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Abstract

A typical use case of ontologies is the calculation of similarity scores between items that

are annotated with classes of the ontology. For example, in differential diagnostics and dis-

ease gene prioritization, the human phenotype ontology (HPO) is often used to compare a

query phenotype profile against gold-standard phenotype profiles of diseases or genes.

The latter have long been constructed as flat lists of ontology classes, which, as we show

in this work, can be improved by exploiting existing structure and information in annota-

tion datasets or full text disease descriptions. We derive a study-wise annotation model of

diseases and genes and show that this can improve the performance of semantic similarity

measures. Inferred weights of individual annotations are one reason for this improvement,

but more importantly using the study-wise structure further boosts the results of the algo-

rithms according to precision-recall analyses. We test the study-wise annotation model for

diseases annotated with classes from the HPO and for genes annotated with gene ontol-

ogy (GO) classes. We incorporate this annotation model into similarity algorithms and

show how this leads to improved performance. This work adds weight to the need for

enhancing simple list-based representations of disease or gene annotations. We show

how study-wise annotations can be automatically derived from full text summaries of dis-

ease descriptions and from the annotation data provided by the GO Consortium and how

semantic similarity measure can utilize this extended annotation model.

Database URL: https://phenomics.github.io/

Background

Ontologies have become a widely used tool to capture know-

ledge about objects in biology, genomics and medicine.

Besides enabling knowledge integration and retrieval, they

are also a widely used tool for similarity calculation between

items that have been described (annotated) with classes of an

ontology (1). Reliable ontology-based similarity measures are

important, as they form the basis of several applications for

differential diagnostics (2), disease gene finding (3), gene

function prediction (4) and many more. Ontology-based

similarity measures allow non-perfect matches between

ontology-classes to be quantified by incorporating the graph
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structure of the ontology. Often used similarity measures

include semantic similarity measures based on Resnik’s defin-

ition of shared information content [IC (5)], cosine similarity

measure and the Jaccard index (1).

In the fields of human genetics, genomics and precision

medicine, the Human Phenotype Ontology [HPO (6, 7)] is

often chosen to store the information about the clinical fea-

tures of patients in a computer-interpretable way. In most

applications of the HPO, a similarity measure is used to

compare a phenotype profile of a patient against a set of

diseases or genes, which itself are represented as a gold-

standard set of HPO classes (2, 3, 8). The result of this step

is a quantification of the similarity or overlap of the query

profile and the gold-standard profile. Similarly, a typical

application of the Gene Ontology [GO (9)] is the search

for similar proteins for a given query protein described as a

set of GO classes known to be associated with this protein.

A critical part of this process is the comparison of a query

set of ontology classes against a gold-standard set of ontology

classes associated with an item, such as a disease or a protein.

These gold-standard profiles are often represented as flat lists.

In human genetics, gold-standard profiles were con-

structed from human-written summary tables of clinical

features. For example, the clinical synopsis section of the

Online Mendelian Inheritance in Man database [OMIM

(10, 11)] database provides a tabular view of the clinical

features seen in patients with a particular disease.

Orphanet provides a similar list of clinical features for

each Orphanet disease entry but encodes these directly as

HPO classes (12, 13). Accordingly, the HPO project, until

now provides flat lists of HPO classes for each disease or

disease gene, which we call ‘merged’ annotation model.

However, full text disease descriptions often have an inher-

ent structure, which we aim to use in this work. In

OMIM’s full text description, each paragraph often repre-

sents a summary of a certain publication, study or disease

aspect. Similarly, GO-annotations often have references to

PubMed articles where a particular annotation has been

derived from.

The hypothesis of this work is that standard semantic

similarity measures can be improved by extending the stand-

ard ‘merged’ annotation model with additional information

(‘study-wise’ annotation model) that can be easily extracted

from the accompanying full text description in OMIM or the

meta-information available in the GO annotation data set.

Materials and methods

We first show how we construct a study-wise annotation

model for annotations with the HPO and GO. We introduce

semantic similarity measures that take into account weights

of individual phenotypes and the study-wise structure of the

annotation data. Finally, we present the data and approach

we chose for evaluating the hypotheses of this work.

