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Diabetic neuropathy is the most entrenched complication of diabetes. Usually, it affects
the distal foot and toes, which then gradually approaches the lower part of the legs.
Diabetic foot ulcer (DFU) could be one of the worst complications of diabetes mellitus.
Long-term diabetes leads to hyperglycemia, which is the utmost contributor to
neuropathic pain. Hyperglycemia causing an upregulation of voltage-gated sodium
channels in the dorsal root ganglion (DRG) was often observed in models of
neuropathic pain. DRG opening frequency increases intracellular sodium ion levels,
which further causes increased calcium channel opening and stimulates other
pathways leading to diabetic peripheral neuropathy (DPN). Currently, pain due to
diabetic neuropathy is managed via antidepressants, opioids, gamma-aminobutyric
acid (GABA) analogs, and topical agents such as capsaicin. Despite the availability of
various treatment strategies, the percentage of patients achieving adequate pain relief
remains low. Many factors contribute to this condition, such as lack of specificity and
adverse effects such as light-headedness, languidness, and multiple daily doses.
Therefore, nanotechnology outperforms in every aspect, providing several benefits
compared to traditional therapy such as site-specific and targeted drug delivery.
Nanotechnology is the branch of science that deals with the development of nanoscale
materials and products, even smaller than 100 nm. Carriers can improve their efficacy with
reduced side effects by incorporating drugs into the novel delivery systems. Thus,
the utilization of nanotechnological approaches such as nanoparticles, polymeric
nanoparticles, inorganic nanoparticles, lipid nanoparticles, gene therapy (siRNA and
miRNA), and extracellular vesicles can extensively contribute to relieving neuropathic pain.

Keywords: diabetic neuropathic pain (DNP), nanotechnology, dorsal root ganglion (DRG), siRNA, extracellular
vesicles, ligand-based targeting, nanoparticles
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GRAPHICAL ABSTRACT | Nanotechnology based strategies has been extensively studied for their potential application in improving the delivery of drugs
mitigating neuropathic pain to the targeted area with enhanced action. This review has comprehensively summarized and critically discussed the application of
various novel nanotechnological approaches for mitigating diabetic neuropathic pain specifically targeting DRG.
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HIGHLIGHTS

• Diabetes mellitus is a common metabolic disorder
characterized by diabetic neuropathy, influencing around
90% of patients.

• Symptoms of diabetic neuropathic pain become unpleasant
and disturbing at night and usually involves burning
sensation, acute cricking, plunging, and body aches,
especially in the lower part.

• Studies suggest that the dorsal root ganglion (DRG) is an
active participant in peripheral processes, including platelet
activation factor (PAF) damage, inflammation, and the
production of neuropathic pain.

• Nanotechnology plays a significant role in effectively
delivering drugs (analgesics) to specific sites, thus mitigating
chronic pain.

