04 12.99
GLN 66.92 7.40 9.05 0.48 12.47
FLA 88.65 17.23 18.30 7.28 33.42
GLA 73.32 15.39 17.97 20.95 27.14
LAI 62.70 18.90 23.87 1.13 30.83
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Table 3. Cont.

Traits h2 GCV PCV GA GG

DSW 94.46 24.43 25.13 3.90 48.91
DLW 86.26 20.72 22.31 0.38 39.65
TDW 94.27 22.83 23.51 4.08 45.66
DH 97.82 4.91 4.96 7.49 10.00
MD 95.63 2.91 2.98 7.01 5.86
GFD 81.86 3.69 4.08 3.06 6.87
NSP 65.48 11.65 14.39 90.46 19.41
PH 77.91 6.75 7.65 9.72 12.27
SL 39.48 7.06 11.23 0.82 9.14

NSS 27.37 4.39 8.40 0.70 4.74
NG 80.41 11.12 12.40 7.25 20.55
HW 80.31 10.08 11.24 8.47 18.60
GY 57.60 10.80 14.24 0.79 16.89

Leaf water content (LWC), relative water content (RWC), canopy temperature (CT), leaf equivalent water thickness
(LEWT), photosynthesis rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci), transpiration
rate (E), instantaneous water use efficiency (WUE), intrinsic water use efficiency (WUEi), stomatal limitation value
(Ls), green leaf number (GLN), flag leaf area (FLA), and green leaf area (GLA), leaf area index (LAI), dry stem
weight (DSW), dry leaf weight (DLW), total dry weight (TDW), days to heading (DH), days to maturity (DM),
grain filling duration (GFD), plant height (PH), spike length (SL), number of spikes (NS), number of spikelets
(NSS), number of kernels (NKS), thousand-kernel weight (HKW), and grain yield (GY).

3.3. Multicolinearity and Principal Component Analysis

The results showed that the multicolinearity analysis varied greatly between mea-
sured traits. The tolerance (T) and variance inflation factors (VIF) ranged from 0.00 to
0.465 and from 0.00 to 10.00, respectively, except for three traits (DH, DM and GFD), which
showed VIF values >10.0, before excluding traits (Table 4). After excluding the DM trait
(>multicolinearity), T and VIF ranged from 0.00 to 0.470 and from 0.00 to 9.62, respectively.
A PCA was conducted for each of the 27 measured traits, 25 genotypes and two irrigation
treatments in two seasons simultaneously (Figure 1). The first six principal components
had eigenvalues greater than 1, which explained 78.09% of the total variation (Table S3).
The first two PCAs explained 37.18 and 11.48% of the total phenotypic variation between
27 traits, respectively, and 17 traits of them loaded the highest onto PC1 and PC2 (with
scores of >0.27). PCA resulted in a clear separation between irrigation treatments and
genotypes based on measured traits to identify the main trait, which could be used in
identifying traits that explained much of the variation between 25 wheat genotypes used.
In PC1, the four traits (CT, Ls, WUE and WUEi) were combined in a positive trend, and
the 23 other traits were spread in a negative trend. In PC2, 18 traits were combined in
a positive trend and the nine other traits were spread in a negative trend. More impor-
tantly, the angle between the vectors of traits was acute (less than 90◦) for GY with most
traits, which indicates positive correlation, while the angle between the vector of the four
traits (CT, Ls, WUE and WUEi) was higher than 90◦ for GY, which indicated negative
correlation (Figure 1).
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Table 4. Multicollinearity diagnosis (tolerance and variance inflation factor) of Pearson product-moment correlation matrix
for 28 measured traits.