Text mining of OMIM full text

We obtained one of the last freely downloadable versions

of omim.txt (last updated on 8 January 2016) and wrote

a parser that extracts the full text description for all

OMIM entries that the HPO project provides annotations

for (6916 in total). The full text description of OMIM

is structured according to multiple sections, such as

‘biochemical features’, ‘molecular genetics’ or ‘clinical

features’. We aimed to identify HPO classes associated

with patients who are diagnosed with OMIM entries. To

prevent false positive associations, we restrict our text min-

ing procedure to the sections ‘description’, ‘other features’,

‘biochemical features’, ‘diagnosis’, ‘clinical features’ and the

introductory section that usually has no header.

The text in the OMIM-sections is organized into mul-

tiple paragraphs—it is this paragraph structure that we

aim to investigate in this work. To give an example, the

OMIM entry for Alzheimer disease (OMIM: 104300) con-

tains the paragraph

Yan et al. (1996) reported that the . . .was particularly

increased in neurons close to deposits of amyloid beta

peptide and to neurofibrillary tangles.

This paragraph is later followed by the paragraph

Bergeron et al. (1987) found that . . . findings suggested

that cerebral amyloid angiopathy is an integral compo-

nent of AD.

The assumption is that each paragraph roughly corres-

ponds to one study. We thus split the text into separate

paragraphs and used the NCBO annotator (14) to identify

HPO classes in each paragraph. We then stored the found

matches together with the paragraph index, i.e. we gener-

ate a file that contains lines such as

104300 HP_0002185 NEUROFIBRILLARY TANGLES 23

104300 HP_0011970 CEREB. AMYLOID ANGIOPATHY 25

which means that NCBO annotator found the HPO class

for ‘Neurofibrillary tangles’ (HP_0002185) in the 23rd

paragraph of the OMIM entry with the ID 104300. The

next line lists the occurrences of ‘Cerebral amyloid

angiopathy’ (HP_0011970) in the 25th paragraph of the

same OMIM entry. We will infer from this data the study-

wise annotation model by assuming that each paragraph

represents one study.

GO annotations

We downloaded the GO obo-version from http://purl.oboli

brary.org/obo/go-basic.obo (date: 10 May 2017) and the
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GO annotation data from ftp://ftp.ncbi.nlm.nih.gov/gene/

DATA/gene2go.gz (date: 10 May 2017). Note that we only

considered GO classes from the biological process (BP) sub

ontology. We used all human gene to GO-BP class associ-

ations that have at least one PubMed reference, as we used

those for deriving the study-wise annotation sets for each gene.

Annotation models

In this work, we test four different annotation models that

can be generated from the annotation data described be-

fore. We introduce a merged (‘merged’), weighted [‘merged

(weighted)’], study-wise (‘study-wise’) and randomized

study-wise model [‘study-wise (shuffled)’]. An illustration

of these models is shown in Figure 1.

The merged annotation model (‘merged’) resembles

the model that is currently widely used, e.g. in the annota-

tion file provided by the HPO. Here, each ontology class

is listed once in a flat list with no additional structure.

The study-wise annotation model creates an annotation

list for each study. For the HPO, this corresponds to each

paragraph of the full text disease description from OMIM

that was considered in this work (i.e. we did not consider all

sections as described before). For GO, this corresponds to

each PubMed article referenced in the annotation data.

To investigate the influence of the actual annotations

per study and to exclude other factors introduced by the

studies (e.g. the number of studies per disease/gene), we

also use a randomized version of this annotation model

[called ‘study-wise (shuffled)’], where we kept the number

of studies and the number HPO/GO classes per study con-

stant, but randomly exchanged annotations between stud-

ies of each disease/gene. We perform this exchange

between two randomly chosen HPO/GO classes from two

randomly chosen studies 1000 times per disease/gene.

One of the obvious differences between the annotation

models ‘merged’ and ‘study-wise’ is the number of associ-

ated HPO/GO classes per study, because multiple occur-

rences of one ontology class per disease/gene are allowed

in the latter model (see Figure 1). To investigate the influ-

ence of this criterion, we also introduce the annotation

model ‘merged (weighted)’, where we use one flat list of

associated ontology classes, but each class is listed as often

as it occurs in different studies. Figure 1 illustrates the four

different annotation models using an artificial example dis-

ease and artificial HPO annotations.