1 INTRODUCTION

Diabetes mellitus (DM) is a common metabolic disorder
characterized by diabetic neuropathy, influencing around 90%
of patients (1). Neuropathy develops gradually, usually after 25
years of disease (2). The pervasiveness of painful diabetic
neuropathy (PDN) ranges from 10% to 20% in diabetics (3). In
2020, approximately 34.2 million people had diabetes, and out of
that, around 26.9 million people, including adults, were
undiagnosed (4). Distal symmetrical peripheral neuropathy
(DSPN) is the most dominant form of diabetic neuropathy,
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affecting 20% of type-I diabetic patients worldwide. Normally,
it affects the distal foot and toes, which gradually approaches the
lower part of the legs (5). The clinical manifestations of DSPN
include foot ulceration and serious neuropathic pain (5).
Symptoms of diabetic neuropathic pain (DNP) become
unpleasant and disturbing at night and usually involves
burning sensation, acute cricking, plunging, and body aches,
especially in the lower part. Sometimes, diabetic neuropathy
leads to neuropathic cachexia, accompanied by depression and
loss of weight (1). Many apparent mechanisms have been put
forward to elucidate the pain related to diabetic neuropathy,
including auto-oxidative stress, hyperglycemia, agitated polyol
pathway, enhanced levels of advanced glycation end products
(AGEs), and rise in protein kinase C (PKC) (mainly b-isoform).
As compared to nerves, dorsal root ganglion (DRG) is more
assailable to oxidative stress (6). Recent studies have shown that
DRG neurons offer a plausible target and are linked with various
problems of diabetic neuropathy (6). DRG possesses many
applications, particularly for DNP (7). Nowadays, the
s t imu la t ion o f DRG has been cons ide red a new
neuromodulation paradigm. Various techniques are being
employed or utilized for DRG stimulation, but implantable
devices are gaining recognition to a greater extent (8). DRG
neurons emerge from the dorsal root of spinal nerves, conveying
sensory signals to the central nervous system (CNS) for a
response to various receptors (9). Studies suggest that DRG is
an active participant in peripheral processes, including platelet
activation factor (PAF) damage, inflammation, and the
production of neuropathic pain (9). Peripheral damage to the
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nerves in neuropathic pain leads to overexpression of the P2X3
receptor in the DRG (10). Apart from the P2X3 receptor, studies
suggested that the P2X4 receptor also plays a key role in
neuropathic pain. DRG consists of satellite glial cells (SGCs),
which are mainly involved in the expression of the P2X4
receptor. Whenever there is nerve impairment, it is
accompanied by the liberation of ATP, which further
stimulates P2X4 receptors on SGCs, thereby generating
neuropathic pain (11). Transient receptor potential vanilloid
(TRPV) is also concerned with DNP, as it plays a vital role in
nociceptive transference under clinical forms of pain (11, 12).
The primary key in controlling DNP is symptomatic treatment
(13). Various drugs have been recommended to minimize
neuropathic pain either alone or in combination. The USA has
given regulatory allowance to three drugs in treating DNP:
pregabalin, duloxetine, and tapentadol (5). Although there are
numerous therapeutic agents utilized in the treatment of DNP,
half of the population is not able to achieve adequate pain relief.
This failure is not due to the lack of efficacy of the drug but due to
inadequate drug delivery at the site of action (14). Therefore, we
need to incorporate innovative drug delivery systems to
overcome the limitations offered by conventional ones.
Nanotechnology plays a major role in effectively delivering
drugs (analgesics) to specific sites, thus mitigating chronic
pain. The main drawback offered by analgesics was their
toxicity; thus, incorporating them into nanocarriers greatly
enhanced their efficacy and reduced their toxicity. Some of the
common analgesics, namely, baclofen, bupivacaine, and
morphine, were formulated with liposomes, polyesters, poly
(lactic-co-glycolic acid) (PLGA), nanoemulsions, etc., to
improve their efficacy (11). It is reported that P2X3 receptor
activation leads to allodynia in rat models of diabetes (15). DM
rats, when treated with NONRATT021972 [long non-protein-
coding RNAs (lncRNAs) siRNA], have shown that the
expression of the DRG P2X3 receptor is significantly decreased
as compared to type 2 diabetes mellitus (T2DM) rats in which no
treatment is given. Unlike aqueous drugs, baclofen-loaded PLGA
nanoparticles enhanced the retention duration of drug in the
brain in order to mitigate neuropathic pain and turned out to be
a suitable carrier for baclofen (16). Similarly, another emerging
technology involves ribonucleic acid interference (RNAi) that
mainly blocks gene assertion after transcription. Due to this
inhibition, there is stimulation of RNA-induced silencing
complex (RISC), which further hampers the protein synthesis.
Potential benefits of bupivacaine were analyzed after its local
delivery in people suffering from constant DRG compression
(17). In the following review, novel approaches for targeting the
DRG with the illustration of physiology of DRG and
pathophysiology of DNP are discussed.
1.1 Epidemiology
One of the most recognized complications of DM is DNP. In
various studies across India, PN prevalence ranges from about
10.5% to 32.2% in diabetic patients (18). Compared to the West,
it has a higher prevalence of DM in India (4). Nowadays,
practically in every country, diabetes impacts the population
Frontiers in Endocrinology | www.frontiersin.org 3
and increases medical load. Diabetes has become an epidemic
globally; nearly 463 million adults in the age group of 20–79
years had diabetes in 2019, and this number is projected to grow
to 700 million by 2045 (19). In Indian epidemiological studies
from different areas, the average prevalence of PN in various
community studies ranged from 5 to 2,400 per 10,000 population
(20). Pain is one of the most pronounced symptoms of diabetic
polyneuropathy. The incidence of diabetic peripheral
neuropathy (DPN) was 46% in the African population in a
survey conducted in 2020. Apart from this, the highest
prevalence was reported in West Africa, accounting for about
49.4% (21). In autonomic neuropathy, the extent to which
symptoms occur is relatively low (0%–10%), except impotence,
whose chances of occurrence are about 5%–50% (22). As per
reports from Europe and the USA in the year 2007, it has been
revealed that the prevalence of DPN ranges from 6% to 51% with
successive years of follow-up (13–14 years) (23). The
pervasiveness of DPN in adults increased to 30% from 6% in
type 1 diabetic patients as per the study conducted by Diabetes
Control and Complications Trial/Epidemiology of Diabetes
Interventions and Complications (DCCT/EDIC) (24). A survey
from the Consensus Development Conference on Diabetic Foot
Wound Care suggested that around 26% of youth with type 2
diabetes developed DPN, thereby concluding that type 2
diabetics are more prone to develop neuropathic pain (25).
Foot ulceration is one of the common manifestations of
diabetic neuropathy. In some patients (14%–24%), foot
ulceration is so severe that, sooner or later, it requires
amputation (26). Patients with a previous history of foot ulcers,
foot malformation, poor sugar control, smoking, etc., are at
higher risk of amputation (27). Older adults are more prone to
diabetic neuropathy who have had chronic diabetes for a long
time (28). Some studies demonstrated that diabetic neuropathy is
less observed in the Asian population, although there was no
evidence or finding supporting this particular statement (29).
More recently, DPN’s prevalence has been reevaluated in young
people with shorter durations of diabetes.

1.2 Physiology of Dorsal Root Ganglion
DRG is one of the most condemning structure in sensory
signaling and modulation, along with pain transmission (30).
A very thin boundary of cerebrospinal fluid (CSF) surrounds the
sural sheath in which DRG is located (31). DRG is a mere
extension of the dorsal root that usually accommodates cell
bodies of primary sensory neurons (PSNs). The diameters of
cell bodies can be classified as large-light neurons (which are
generally known as A-neurons, and these usually transmit non-
noxious information) or small-dark neurons (traditionally
known as C-neurons, which transmit painful signals) (32). The
axon soon gets bifurcated into a T-like fashion into a peripheral
branch, which is connected with somatic and visceral receptors,
and finally enters into a central component that ends up into a
cord (33). The DRG’s root sheath covers the dorsal root cord and
traverses the subarachnoid space toward it. The proximal part
usually consists of numerous tiny rootlets entering the
dorsolateral cord in a defined manner (33). The DRG central
projections typically end up in the corresponding segment. DRG
February 2022 | Volume 12 | Article 790747
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is in close association with the sympathetic chain via rami
communicantes nerves. Sometimes, these nerves can act as
channels for discogenic afferents that can deliver spinal pain
signals to the DRG (34) (Figure 1).