Traits
Before Excluding Traits After Excluding Traits

Traits
Before Excluding Traits After Excluding Traits

Tolerance VIF Tolerance VIF Tolerance VIF Tolerance VIF

DH 0.036 28.13 0.205 4.89 LWC 0.465 2.15 0.465 2.15
DM 0.025 40.34 – – RWC 0.300 3.33 0.301 3.33
GFD 0.053 19.02 0.209 4.77 NG 0.402 2.49 0.417 2.40
DSW 0.000 0.00 0.000 0.00 HW 0.221 4.54 0.221 4.53
DLW 0.000 0.00 0.000 0.00 CT 0.176 5.67 0.178 5.62
TDW 0.000 0.00 0.000 0.00 LEWT 0.463 2.16 0.470 2.13
NSP 0.151 6.61 0.152 6.59 Pn 0.184 5.43 0.186 5.39
PH 0.255 3.92 0.260 3.85 Gs 0.146 6.86 0.159 6.28
NL 0.234 4.28 0.234 4.28 Ci 0.109 9.15 0.111 9.02

LAF 0.130 7.70 0.142 7.07 E 0.100 10.02 0.111 9.03
TLAF 0.129 7.74 0.133 7.52 WUE 0.146 6.83 0.147 6.82
LAI 0.120 8.33 0.122 8.20 WUEi 0.103 9.67 0.104 9.62
SL 0.182 5.51 0.185 5.41 Ls 0.117 8.54 0.127 7.85

NSS 0.233 4.29 0.236 4.23 GY 0.291 3.44 0.311 3.22

Variance Inflation Factor (VIF), values in bold indicate multicollinearity.
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Figure 1. Biplot for the first two principal components in the principal component analysis (PCA) for 27 measured traits
of 25 wheat genotypes in two seasons (S1 and S2) under full (FI) and limited irrigation regimes (LI). The numbers were
indicated according to Table 6. Leaf water content (LWC), relative water content (RWC), canopy temperature (CT), leaf
equivalent water thickness (LEWT), photosynthesis rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration
(Ci), transpiration rate (E), instantaneous water use efficiency (WUE), intrinsic water use efficiency (WUEi), stomatal
limitation value (Ls), green leaf number (GLN), flag leaf area (FLA), and green leaf area (GLA), leaf area index (LAI), dry
stem weight (DSW), dry leaf weight (DLW), total dry weight (TDW), days to heading (DH), grain filling duration (GFD),
plant height (PH), spike length.
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3.4. Identification of Traits Related to Yield Performance

The relationships between all traits suggested to be very important by PC1 and
PC2 were analyzed using SMLR and path coefficient analysis in order to understand
the best-measured and yield-related traits and their contribution to yield performance
(Table 5). The results of SMLR showed that GLA, LAI, RWC, CT and Gs were significantly
correlated to GY, and their contribution rates were 0.104, 0.141, 0.171, 0.400 and 0.070,
respectively (Table 5). The R2 of SMLR model was 0.886. The five components of GY
variation partitioned into multiple direct and indirect effects using path coefficient analysis.
Each direct and indirect effect contributed to 0.565 (CT, alone possessed 0.426 of them) and
0.321, respectively. The R2 value was the same as that in the SMLR model (0.886), with a
noise value of 0.338. It was concluded that these traits (GLA, LAI, RWC, CT and Gs) may
be relevant and important selection criteria and can be relied on in defining the levels of
drought-tolerant and drought-sensitive genotypes of wheat, coupled with high correlation
with yield.

Table 5. Stepwise regression and path coefficient analyses for grain yield (dependent variable) with four yield-related traits
(independent variables) for combined data across the two seasons under full and limited irrigation regimes.

Source
Stepwise Regression

Path Coefficient

Partitioning the Correlation R2

Regression
Coefficient p Value * R2 Par. R2 Com.

Direct
Effect

Indirect
Effect

Correlation
Value

Direct
Effect

Intercept 16.232 <0.0001
GLA 0.492 0.010 0.104 0.104 −0.065 0.511 0.446 0.004
LAI 0.373 0.001 0.141 0.245 0.264 0.230 0.493 0.069
RWC 0.772 0.030 0.171 0.416 0.189 0.201 0.390 0.036
CT −0.497 < 0.0001 0.400 0.816 −0.653 0.020 −0.633 0.426
Gs 0.326 0.040 0.070 0.886 −0.173 0.479 0.306 0.030
Indirect effect 0.321
Total R2 0.886 0.886
Residual 0.338 0.338

Coefficient partial determination (R2 Par.), cumulative coefficient determination (R2 Com.), * means p value of coefficient partial determination.