Similarity measures

We chose to test three widely used semantic similarity

measures to quantify the overlap between a query Q and

an item I (an item is a disease or a gene in our case). Here,

each of these measures is capable of taking into account

the number of occurrences of a particular HPO/GO class

in Q and in I. This means, that measures are able to make

use of duplicated annotations in the model ‘merged

(weighted)’. We also introduce a method to apply the

measures to the study-wise annotation model.

Unweighted and weighted semantic similarity measures

We took a standard semantic similarity measure, which is

based on Resnik’s definition of IC. For each class c in the

ontology, the IC(c) is defined as the negative logarithm of

the frequency of annotations of items with the class (5),

i.e. IC(c)¼� log(pc), where pc is the observed frequency

of items annotated with class c among all annotated

items.

The similarity between two ontology classes (c1, c2) is

then calculated as the IC of their most informative common

Figure 1. Contrived symptom annotation set for one disease under the different annotation models tested in this study. In the ‘merged’ model every

symptom is listed exactly once and no further structure is given. In the ‘study-wise’ model, the symptoms associated with the disease are organized

by three studies that mention the symptoms. Note that each symptom may be mentioned in multiple studies. In the shuffled version of the ‘study-

wise’ model, each symptom from a study is randomly switched with a symptom from another study. Finally, the ‘merged (weighted)’ model removes

the structure defined by the studies but keeps the number of mentions for each symptom as derived from the ‘study-wise’ model.
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ancestor [MICA(c1, c2)], i.e. the common ancestor with the

highest IC (5). The set of common ancestors is the set of

ontology classes that subsume both c1 and c2. For this paper,

we define the semantic similarity between the annotated

ontology classes of a query (Q) and the annotated classes of

an item (I) as

Resnik BMA Q; Ið Þ ¼ 1

Qj j
X

c12Q

max
c22I

ICðMICA c1; c2ð ÞÞ (1)

Note that jQj returns the number of ontology classes in

the set Q. For the unweighted version, each ontology class

in Q and I is uniquely present, for the weighted version,

the sets Q and I may contain duplicate entries. BMA stands

for best match average (1).

Other widely used similarity measures are the Cosine

similarity and the Jaccard index. To apply these, the query

Q is transferred to a vector representation q, where each

entry represents the number of occurrences of the corres-

ponding ontology class. For the unweighted version, each

of the entries is set to 1, if the corresponding ontology class

is present in the set and 0 otherwise. We do the same for

the item I, i.e. it is transferred to the vector i. Note that

during the transformation, all the ancestors of the classes

in Q and I are set to the corresponding count (or 1 in the

unweighted case).

The Cosine similarity measures the cosine of the angle be-

tween two non-zero vectors (here q and i) and is defined as

Cosine q; ið Þ ¼ q � iffiffiffiffiffi
q2

p
�
ffiffiffiffi
i2
p (2)

Finally, we tested the Jaccard index. The input is the

same as for the Cosine measures, i.e. the transformation of

Q and I into a vector representation q and i. The Jaccard

index is then computed as

Jaccard q; ið Þ ¼
P

jminðqj; ijÞP
jmaxðqj; ijÞ

(3)

Again, in the unweighted setting, each entry in the vec-

tors can be either 1 or 0, but in the weighted setting, the

entries represent the number of occurrences of the corres-

ponding ontology class in Q (or I).

Paragraph-wise similarity measures

In this work, we extend the flat list representation of gold

standard annotations (Q, I) by a study-wise model, such

that we replace the list of annotated HPO or GO classes

per disease or gene with multiple separate lists per disease

or gene (see Figure 1). The similarity in the study-wise an-

notation model is the defined as

Simstudywise Qs; Isð Þ ¼ 1

Qsj j
X

sq2Qs

max
si2Is

Simðsq; siÞ (4)

where Qs and Is are defined as the set of studies Each study

sx represents a list of ontology classes that were identified

in the corresponding study. This simply means that for

each study in the query, we try to identify the most similar

study for the item. The final score is just the average of

similarities between the studies. The function Sim(pq, pd) is

a placeholder for one of the standard semantic similarity

measures described in the previous section, i.e. Resnik

BMA [equation (1)], Cosine [equation (2)] or Jaccard

[equation (3)]. Intuitively, this method takes each para-

graph from the query and tries to identify the best match-

ing paragraph in the item.