1.2.1 Changes in Spinal Cord
The increased spinal neuronal activity due to neuropathy can be
linked to the enhanced activity of the dorsal horns (35). In
animal models having nerve injury, animal models have the
stimulation of various protein kinases protein kinase A (PKA),
p38, Src, extracellular signal-regulated kinase (ERK), calcium/
calmodulin-dependent protein kinase (CaMK)II, and mitogen-
activated protein kinase (MAPK). In addition, many CNS
changes are associated with the production of inflammatory
mediators. For example, the dorsal horn neurons possess
increased expression of chemokines such as SDF-1a/CXCL12
and CXCL13 in rat models (36).

1.2.2 Initial Pathological Changes in the Dorsal Root
Ganglion (Primary Triggers for Neuropathic Pain)
Major changes in primary sensory neurons altered gene/protein
expression. Due to the destruction of peripheral sensory fibers,
hyperalgesia occurs due to upregulation in the face of Cav a2 d-1
channel subunit, the Nav 1.3 sodium channel, and bradykinin
(BK) B1 and capsaicin TRPV1 receptors (37). In addition, there
is an immense increase in the expression of neurotrophic factors
such as nerve growth factor (NGF) and neurotrophin-3 (NT-3).
These neurotrophins are present in satellite glial cells (SGCs),
which usually surround neuron cell bodies in DRG (38).

1.3 Pathophysiology of Diabetic
Neuropathic Pain
The pathophysiology of DNP is quite complex, and there is no
complete evidence to understand it entirely. Arteries endowing
peripheral nerves undergo numerous changes and have been
considered one reason behind aches and pains related to diabetic
neuropathy. Recently, variations in sodium and calcium channel
expression and central pain mechanisms have been linked to
pain (39). Moreover, DNP is manifested by various risk factors,
Frontiers in Endocrinology | www.frontiersin.org 4
including old age, smoking, alcohol intake, and long-term
diabetes (40). Due to a reduction in heat- and cold-specific C
fibers and Ad fibers, respectively, neuropathy leads to cold and
heat allodynia (41). Mitochondria malfunctioning causes many
problems in the body such as induction of neuropathic pain and
changes in the peripheral nervous system (42). Various
mitochondrial mechanisms, including calcium regulation (43),
production of reactive oxygen species (ROS) (44), and apoptotic
signaling pathways (45), are significantly involved in the
development of neuropathic pain. Therefore, it is not only one
single pathway that causes pain, but so many interconnected
pathways operate together to start the cascade leading to
neuropathic pain.

Changes in sodium channel expression appear to be triggered
by hyperglycemia. In pain models of neuropathy, upregulated
sodium channels (voltage-gated) were commonly seen in the
DRG (46). Impairment of Na(+)-K(+) pump occurs basically due
to hyperglycemia, and it affects Na(+) currents to a great extent
(47). Along with their transmission, these channels impact action
potential processing and can be regarded as tetrodotoxin
sensitive (TTX-S) (48). Tetrodotoxin-sensitive Nav1.3 channels
are usually upregulated in diabetic animal models (49) and
Nav1.7 in the DRG (50) (51, 52). Na+ channels are repeatedly
opened due to sensory neurons of DRGs, and their opening
duration has also been seen to be prolonged to elevate the levels
of intracellular sodium ions. Due to polarization of the neuron,
there is increased opening of calcium channels that further leads
to hyperpolarization (47). Rats in which nerves of the spinal area
are injured show the oversensitivity of nociceptive responses to
harmless mechanical stimulation due to overexpression of a2d-1
subunit of the calcium channel (53). Due to this overexpression,
more calcium enters the cell, leading to various signaling
cascades (53). Also, the release of glutamate in the presynaptic
zone leads to stimulation of N-methyl-D-aspartate (NMDA)
receptors. This activation of the NMDA receptor will enhance
the influx of calcium into the cell, thus rising calcium levels
intracellularly (54). In response to the hyperpolarization of cells,
mitochondria start releasing more calcium in the cytoplasm from
its intercellular stores. As calcium concentration elevates inside
the cell, it leads to activation of various signaling cascades mainly
involving phosphorylation of PKC (55), causing an upregulation
of TRPV (56), which directly causes variations in the sensory
neurons, which result in a hyperresponsive state. There is the
generation of nitrogen and oxygen-free radicals due to the
upregulation of TRPV, leading to neuronal cytotoxicity (57).