3.5. Classification of Drought-Tolerance of Twenty-Five Wheat Genotypes

The four traits (GLA, LAI, RWC and CT) were used in classification of tested genotypes
after the Gs trait was removed owing its low-level heritability and genetic gain. We
used these four traits in finding a membership index for the phenotypic profiling of
25 wheat genotypes to assess the extent of their drought-tolerance. The membership index
was obtained by scores calculated from these four traits into five main clusters (Table 6).
Regardless of growing season and the four traits used, the genotypes were classified in
as follows. The first group was classified as highly tolerant (HT, with the highest score
of Fi > 0.8), and included eight genotypes (DHL02, DHL30, DHL26, Gemmeiza-9, Misr1,
DHL05, Pavone-76 and DHL08). The second group was classified as tolerant (T, with scores
of 0.6 ≥ Fi < 0.8), and included six genotypes (DHL12, DHL25, DHL07, DHL01, Giza-168
and DHL03). The third group was classified as moderately tolerant (I, with scores of
0.4 ≥ Fi < 0.6), and contained four genotypes (DHL11, Gemmeiza-9, DHL29 and DHL23).
The fourth group was classified as sensitive (S, with scores of 0.2 ≥ Fi < 0.4), and contained
seven genotypes (KSU106, DHL14, DHL15, DHL06, Sakha-93, DHL21 and DHL22). In each
growing season (S1 and S2) separately, 20 out of 25 genotypes were similarly categorized
from their combined scores. Some genotypes in the fourth group were classified as highly
sensitive (HS, with scores of Fi < 0.2) with some traits and/or season combinations such as
DHL21 with LAI in S1, DHL14 with LAI in S2 and DHL06 with CT in S2 (fifth group).
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Table 6. Membership index score for the 25 wheat genotypes based on four selected traits (green leaf area, leaf area index,
relative water content and canopy temperature).

No. Genotypes
GLA LAI RWC CT Over All data Over All Data

S1 S2 S1 S2 S1 S2 S1 S2 S1 Class S2 Class Combined Class

1 DHL12 0.785 0.865 0.709 0.786 0.726 0.738 0.820 0.836 0.760 T 0.806 HT 0.783 T
2 DHL02 0.792 0.821 0.779 0.844 0.820 0.792 0.851 0.857 0.811 HT 0.829 HT 0.820 HT
3 DHL25 0.710 0.782 0.642 0.712 0.657 0.668 0.742 0.756 0.688 T 0.730 T 0.709 T
4 DHL30 0.876 0.907 0.862 0.933 0.907 0.876 0.988 0.900 0.908 HT 0.904 HT 0.906 HT
5 DHL07 0.688 0.758 0.621 0.689 0.636 0.647 0.754 0.696 0.675 T 0.697 T 0.686 T
6 DHL26 0.834 0.864 0.820 0.889 0.863 0.834 0.941 0.857 0.865 HT 0.861 HT 0.863 HT
7 Gemmeiza-9 0.850 0.847 0.729 0.809 0.710 0.797 0.885 0.817 0.793 T 0.818 HT 0.805 HT
8 DHL11 0.494 0.532 0.525 0.476 0.528 0.589 0.532 0.471 0.520 I 0.517 I 0.518 I
9 KSU106 0.400 0.406 0.311 0.360 0.392 0.487 0.380 0.372 0.371 S 0.406 I 0.389 S