Evaluation using OMIM phenotypic series and

pathway membership

In order to test the different annotation models, we chose

to use pre-defined groupings of diseases and genes. The

goal is to re-identify group members given one member as

query using the similarity measures described earlier.

HPO-phenoseries test

For HPO, we used OMIM phenotypic series data, which is

a tabular representation for viewing at genetic heterogeneity

of similar phenotypes (10). One example of a phenotypic

series is ‘reticulate pigment disorders’, which has six mem-

bers. The idea is to use the HPO annotations of one member

of a phenotypic series as query (e.g. ‘Dowling-Degos disease

1’, OMIM: 179850) and rank all OMIM entries by seman-

tic similarity to that query. We record the rank of the other

members of the phenotypic series (e.g. ‘Dyschromatosis

symmetrica hereditaria’, OMIM: 127400). The goal is to

list all the other members on the first ranks, i.e. in front of

all non-members. The test only considered phenoseries

groups with at least two diseases after removing all diseases

that had <5 HPO annotations and <4 different studies.

This applied to 233 phenoseries.

Note that we did not aim to generate a more detailed

or deeper HPO annotation data set than the existing one

but rather want to show that for the one annotation set

derived from mining OMIM full text descriptions, meta

information on the annotations contains valuable infor-

mation. We thus did not compare the performance to

the existing gold-standard flat list: The aim was to show

that for this annotation set, a more sophisticated model

such as the ‘study-wise’-annotation model outperforms

a flat list (‘merged’) representation, which is currently

applied.
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GO-BP-pathway test

For GO, we obtained gene-to-pathway associations from

KEGG (15) by downloading the file http://rest.kegg.jp/

link/pathway/hsa (date: 19 September 2017). Similar to the

OMIM test, we took one gene from each pathway and

used its GO annotations to the ‘biological process’ sub

ontology (GO-BP) to calculate a similarity to all other

human genes. The test only considered pathways with at

least two genes but not >15 genes left, after removing all

genes that had <5 GO-BP annotations and <4 different

studies. This applied to 89 pathways.

Performance evaluation

As written before, we test the performance of the different

similarity measures and annotation models by trying to

identify all group members given one member as query.

We record the ranks of all other members; whereby low

ranks are better. We draw the rank distribution of the ob-

tained ranks and plot them as box and violin plots. A box

plot shows 50% of the data points surrounding the median

in the box and the position displays the skewness of the

data. The whiskers extend to the most extreme data point

that is no >1.5 times the length of the box away from the

box. Violin plots are similar, except that they also show

the probability density of the data at different values. We

use an overlay of a box and violin plots. To test for signifi-

cant improvements of the rank distributions, we use

Wilcoxon signed rank test with continuity correction, a

non-parametric test for two unrelated, not normally dis-

tributed samples [function wilcox.test(x, y, paired¼T, al-

ternative¼‘less’) in R].

We also use precision recall curves (PRC), which are

visual representations of the performance of a model in

terms of the precision and recall statistics. For different

thresholds, it plots the actual precision (y-axis) and recall

(x-axis) points and connects them by a line. An important

measure is the area under the precision recall curve (AU-

PRC), which is to be maximized.

Results

In this work, we tested four different annotation models,

in particular we investigate a model that incorporates the

information about the study or publication that a particu-

lar annotation has been based upon (see Materials and

methods). Figure 1 illustrates the different annotation

models tested in this work.