TRPV1 coresides with transient receptor potential ankyrin 1
(TRPA1) in particular neurons of DRG, and it is proven to have a
role in the generation of the pain signals and in inflammation
that may occur due to various irritants such as chemical agents,
ROS, or nitrogen radicals (58). Increased permeability of
mitochondrial permeability transition pores (mPTPs) due to
hyperpolarization inside the neuronal body may cause the
release of cytochrome C that further begins apoptotic cascades.
During the apoptotic pathways, caspases get activated, which can
cause the destruction of neuronal bodies and can cause cellular
toxicity (59). Consequently, the number of cold-specific Ad fibers
FIGURE 1 | Sectional organization of the spinal cord showing the dorsal root
ganglion.
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and heat-specific C fibers starts reducing from the epidermis,
known as loss of intraepidermal nerve fibers, and loss of
nociceptors has also been observed that will result in the
hyperresponsive state of the remaining nociceptors (60).
Various inflammatory mediators involving tumor necrosis
factor (TNF)-a, interleukin-1 (IL-1), and IL-6 are also seen to
be involved in this signaling cascade. Cytokines, after binding to
their receptors, lead to activation of PKC and MAPK that further
corresponds to the development of neuropathic pain (61). These
inflammatory cytokines usually enhance the expression of
various ion channels involving sodium channels that causes
neuronal excitotoxicity and significantly contributes to
neuropathic pain pathogenesis (62). The pathogenesis of DNP
interconnecting different pathways is represented in Figure 2.

1.3.1 Oxidative and Nitrosative Stress
The main trigger for the generation of oxidative stress in DNP
could be activating the polyol pathway. However, some other
factors can also contribute to the initiation of oxidative stress
Frontiers in Endocrinology | www.frontiersin.org 5
such as glucose auto-oxidation, rise in AGE levels intracellularly,
enhanced expression of AGE receptors, and at last hyperactivity
hexosamine pathway. Some evidence highly supports the fact
that there is generation of oxidative stress due to glucose
metabolism itself. Apart from oxidative stress, another key
player that plays a crucial role in the development of diabetic
complications is reactive nitrogen species, mainly peroxynitrite.
In the animal models of diabetes, it has been observed that there
are insignificant tissue concentrations of carbonyl compounds.
The catalase and glutathione levels are precisely the same in DNP
patients compared with non-diabetic neuropathic ones. This
oxidative stress plays a significant role in the generation of
chronic pain mechanisms and DNP (5).

1.3.2 Pro-Inflammatory Signaling in Diabetic
Neuropathic Pain
The progression of diabetic neuropathy is associated with the
acquirement of the pro-inflammatory process endured by nerve
tissues. There is enhanced nerve conduction velocity (NCV)
delay due to cytokine release hindrance and macrophage
migration inhibition. The innate immune system is triggered
by low-grade inflammation and plays a vital role in the
pathogenesis of DNP. Inflammation is arbitrated by protein
high-mobility group box 1 (HMGB1) released by immune
cells. HMGB1 signaling was considered as one of the most
poorly regulated pathways. This observation was made while
comparing the differentially expressed genes between diabetic
and non-diabetic patients. HMGB1 signaling is induced via
Receptor for advanced glycation endproducts (RAGE) and
Toll-like receptors (TLRs), both of which are involved in DPN.
Therefore, these dysregulations of pathways linked with
transcription implicate a lot in the pathophysiology of DPN (63).

1.3.3 Pharmacogenetic Analysis of Diabetic
Neuropathic Pain
A genome-wide association study (GWAS) was conducted to
determine the genetic contributors involved in DNP. The study
involved monitoring patients having neuropathic pain
consuming at least one of the five drugs [duloxetine,
gabapentin, pregabalin, capsaicin cream (or patch) and
lidocaine patch] indicated. However, diabetic individuals with
no history of consuming these drugs were taken as control.
Individuals who had a prescription history of amitriptyline,
carbamazepine, or nortriptyline were not included as controls
because these drugs are often used for the treatment of other
medical conditions, as well as neuropathic pain. After the
successful analysis, it was observed that sex-specific narrow
sense heritability was higher in males (30.0%) as compared to
females (14.7%). This specific GWAS analysis provides ample
evidence about the involvement of sex-specific Chr1p35.1
(ZSCAN 20-TLR 12P) and Chr8p23.1 (HMGB1P46) in DNP.
Here, abbreviations has been explained of ZSCAN 20-TLR. Zinc
finger and SCAN domain containing 20 (ZSCAN20), TLRs,
HMGB1 (64).

Another study evaluated the impact of CYP2D6 genotype on
amitriptyline efficacy for the treatment of DPN. Randomly, 31
participants were selected and given low-dose amitriptyline, and
FIGURE 2 | Pathophysiology of diabetic neuropathic pain. 1) Hyperglycemia
stimulates the polyol pathway, which leads to the destruction of sodium
currents. 2) Na+ channels were repeatedly opened due to sensory neurons of
DRG, thus leading to increased sodium ions intracellularly. 3) As a result of
polarization, there is the further opening of calcium channels. 4) In the
presynaptic zone, glutamate causes activation of NMDA receptors and
enhances the entry of calcium. Due to increased calcium levels, this triggers
more calcium release from mitochondrial stores. 5) Activation of protein
kinase C takes place due to increased calcium levels. 6) Transient receptor
potential vanilloid (TRPV) phosphorylation and activation occur via protein
kinase C due to which sensory neurons become hyperresponsive and also
there is ROS and nitrogen radical generation, which causes cellular toxicity. 7)
After the opening of mPTPs, there is the release of cytochrome C, 8) which
initiates apoptotic avalanche with activation of caspases leading to sensory
neuronal destruction 9) and finally leads to apoptosis. 10) Epidermis may lose
some Ad and C fibers, which causes hyperresponsiveness of various
nociceptors. Inflammatory mediators such as IL-1, IL-6, and TNF-a are also
involved in this process and play an essential role in developing neuropathic
pain. DRG, Dorsal Root Ganglion; NMDA, N-methyl-D-aspartate; TRPV,
Transient Receptor Potential Vanilloid; ROS, Reactive Oxygen Species;
mPTP, mitochondrial permeability transition pores; IL-6 & IL-1, Interleukin 1 &
6; TNF-alpha, Tumour Necrosis Factor-alpha.
February 2022 | Volume 12 | Article 790747