10 Gemmeiza-12 0.473 0.479 0.379 0.399 0.462 0.567 0.454 0.409 0.442 I 0.464 I 0.453 I
11 DHL01 0.708 0.706 0.640 0.672 0.591 0.664 0.738 0.681 0.669 T 0.681 T 0.675 T
12 DHL14 0.330 0.352 0.274 0.198 0.340 0.343 0.320 0.196 0.316 S 0.272 S 0.294 S
13 DHL29 0.428 0.479 0.361 0.380 0.440 0.540 0.433 0.390 0.415 I 0.447 I 0.431 I
14 DHL15 0.347 0.408 0.303 0.310 0.376 0.379 0.330 0.275 0.339 S 0.343 S 0.341 S
15 DHL06 0.330 0.389 0.274 0.310 0.358 0.361 0.315 0.199 0.319 S 0.315 S 0.317 S
16 Misr1 0.892 0.925 0.878 0.951 0.878 0.937 0.980 0.917 0.907 HT 0.932 HT 0.920 HT
17 DHL05 0.822 0.906 0.743 0.824 0.761 0.773 0.852 0.832 0.794 T 0.834 HT 0.814 HT
18 Giza-168 0.695 0.766 0.628 0.697 0.643 0.654 0.726 0.741 0.673 T 0.714 T 0.694 T
19 DHL23 0.571 0.611 0.573 0.580 0.636 0.641 0.584 0.573 0.591 I 0.601 T 0.596 I
20 Sakha-93 0.372 0.396 0.294 0.332 0.404 0.368 0.321 0.295 0.347 S 0.348 S 0.348 S
21 DHL21 0.323 0.344 0.195 0.288 0.351 0.320 0.279 0.256 0.287 S 0.302 S 0.295 S
22 DHL22 0.347 0.370 0.289 0.295 0.377 0.344 0.300 0.276 0.328 S 0.321 S 0.325 S
23 DHL03 0.800 0.841 0.761 0.723 0.740 0.752 0.815 0.852 0.779 T 0.792 T 0.786 T
24 Pavone-76 0.776 0.804 0.803 0.787 0.803 0.776 0.833 0.839 0.804 HT 0.801 HT 0.803 HT
25 DHL08 0.834 0.864 0.864 0.846 0.863 0.834 0.896 0.903 0.864 HT 0.862 HT 0.863 HT

Green leaf area (GLA), leaf area index (LAI), relative water content (RWC) canopy temperature (CT), highly tolerant (HT), tolerant (T),
intermediate (I), sensitive (S) and highly sensitive (HS).

3.6. Clustering and Genetic Relationships between the Genotypes for Drought Tolerance

We decided to use the membership index scores of the four traits (GLA, LAI, RWC
and CT) to create a cluster analysis for the phenotypic profiling for drought tolerance
in the wheat genotypes. The clustering was the genetics dissimilarity matrix based on
Euclidean distance using Ward’s method of agglomeration. The genotypes produced five
major clusters, clearly separated with a dissimilarity coefficient of 0.599 and reflected the
distance between the five clusters based on the tolerance or sensitivity of wheat genotypes
for drought. The highly tolerant, tolerant, intermediate, sensitive and highly sensitive
clusters represented six, eight, two, three and six genotypes, respectively (Figure 2).

The classification relationships based on membership index and clustering of drought-
tolerant and sensitive genotypes were significantly correlated (r = 0.328, p < 0.0001) ac-
cording to the Mantel test. The first three PCoAs (two-dimensional) had eigenvalues
greater than 1, which explained 88.46% of the total variation (PCoA1 and PCoA2 explained
62.78% and 14.35%, respectively). PCoA resulted in a clear separation between genotypes
groups based on tolerance or sensitivity for drought. S and HS groups were distributed
into quadrants 1 and 2, respectively, but the I group was distributed in both quadrants
(Figure 3). Group T was the largest, distributed in all quadrants and covered the largest
PCoA area. The HT group was distributed into quadrants three and four. The genotypes
groups (into PCoA) were in full conformity with results from clustering analysis.
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3.7. Differentiation of Drought Groups by Discriminant Function Analysis and MANOVA

Fisher linear discriminant analysis (FLDA) operates in a manner similar to MANOVA,
which initially computes the Mahalanobis distance of each genotype to a group and
then uses this distance to categorize a genotype into the group with the smallest general-
ized squared distance [47]. The homogeneity test was significant for covariance matrices
(0.04 < p < 0.0001), so we were prompted to use quadratic discriminant analysis (QDA). Its
results had a 0.00% error rate, confirming that the classification of our genotypes using
clustering based on membership index was an influential analysis. Discriminant analysis
was used to better understand the grouping and evaluate the extent of the differences
between drought groups. The four selected measures (GLA, LAI, RWC and CT) were
high and significant with each statistical multivariate analysis used, thus confirming the
odds of prediction by clustering based on membership. The discriminant functions (two-
dimensional) of five groups and four selected measures were closely associated for the
prediction of membership into drought groupings for the 25 genotypes used (Figure 4).
The first three canonical discriminant functions (Can) explained 79.37, 13.24, and 6.17%
(total of 98,77) of the total phenotypic variations in the four traits (which had eigenvalues
greater than 1), respectively (Table S4).
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Figure 4. Distribution of 25 wheat genotypes by canonical discriminant analysis (Can) of relative
water content, canopy temperature, leaf area index and green leaves area traits responses to drought
stress. Highly tolerant (HT), tolerant (T), intermediate (I), sensitive (S) and highly sensitive (HS).