GO and HPO annotation data sets

In total, we annotated 6475 OMIM entries with at least

one HPO class from the HPO sub ontology ‘Phenotypic

abnormality’ (HP: 0000118) using the NCBO Annotator

(14). For these OMIM entries, we have identified 29 202

paragraphs/studies with at least one HPO class, i.e. on

average each disease has 4.5 paragraphs/studies in our

dataset. In the ‘merged’ annotation model, each disease has

on average 14.1 HPO annotations, whereas in the ‘study-

wise’ annotation model, each disease has 21.3 HPO anno-

tations. The reason for this discrepancy is the missing

uniqueness constraint. Each study/paragraph has a mean

number of 4.73 HPO annotations.

For the GO test, we used 10 608 genes that are anno-

tated with at least one GO class from GO-BP (biological

process). We have identified 30 104 PubMed-references

and on average each gene has 2.8 PubMed-references

(studies). Using the ‘merged’ annotation model each gene

has on average 4.5 GO-BP annotations. In the ‘study-wise’

annotation model, each disease has 5.1 GO-BP annota-

tions. Each study/PubMed-reference has a mean number of

1.8 GO-BP annotations.

The distribution of the annotation size (i.e. the distribu-

tion of the number of ontology classes associated with an

item or a study) is here analysed using quantiles (function

quantile in R). Here, we report the numbers for which five

5% and 95% of the data is smaller. For all tested annota-

tion models (GO-BP ‘merged’, GO-BP ‘study-wise’, HPO

‘merged’, HPO ‘study-wise’) the 5% quantile is 1.

However, the 95% quantile differs significantly between

the ‘merged’ and the ‘study-wise’ annotation data set, i.e.

15 vs. 4 for GO-BP and 43 vs. 14 for HPO. This shows

that the annotation size distribution for the ‘study-wise’

model is more homogeneous than the distribution for the

‘merged’ model.

Performance of study-wise similarity measures

We analysed if the annotation model currently in use can

be improved by employing a study-wise annotation model.

For the HPO, we derived the study-wise annotations by

analysis of OMIMs full text descriptions. For GO, we used

the PubMed identifiers often available for an association

between a gene and a GO class.

We tested four different annotation models and three

different similarity measures in two tests, the HPO-

phenoseries and the GO-BP-pathway test (see Materials

and methods). We found that the study-wise model outper-

forms almost all the other models in the tests according to

the modes of evaluation chosen.

Figure 2 plots the rank distributions of the sought items

in the HPO-phenoseries Test (2 A) and for the GO-BP-

pathway Test (2 B) using violin and box plot (see Materials

and methods). The ranks are obtained by sorting all dis-

eases or genes by semantic similarity and recording on
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which place (rank) the sought item was found, i.e. a lower

rank means better performance. The advantage of the

study-wise annotation model is especially apparent in the

HPO-phenoseries test.

Interestingly, the ‘merged (weighted)’ model already im-

proves the performance of the similarity measures, but the

study-wise model often outperforms the other models by a

large margin. This was confirmed by Wilcoxon signed

rank test (see Materials and methods), which resulted in

significant P-values for all measures in the HPO-

phenoseries test, when comparing ranks using the ‘study-

wise’ annotation model with all other annotation models

(P< 2.6*e�161). For the GO-BP-pathway test, the results

are different. Here, only the Cosine and Jaccard results are

highly significant (P< 1.05*e�128) when comparing the

merged and the study-wise annotation model. For Resnik

BMA only the comparison of the ranks obtained by study-

wise and the randomized study-wise model is significant

(P< 0.0002). For the cosine similarity measure, we also see

a significant difference between the study-wise and the

‘merged (weighted)’ model.

In Table 1, we list the improvements in terms of in-

crease in the AU-PRC. Figure 3 shows the precision recall

curves for the ‘merged’ and ‘study-wise’ annotation model

for all tested similarity measures. Except for one case, the

latter annotation model obviously improves the results of

the precision recall analysis. Only the GO-BP pathway test

for the Resnik methods show almost no change with only a

negligible increase in the AU-PRC of 0.007 (c.f. Table 1).

In Figure 4, we see the PRCs for the Jaccard similarity

measure, which again shows that the ‘merged (weighted)’

and ‘study-wise (shuffled)’ models show an improvement.

As seen before, the study-wise structure contains

valuable information, which leads to a further perform-

ance improvement.