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Bhandari et al. Novel Nanotechnological Approaches for DNP
after some time, their CYP2D6 gene was sequenced. As a result,
fewer side effects were observed in patients possessing ultrarapid
metabolizer phenotypes. Therefore, this study can guide drug
therapy for DNP shortly (65). There are numerous drugs in the
market for the treatment of neuropathic pain. Furthermore, we
describe competitive market landscape, market potential, and
limitations of current therapy.

1.3.4 Protein–Protein Interaction
Having a deep insight of molecular mechanisms associated with
a particular disease is the foremost goal of modern medical
research. In order to understand this, a study was done that
generated a comprehensive network of 1,002 contextualized
protein–protein interactions (PPIs) that are particularly related
to pain. The PPIs possess an extremely coherent and interlinked
structure. In this specific study, the purpose and reliability of
pain-related PPIs using network have been explored via gene bias
assessment methods. Out of the most enriched proteins in the
network, majority of them play an important role in the
pathology of pain for e.g., OPRM1, TPRV1, and NGF. As per
the results, around 144 interactions are associated with
neuropathic pain in the given dataset. Out of these 144
interactions, around 122 contribute to the pathology of pain.
Neuropathic pain network contains 127 proteins out of which 8
enriched proteins are mainly involved such as GRIN2B, NOS1,
MAPK14, IL-6, DLG2, CX3R1, P2RX4, and VGF. This method
of utilizing disease-specific interactions presents an appreciable
advancement in specificity and relevance (66).

1.4 Competitive Market Landscape

TABLE 1 | Marketed drugs for alleviating diabetic neuropathic pain (67).

S.
No.

Medication Indication Brand
name

Company Drug class

1 Pregabalin
(systemic)

DPN Lyrica Pfizer Gamma-
aminobutyric
acid analogs

2 Topiramate
(systemic)

DPN Topamax Mylan Carbonic
anhydrase
inhibitor
(anticonvulsants)

3 Duloxetine
(systemic)

DPN Cymbalta Eli Lilly SNRIs

4 Capsaicin cream
(topical)

DPN Zostrix,
Capzasin

– Miscellaneous
topical agents

5 Carbamazepine Neuropathic
pain

Tegretol Novartis Dibenzapine
anticonvulsants

6 Gabapentin Neuropathic
pain

Neurontin Pfizer Gamma-
aminobutyric
acid analogs

7 Nortriptyline
hydrochloride or
desipramine
hydrochloride)

Chronic pain Pamelor Mallinckrodt
Pharmaceuticals

Tricyclic
antidepressants

8 Venlafaxine ER DPN Effexor Pfizer SNRIs
Front
iers in Endocrinolo
gy | www.fro
ntiersin.org
DPN, diabetic peripheral neuropathy; SNRI, serotonin–norepinephrine reuptake inhibitor.

1.5 Limitations of Current Therapy
The main drawback offered by drugs used in the treatment of
diabetic neuropathy was their toxicity. Hence, incorporating
them into nanocarriers greatly enhanced their efficacy and
reduced their toxicity. In addition, many side effects were
6

accounted for with traditional treatment such as lack of
specificity and adverse effects such as light-headedness,
languidness, and multiple daily doses (68). The latest
treatments do not provide adequate pain relief for about half of
the patients and offer many undesired side effects such as
somnolence and dizziness and the requirement of a complex
dose regimen to reduce patient compliance. Standard agents for
topical administration are there for the treatment of DNP, such
as capsaicin cream, which is without any side effects. Still, they
have low efficiency, and complex multiple administration is
required, which can cause discomfort, and also the chances of
contamination of sensitive body areas are also there, both of
which can lead to poor patient compliance (69) (Table 1). The
basis of this study is to incorporate novel nanotechnological
approaches in mitigating DNP by targeting the DRG. Previously,
opioid analgesics were widely used to treat DPN (13).
Unfortunately, severe side effects were seen in patients exposed
to this drug therapy. It mainly arises due to its action on the
receptors present in the CNS, leading to respiratory depression,
sedation, dizziness, etc. Here, nanotechnology outperforms in
every aspect by delivering sensitive and targeted treatment.
Another point to be taken into account is the uncontrolled
drug delivery and frequent administration of drugs offered by
traditional delivery systems. This probably leads to changes in
plasma drug levels, thus increasing the demand for novel
approaches (70).

With recent progress in identifying pain-generating processes
and adopting evidence-based treatments, patients suffering from
DPN are still difficult to cure. The latest treatments do not
provide adequate pain relief for about half of the patients and
offer many undesirable side effects such as somnolence and
dizziness and the requirement of a complex dose regimen that
reduces patient compliance. In addition, due to the lack of
specificity of drugs, there is inadequate relief of pain.
Ultimately, more understanding of the basic pathophysiological
processes that lead to this complication should make it possible
to devise optimal therapies for individual patients suffering from
neuropathic pain (69).
1.6 Market Potential
Nowadays, diabetes is one of the most widespread and long-term
diseases affecting most people globally (71). As per recent
estimates, in the course of a year (2020–2021), the global
diabetic neuropathy market is appraised to expand at a
compound annual growth rate (CAGR) of 5.9%. In 2011,
around 366 million people had diabetes, and the count is
estimated to significantly rise to 522 million by 2030, as per
approximation given by the International Diabetes Federation
(72). Therefore, we can say that shortly the DNP market has
stupendous opportunities to flourish. However, most of the
formulations are sold by their generic names due to which
there is an excellent hindrance in introducing all new and
innovative therapeutic agents.