Loading the four variables in S1 and S2 to canonical discriminant functions showed
that GLA, LAI, RWC and CT were positive and highly correlated to Can1 (Table S4). In
addition to the variance explained by Can1, it appeared that Can1 is a measure of the overall
characteristics of drought tolerance by the four measures. Can2 was closely interrelated to
GLA and RWC, but negatively correlated to LAI and CT in each of S1 and S2. Can3 was
closely interrelated to GLA and LAI, but negatively correlated to RWC and CT in each of
S1 and S2. Therefore, this result suggests that Can2 differentiates genotypes based on GLA
and RWC, while Can3 differentiates genotypes based on GLA and LAI. The maximum
separation of group means was observed between HT and I (6.67 vs. −5.04), and the
separation between S and HS was very close (−3.41 vs. −3.48) in Can1. The maximum
separation between group means was observed in S vs. HS (3.70 vs. −2.03) in Can2.
Examination of Can3 showed a maximum separation of HS from group I (1.12 vs. −3.40).
Two (HT, and T) groups with positive values to Can1, which had some tolerance to drought
and, conversely, groups HS, I and S, had negative values to Can1. In the plot of drought
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groups with Can1 and Can2, group I was placed in the middle between groups HS and
S (Figure 4). Group HT had a positive value to Can1 (6.67) and negative values to Can2
and Can3 (−0.35 and −0.06), indicating that HT had high mean values in all traits, but
negative low LAI and CT in Can2, and RWC, and CT in Can3. The S group was against
the HT group, which had a negative value to Can1 (−3.41) and positive value to Can2 and
Can3 (3.70 and 0.79). The I group had negative values to three Can (−5.035, −0.867, and
−3.401), respectively (Table S4).

3.8. Phenotypic Variation Among Drought Groups

Multivariate analysis of variance (MANOVA) indicated that the five groups were
significantly different for four traits in S1 and S2 (Figure 5). This also indicated the complete
separation between the five groups based on the four quantitative traits in S1 and S2. The
LS means comparison for each trait between groups showed significant differences in
HT with the T, I, S and HS groups in all traits for S1 and S2, though group T in S2 was
insignificant for the GLA trait (Table S5). Group T exhibited significant differences from
the I, S and HS groups in all traits in S1 and S2. Group I exhibited significant differences
from the S and HS groups in all traits in S1 and S2, except for group S in S2 which was
insignificant for the RWC trait. Group S vs HS exhibited significant differences in all traits
in S1 and S2, except for the RWC trait, which was insignificant in S1.
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4. Discussion

Plant breeders rely on several interpretive traits as screening criteria to evaluate the
water shortage tolerance of genotypes and increasing access to sustainable genotypes
appropriate for water shortage [48,49]. Interpretive traits, such as agronomic traits (yield
components, leaf water status, photosynthetic and morphological measures) reflect the
integration of many plant operations either on the whole plant or at distinct stages of the
life-cycle. Above-ground biomass (TDW), canopy temperature (CT), leaf area index (LAI),
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and green leaf area (GLA) reflect radiation use efficiency, plant competition, photosyn-
thesis and evapotranspiration rates, and the status of crop growth under special growing
conditions [5,6,50], and are thus important traits. Stomatal conductance (Gs) reflects the
relationship between photosynthesis and transpiration capacity and is influenced by the
close relationship between external and/or internal environmental conditions and plant
characteristics induced by water stress [51,52]. The overall response of plant tissues to soil
water shortages is a signal of shortages in relative water content (RWC), which depends on
the extent and duration of the water shortage stress [53].