Discussion

This work has investigated if using one simple flat list of

ontology classes for describing an item is an optimal anno-

tation model. Usually multiple studies are underlying such

an annotation set and we have thus inferred a study-wise

annotation model for disease being annotated with classes

of the HPO and for genes being annotated with classes of

the GO-BP. We tested different semantic similarity meas-

ures that are capable of using both annotation modes and

analysed their performance in recovering item-groupings

defined by biomedical knowledge, i.e. OMIM phenoseries

members using HPO and KEGG pathway members using

GO-BP. We find that the study-wise annotation model in

almost all tests significantly outperforms the merged anno-

tation model. The results show that the hypothesis of this

work is supported stronger when using HPO-phenoseries

test. The difference in performance advantage is probably

Figure 2. Box and violin plots (log-scaled) for the two tests performed in this project. (A) Shows the results for the HPO-phenoseries test and (B)

shows the same for GO-BP-pathway test. The plots show the distribution of the ranks of the sought members of the corresponding group (i.e.

Phenoseries members and KEGG pathway members). The lower a rank the better, because the sought disease/gene has been ranked before more

diseases/genes that were not considered to be sought. We tested three different ranking methods (Resnik BMA, Cosine and Jaccard) and four differ-

ent annotation models.
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due to the low number of annotation per study (1.8 vs.

4.7) in the GO-BP-pathway test. Also, we expect more het-

erogeneity in GO-BP annotations for genes in one pathway

compared to rather homogeneous HPO annotations for

members of a phenotypic series.

The HPO-phenoseries test investigated the ability of the

presented ideas to improve disease-clustering. However,

often patient phenotypes are compared against disease

entities and it will be interesting to see if the ideas pre-

sented here also improve the performance of similarity al-

gorithms in this setting (2), even if it is impossible to

generate study-wise annotations for a single patient.

The results obtained by the study-wise approach are not

only important for developers of ontology-based algorithms

for semantic similarity but also an important message for

database curators and developers. It is essential to keep the

provenance of annotations, i.e. why a particular association

between an item and an ontology class has been made.

Unfortunately, this has not been done for the ‘clinical synop-

sis’ in OMIM (at least not publicly available) and will

Figure 3. PRC for two annotation models (‘merged’ and ‘study-wise’) and for the three different ranking methods. (A) and (B) Show the results for the

HPO-phenoseries test and the GO-BP-pathway test, respectively. The differences in the area under PRC are listed in Table 1.

Figure 4. Precision recall plots for the Jaccard method and all four annotation models tested in this work. (A) and (B) Show the results for the HPO-

Phenoseries- and GO-BP-pathway test, respectively. One can see that the ‘merged (weighted)’ model already improves the performance, but that the

study-wise model outperforms all other models.

Table 1. Improvement using the ‘study-wise’ annotation

model in comparison to the ‘merged’ annotation model

measured by AU-PRC

Algorithm Increase in AU-PRC with ‘study-wise’

annotation model

HPO-Phenoseries test GO-BP-Pathway test

RESNIK BMA þ0.07 þ0.006

COSINE þ0.19 þ0.028

JACCARD þ0.20 þ0.027
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require a significant amount of work in the future to add

this information. However, it is relatively simple for data-

base curators to keep track of the provenance of associ-

ations in the future.

More research into the underlying mechanism of the

demonstrated improvements is needed. One explanation

might be the exclusion of false combinations of annota-

tions in the study-wise annotation model, which are other-

wise introduced by merging all annotated ontology classes

into one list. Another explanation might be that using

study-wise annotations sets, we derive a way more homo-

geneous distribution of annotation sizes (see Results) with

fewer entries having an extremely high number of annota-

tions. The effect of annotation size on the performance of

semantic similarity measures has been subject of research

in recent years (2, 16, 17).

Future work will include the implementation of the pre-

sented ideas into Bayesian algorithms (18). We think the

results of this work add weight to the need for improved

annotation data for items in parallel to continued research

into semantic similarity algorithms. This work is not only

relevant for HPO and GO-BP, but also, theoretically, for

all ontologies that are used to describe the properties and

characteristics of items.
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