On the other hand, there has been a significant emergence
and rise in the diabetic drug market after approval by the Food
and Drug Administration (FDA) on using novel drugs for
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treating DNP. Various medications were approved, out of which
two were widely used, namely, Nucynta ER and Lyrica, in 2015.
The rise in the market is commonly observed in five areas,
namely, Asia Pacific, South America, North America, Europe,
and Africa. Among all these, North America holds the biggest
market for diabetic neuropathy, where around 7.9% of adults
have a chance of developing diabetes. Moreover, type 2 diabetes
is directly related to obesity, hence in the US, with rising cases of
obesity, there are great chances of developing DNP, thus
depicting enormous market scope (73).

Hence, with comprehensive understanding about the disease,
we move forward to understanding about the novel
nanotechnological as well as other approaches for targeting the
DRG for the treatment of neuropathic pain.
2 NOVEL APPROACHES FOR
TARGETING THE DORSAL ROOT
GANGLION IN MITIGATING DIABETIC
NEUROPATHIC PAIN

2.1 Nanoparticles
Nanoparticles represent a massive variety of particles, mainly
particulate materials less than 100 nm (74). Nanoparticles exhibit
remarkable and distinctive mechanized, chemical, and optical
characteristics, making them a consummate agent for treating
DNP. A study indicated that the CeO2 (cerium oxide)
nanoparticles play a significant role in combating oxidative
impairment and showed protective actions on diabetic
neuropathy. Compared to the control group, diabetic rats
showed a higher nociceptive threshold. After treatment with
CeO2 nanoparticles, the pain threshold was reinstituted to the
standard level. This study proved to be significantly successful in
revealing the CeO2 nanoparticle as an excellent agent that
suppresses nerve damage due to diabetes (75). Another study
demonstrated the potential benefits of curcumin incorporated
into nanoparticles in mitigating DNP arbitrated by P2Y12
receptor on SGCs in DRG. In diabetic rats, thermal
hyperalgesia occurs due to modulation of IL-1 and Cx43.
When curcumin nanoparticles were administered in the DRG
of rats, the expression of IL-1 and Cx43 reduced significantly.
Therefore, it can be said that curcumin nanoparticles are an
effective therapeutic agent for treating DNP (76). One study
examined the effects of emodin nanoparticles on DNP initiated
by P2X3 receptors in DRG. After administration of emodin in
DRG of rats, there is a significant reduction in the modulation of
P2X3 receptors, thus alleviating DNP and suppressing all the
channeling related to P2X3 receptors in DRG neurons (77).

2.1.1 Polymeric Nanoparticles
Polymeric nanoparticles comprise nanospheres and nanocapsules,
colloidal systems ranging from 10–1,000 nm in size (78). A
preclinical study in rats evaluated the efficacy of baclofen-loaded
PLGA nanoparticles in managing neuropathic pain. Results
revealed that baclofen polymeric nanoparticles significantly
reduced toxicity and increased cell feasibility on a Neuro 2a cell
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line. Also, in contrast to aqueous drugs, the retention time of these
PLGA nanoparticles was enhanced in the brain, thus depicting it as
a suitable agent inmitigating neuropathic pain (16). Bupivacaine is a
local anesthetic that is commonly used to treat pain. Another study
looked into the influence of bupivacaine on pain management in
animals with chronic compression of the DRG. For this purpose,
bupivacaine was incorporated into PLGA nanoparticles and then
administered parenterally into L3 and L4 DRGs of mice. The size of
nanoparticles prepared ranges from 150 ± 10 nm in diameter.
Results showed that DRG administered with drug (bupivacaine)
alone developed allodynia and hyperalgesia in the hind paw of mice.
Whereas bupivacaine nanoparticles significantly suppressed both
complications and brought the mechanical sensitivity within the
range of typical values as obtained for healthy animals (17).

2.1.2 Inorganic Nanoparticles
Metallic nanoparticles are composed of metals such as silver
(Ag), gold (Au), and copper (Cu) along with certain metallic
oxides, namely, TiO2 and ZnO, which impart rigid and flexible
structure (79). Out of all the metals involved, silver is one of the
most widely employed due to its excellent characteristics such as
the large surface area-to-volume ratio (70). ROS are significant
contributors to neuropathic pain. Silver nanoparticles can easily
combat ROS production by binding to membrane proteins (80).
Previously, many techniques were adopted to synthesize silver
nanoparticles, but those methods were rejected due to toxicity of
utilized chemicals. This led to the idea of employing medicinal
plants in the development of silver nanoparticles (81). One study
involved Nigella sativa extracted in the green synthesis of silver
nanoparticles and determined its beneficial effects in diabetic
neuropathy. An experiment was carried out in which a healthy
control group of rats was compared to the diabetic neuropathy-
induced group to estimate the potential actions of nanoparticles
administered. Results revealed that neuropathy-induced group
showed significant demodulation in brain tropomyosin receptor
kinase A (trKA) levels and increased inflammatory mediators.
However, the group treated with silver nanoparticles experienced
less pain and enhanced retention time. Thus, due to its
antidiabetic, anti-inflammatory, and antioxidant effects, silver
nanoparticles combined with N. sativa could be an innovative
treatment option against diabetic neuropathy (82).