The accurate selection of interpretive traits is efficient if these traits are closely linked
with GY and have high-value heritability and genetic gain [20,54,55]. There were highly
significant differences (p < 0.01) between treatments and their interactions (except for some
traits, which were nonsignificant in one of the interactions (Table 1), based on ANOVA.
Specifically, there was great variation between the lowest and highest values for most
measured traits, indicating the high genetic diversity between the genotypes used. The
interactions in ANOVA between the three treatments (genotypes, irrigation and seasons)
were significant with most traits, suggesting that the performance of the genotypes differed
from one level of irrigation to another and one season to another (Table S2).

There were eleven (SDW, DLW, TDW, FLA, GLA, LAI, RWC, NKS, CT, LEWT, and
Pn) traits with high heritability (h2 > 60%) and genetic gain (>20%), coupled with their ap-
proximate values for GCV and PCV (Table 3). The combination of high h2 (<60.0%), genetic
gain (>20.0%), and GCV for the trait, evidenced that the variation between genotypes was
largely due to the additive genetic part. The selection process had a large confidence inter-
val with these traits [5,6,54]. The results showed that grain yield had moderate values both
for heritability (57.60%) and genetic gain (16.89%), which would slow the direct selection
progress of breeding programs under water shortage and its considerable environmental
interaction (Tables 1 and 3). The findings of these genetic analyses for interpretive traits
suggest that accurate identification of water shortage tolerance genotypes can be improved,
compared to identification based on measuring grain yield only under water shortage
stress. This is because stress reduced the heritability of grain yield under water shortage,
which remained high for some interpretive traits [6,14,37]. Furthermore, a selection process
based on interpretive traits is expected to be efficient at an early growth phase, where it is
not likely to affect grain yield. Moreover, SDW, DLW, TDW, FLA, GLA, LAI, RWC, NKS,
CT, LEWT and Pn had both higher heritability and genetic gain than GY (Table 3). These
results reinforce the idea of breeding for interpretive traits to high yield genotypes under
water shortage stress conditions [6]. Therefore, the interpretive traits, which have a high
value of both high heritability and genetic gain combined, can be used as precise and reli-
able screening criteria for evaluating the genotypes for water shortage tolerance [37,56,57],
particularly if the measurement method is easy, quick and low-cost [19].

The multicolinearity test has been used to determine if multicollinearity exists between
measured traits, and when there is multicollinearity to take appropriate measures to adjust
it [58,59]. The results showed that three traits (DH, DM, and GFD) had VIF values >10.0, and
after excluding the DM trait (>multicollinearity), all VIF values of <10.0. After excluding
the DM trait, PCA was used for identifying the most significant measured traits with three
treatments (genotypes, irrigation and seasons), owing to the significant interactions seen by
ANOVA (Table 4). The first two PCA explained 37.18% and 11.48% of the total phenotypic
variation between 27 traits, respectively, and 17 traits loaded the highest onto PC1 and
PC2 (with scores of >0.27) and were seen as paramount (Table S3). PCA resulted in a
clear separation between irrigation treatments and genotypes based on measured traits
to identify the critical trait. This was used for identifying traits that clarified much of the
difference between the 25 wheat genotypes used. The angle between the vectors of traits
was acute (less than 90◦) for GY with most traits, which indicates that they are positively
correlated, while the angle between the vector of the four traits (CT, Ls, WUE and WUEi)
was higher than 90◦ for GY, which indicates that they are negatively correlated (Figure 2).
The 16 interpretive traits (GFD, DLW, NS, PH, FLA, GLA, LAI, NSS, RWC, CT, Gs, Ci,
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E, WUE, WUEi and Ls) in PC1 and PC2 (with scores of >0.27) were used as influential
screening criteria for yield (Supplementary Table S3, Figure 1) and were used in SMLR and
path coefficient analysis.