2.1.3 Gene-Based Nanoparticles (siRNA)
siRNA is a double-stranded RNA molecule that causes obtrusion
in the genetic expression of complementary base pairs of mRNA
and leads to knockdown of expression (83). Microglia homing
peptide molecules are sound delivery systems for siRNA due to
their potent knockdown efficacy. One of the most frequently
employed homing peptides for the siRNA–interferon regulatory
factor-1 complex is MG1. Compared to standard siRNA and
other peptide molecules, the siRNA delivery system was eminent
in reducing hyperalgesia-associated nerve damage. Such shreds
of evidence suggest siRNA delivery candidates as a plausible
therapeutic in alleviating neuropathic pain. Calcitonin gene-
related peptide located in the DRG primarily impacts
nociception in afferent transmission input. This activation of
afferent neurons leads to the release of the calcitonin gene-related
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peptide in the spinal cord. Due to glutamate release, NMDA
receptors activate, which further enhances calcium influx in the
cell, triggering the release of more calcium from stores. As a
result, enhanced calcium ion levels actuate various protein
kinases involved in the pathophysiology of neuropathic pain
(55). siRNA delivery device mitigates neuropathic pain by
suppressing the P2X3 receptor in the DRG and leads to
inhibition of expressed Calcitonin gene-related peptide in the
spinal cord (84). There is the release of numerous cytokines,
which stimulates kinase activated process. siRNA delivery device
halts this activation thereby, alleviating neuropathic pain (61).

Lentivirus-containing siRNA was introduced into the spinal
cord via the intrathecal route in a rat model. The results revealed
a diminution in nociception due to the sequential inhibition of
mRNA and expressed protein GluN2B. Furthermore, the
lentiviral delivery device successfully introduced GluN2B to the
dorsal horn, thus reducing neuropathic pain (85). Figure 3
corresponds to the mechanism of siRNA-based nanocarriers in
alleviating neuropathic pain.

2.1.4 Solid Lipid Nanoparticles and Nanostructured
Lipid Carriers
Solid lipid nanoparticles (SLNs) promise drug delivery systems that
consist of solid lipid particles such as fatty acids and waxes to which
surface-active agents have been added to form a stable matrix
system. SLNs can easily inculcate both hydrophilic and hydrophobic
drugs in their matrix, thus preventing the medicine from any
deterioration (79). However, SLNs possessed some drawbacks due
to which concept of nanostructured lipid carriers (NLCs) came into
existence. NLCs outperform SLNs in terms of good drug loading
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capability (78). Capsaicin is widely used in treating DNP due to its
ability to bind to TRPV1 present on Ad and C-nerve fibers (86).
Capsaicin (0.25%)-loaded lipid nanoparticles were developed from
capsicum extract in the study. There was strategic incorporation of
capsaicin into SLNs and NLCs without any toxic solvent
involvement. The particle size of prepared nanoparticles was less
than 200 nm. Compared to SLNs, NLCs offer enhanced
encapsulation capability and better capsaicin liberation, thereby
augmenting its release into deeper skin layers. Hence, through the
above study, capsaicin-loaded lipid nanoparticles could be an
excellent therapeutic agent for pain management (87).

2.2 Nanoemulsion
One of the highly recommended drug delivery systems,
nanoemulsion, consists of oil, surfactant, and water in relevant
ratios. Nanoemulsion bears an average atom size of 1–100 nm (68).
These are widely used (88). Various experiments have been
conducted to determine the potential of nanoemulsion
incorporating Bauhinia variegata to treat diabetic peripheral
neuropathic pain via the acupuncture technique. Due to its
polyphenol and flavonoid content, Bauhinia exhibits free radical-
scavenging properties. Experimental rats were administered
streptozocin, employing intraperitoneal injection to induce
diabetes. Administration of Bauhinia variegata nanoemulsion
normalized blood glucose levels compared to the control group.
Long-term treatment with nanoemulsion effectively reduced hind
paw abolition latency and alleviated allodynia. Therefore, through
the above experiment, one can presume that Bauhinia
nanoemulsion could effectively relieve peripheral neuropathic
pain (89). Furthermore, a-eloestearic acid, one of the main
FIGURE 3 | Neuropathic pain-relieving molecular mechanism of siRNA-based nanocarriers. 1) Either passive or active targeting allows the siRNA delivery device to
penetrate the cell. The attachment of antibodies or aptamers, which improve the device’s specificity, aids in active targeting. 2) The siRNA nanocarrier then enters
the cell. 3) There is the engulfment of the delivery device by the endosome. 4) As a result, the outer carrier breaks down, releasing free siRNA therapeutics. 5) An
RNA-induced silencing complex (RISC) is formed due to the siRNA formation. 6) To progress the knockdown of the chosen mRNA, the mRNA and siRNA interact
with one another. 7) The RISC cleaves the mRNA to silence proteins implicated in neuropathic pain disease. 8) P2X7 receptor expression in the dorsal root ganglion,
GluN2B peptide, and the calcitonin gene-related peptide in the spinal cord are suppressed. The siRNA delivery device reduces neuropathic pain by inhibiting
excitation transmission through the P2X3 receptor in the DRG and inhibiting expressed calcitonin gene-related peptide in the spinal cord, which changes the
calcium-augmented pathways in neuropathic pain.
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constituents of the bitter gourd when administered orally in the
form of nanoemulsion to diabetic rats, showed promising effects by
reducing neuropathic pain (90).