Multivariate analyses (SMLR and path coefficient) are effective instruments for un-
derstanding the relationship between interpretive traits for yield [60,61]. It has also been
found that using simple correlation without regard to interactions between interpretive
traits for yield may not be useful for finding successful breeding programs [62]. The in-
effective impact from the 16 selected interpretive traits from PCA analysis on yield was
removed by SMLR. In this study, CT, RWC, LAI, GLA and Gs, according to the order of
their importance, were found to be credible interpretive traits for GY (p < 0.01, Table 5).
SMLR had a coefficient of determination (R2) of 0.886. Many investigators have used
multivariate analyses [61,63,64]. Based on SMLR, we used path analysis to separate the
five interpretive traits obtained by SMLR into the direct and indirect impacts for each trait.
If the correlation between interpretive traits and yield is due to a direct effect, it suggests
a relationship between them and they are selected to improve performance [61,65]. The
separation of the correlation values into direct and indirect impacts was close for LAI
and RWC. However, for CT, the direct impact was much greater than the indirect impact,
while the opposite was true for GLA and Gs (Table 5). The separations of the coefficient of
determination for direct and indirect impacts were 0.565 and 0.321, respectively, and most
of the direct impact was due to a contributing to the CT trait. Combining genetic analyses
(heritability and genetic gain) and multivariate analyses (PCA, SMLR and path coefficient)
excluded the Gs interpretive trait due to its reduced heritability and genetic gain, which
was 30.37 and 9.69, respectively. Hence, we concluded that LAI, RWC, CT and GLA are
good interpretive traits for predicting yield and could be unbiased traits to evaluate the
genotypes for water shortage tolerance in view of their important contribution to grain
yield productivity (Table 5). It would be normal for genotype performance to differ from
one trait to another, but at least it will be superior in one trait [61].

CT and RWC are useful indicators of water status in plants [30,53], and leaf area
index (LAI), and green leaf area (GLA) reflect the overall situation of growth, radiation
use efficiency, plant competition, photosynthesis and evapotranspiration rates [5,50]. CT
is a powerful tool for the indirect selection of genotypes for water shortage tolerance,
given the interdependencies with several morphophysiological (photosynthetic capacity
and chlorophyll content) and agronomic traits (yield and yield component) under water
shortage stress, and several traits connected with water status in plants [66–68]. Genotypes
that have the capability to lower CT and gas exchange are more desirable, because they
have greater efficiency of transpiration and gas exchange as leaf-cooling responses under
water shortage stress [30,33]. Therefore, CT has been used in wheat breeding programs as a
powerful selection tool for stress tolerance. CT varies from genotype to genotype and this
may be due to differences in the plant′s ability to move water across the vascular system by
regulating stomata aperture that drives transpiration and affects metabolism, root biomass,
root depth and source sink balance [69]. As such, CT is considered a powerful physiological
trait and considered a cost-effective nondestructive measure for identifying water shortage
tolerant genotypes [17,66,67]. The focus is on finding genotypes that preserve lower CT in
plant breeding programs and selecting water shortage-tolerant varieties, as in our study.
Membership indices in the first two groups were HT and T (with the highest score), and
included eight genotypes (DHL02, DHL30, DHL26, Gemmeiza-9, Misr1, DHL05, Pavone-76
and DHL08) and six genotypes (DHL12, DHL25, DHL07, DHL01, Giza-168 and DHL03),
respectively, compared to the fourth and fifth groups (S and HS), which were in the reverse
direction under the same conditions (Table 6).
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RWC is a robust mechanism to preserve cellular hydration by osmotic adjustment
as a barometer of plant water status. Trials can be rapidly performed to identify geno-
types that preserve high leaf RWC values during water deficit stress. Tolerant genotypes
have the potential to minimize stress by keeping leaves turgid under water deficit stress
through their possession of certain physiological advantages, which protect and preserve
the photosystem complex, plant growth and stomatal activity [31]. The low value for
the membership index of RWC indicated that the photosynthetic ability of the sensitive
genotypes under water deficit stress was limited due to lack of water and cellular dehy-
dration [53,70]. The membership index was highest in groups HT and T, and included
14 genotypes, compared to groups S and HS, which included seven genotypes. Genotype
groups HT and T were less affected by water deficit stress due to biochemical activities
which prevent oxidative damage by multiple mechanisms (photosynthesis, heat fragmenta-
tion by xanthophyll pigments, and electron transfer to oxygen acceptors other than water),
which might relate to differences in the closure level of the stomata and/or responses that
enhance CO2 fixation [70].

The clustering analysis results, based on a dissimilarity matrix and Euclidean distance
using Ward’s method of agglomeration, showed that all genotypes were assigned to five
groups (clusters) based on phenotypic profiling for drought tolerance (Figure 2). The
five groups were clearly separated and reflected the distance between the five clusters
based on the tolerance and/or sensitivity of wheat genotypes for drought. The highly
tolerant, tolerant, intermediate, sensitive, and highly-sensitive clusters represented six,
eight, two, three and six genotypes, respectively. The groups showed some deviation
to the nearest group, compared to the classification of results based on combined data
from the membership index. Fifteen out of 25 genotypes placed within the same category
obtained from the combined data from the membership index and clustering analysis.
HT showed deviation in two genotypes (Gemmeiza-9 and DHL05) to group T, and five
genotypes deviation from group S to group HS, which was absent in the combined data
from the membership index. Nevertheless, according to the Mantel test, the relationship
between membership index and clustering of drought-tolerant and sensitive genotypes
was significantly correlated (r = 0.328, p < 0.0001, alpha = 0.05).

Furthermore, PCoA revealed compatible relationships with cluster analysis of these
genotypes, which showed that the genotypes’ stability in their classification groups
(Figure 3). This is consistent with the ANOVA results, which revealed highly significant
differences for treatments and their interactions (genotypes, irrigation and seasons), thus
indicating the high genetic diversity between genotypes. PCoA can be an effective and
necessary method for separation of genotypes when clearly different from other geno-
types [71,72]. The use of a membership index and clustering analysis were confirmed
using discriminant analysis in order to increase classification reliability for water-deficit
stress tolerance. The results showed that the contributions were robust, as indicated by
MANOVA and discriminant functions, and there were clear separations between the water-
deficit tolerance groups. The findings also showed that Can1 was a measure of the overall
characteristics of drought tolerance by the four traits, Can2 differentiated genotypes based
on it GLA and RWC, and Can3 differentiated genotypes based on GLA and LAI. MANOVA
showed that the five groups were significantly different, which indicates complete separa-
tion between the five groups based on the four quantitative traits in each S1 and S2. HT vs.
T in the GLA trait in S2, I vs. S in the RWC trait in S2, and S vs. HS in the RWC trait in S1,
had the same drought tolerance responses (Table S5, Figure 5). HT and T had considerably
higher values in the four traits in each S1 and S2, compared to S and HS.
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5. Conclusions

Eleven interpretive traits to yield combined high heritability (h2 > 60%) and genetic
gain (>20%), compared to GY, which had moderate values of both heritability (57.60%)
and genetic gain (16.89%). Selection of interpretive traits could be a substitute for tools for
indirect selection of GY under water shortage stress conditions for these reasons. Multi-
dimensional analyses determined four effective interpretive traits (CT, RWC, GLA, and
LAI) proposed as comprehensive criteria for selecting water shortage-tolerant genotypes,
and selection based on them might improve genetic gain for GY in environments that are
vulnerable to water shortages. Discriminant analysis confirmed the results obtained. There
were clear separations between water shortage tolerance groups. MANOVA indicated that
there was considerable variation between the five water shortage tolerance groups. The six
genotypes (DHL02, DHL30, DHL26, Misr1, Pavone-76 and DHL08) can be recommended
as interesting new genetic sources for water shortage-tolerant wheat breeding programs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10050931/s1, Table S1. Names and pedigree of the 25 bread wheat genotypes (7 cul-
tivars and 18 doubled haploid lines (DHLs)) used in this study; Table S2. Analysis of variance
for 28 measured traits of 25 wheat genotypes (G) in two seasons (S) under two irrigation regimes
(I); Table S3. Principal component analysis of 25 wheat genotypes, eigenvalues, proportion, and
cumulative variance for the first seven components for 27 measured traits of 100 treatments; Table S4.
Total canonical structure of eigenvalue, canonical discriminant function and class means of drought
group to canonical discriminant function; Table S5. Summary (LS means) of all pairwise comparisons
for Class (Duncan).
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