2.3 Liposomes
Liposomes are the most widely used nano delivery system, as they
can significantly increase drug efficacy while minimizing their side
effects. Liposomes consist of an aqueous core encircled by
phospholipid bilayers (91). Ropivacaine is a widely used
anesthetic for mitigating neuropathic pain (92). To alleviate long-
term neuropathic pain, it was seen that liposomal preparation of
ropivacaine (Rop-DPRL) could lead to the cytotoxicity of cancerous
cells via nutrient destitution. Another study demonstrated the
effects of zoledronic acid (ZOL) in mitigating neuropathic pain.
The most pronounced drawback of ZOL is its pharmacokinetic
outline. Hence, an animal model developed and assessed ZOL
incorporating PEGylated liposomes (LipoZOL) for its action in
attenuating neuropathic pain. There is partial or complete
disorganization of the blood–brain barrier (BBB) in chronic
neuropathic pain, which permits the safe entry of nanocarriers
such as LipoZOL. Changes in BBB due to sciatic nerve destruction
encourage the invasion of LipoZOL in the dorsal horn of the spinal
cord, thereby administering adequate concentrations of ZOL in the
CNS. This further regulates the phenotypical shift of glial cells, thus
alleviating neuropathic pain (93).

2.4 Exosomes/Extracellular Vesicles
Exosomes are small vesicles that are seen in body fluids. Exosomes
are acknowledged for their excellent capacity for loading nucleic
acids and are less toxic than other novel carriers such as carbon
nanotubes and fullerenes (94). They are primarily apprehended for
their enhanced action, as they serve as carriers for numerous
molecules, including proteins, nucleic acids, and lipids. As we
know, RNAse leads to the destruction of miRNA, so it was loaded
into extracellular vesicles to prevent its degradation. These
exosome-loaded miRNAs impact physiological responses in
beneficiary cells by controlling gene expression (95). Superoxide
dismutase (SOD)-loaded polymersomes are highly beneficial in
treating neuropathic pain, as they possess antioxidant action. These
SOD-loaded polymersomes have several advantages such as
appropriate interaction of the enzyme with ROS due to porous
membrane and enzymes maintained their original shape.
Treatment with SOD-loaded polymersomes is much effective for
treating neuropathic pain as compared to SOD alone after painful
DRG compression (96).
3 LIGAND-BASED TARGETING TO
DORSAL ROOT GANGLION

Recently, the concept of small peptide aptamer is gaining a lot of
undivided attention in treating neuropathic pain as these target
protein–protein connections in pain pathways. Also, these
aptamers have been considered as a useful clinical tool in
alleviating chronic pain (97). Compared to gene delivery
strategies such as RNA interference, this peptide aptamer
hindrance can effectively slab various interactions selectively,
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causing functional knockdown. Ca2+ channel-binding domain 3
(CBD3), in association with the TAT motif (TAT-CBD3), is a
famous example of a peptide inhibitor that can prevent the pain
caused by different conditions. However, after proving its
excellent efficacy results, CBD3 in conjunction with TAT has
been utilized widely as an alternative to mitigate chronic pain
(98). A study suggested that Adeno-associated viruses (AAV)
injection can lead to uninterrupted CBD3 expression in DRG
neurons, relieving pain with reduced or no toxic effects. Here,
voltage-gated Ca2+ channels (VGCCs) were selected as molecular
targets, as they play a significant role in synchronizing neuron
excitability and transmission via synapses (99). Ultimately, small
interfering peptides can be utilized as an effective alternative and
strategy for treating neuropathic pain (97). One study suggested
that chemokine receptor CXCR3 is involved in generating
chronic pain. It is present in spinal cord, and the pain is
generated due to mast cell destruction due to which there is
release of histamine. In this situation, histamine antagonists H1
and H4 can be used as plausible ligands to stop the release by
blocking CXCR3 receptors (100).
4 OTHER APPROACHES

4.1 Neuromodulation
Neuromodulation is a rapidly emerging area of pain medicine
that influences hundreds of thousands of patients dealing with
several disorders globally (101). It involves the utilization of
noninvasive and surgical electrical therapies. In the case of PDN,
neuromodulation seems to be a very effective treatment option
for those patients who are generally insensitive to conventional
pharmacotherapy (102). Therefore, the exemplary treatment
method, namely, tonic spinal cord stimulation (t-SCS), has
been incorporated. It mainly involves the entry of regular
electrical pulses into the dorsal column via epidural electrodes.
The electrical pulses are delivered at a frequency of around 50 Hz
(103). DRG stimulation or neuromodulation can effectively
cause a reduction in chronic pain associated with PDN (104).
DRG and DNP-DRG may be particularly susceptible to this
disease for several reasons such as the following:

a) DRG consists of sensory neurons, which are not protected
from the BBB, and the ambient oxygen tensions in DRG are
pretty low. These physiological conditions may suggest that these
may be vulnerable to microangiopathy, which is a complication
related to diabetes (105).

b) Also, the involvement of sensory neurons in early diabetic
polyneuropathy may put forward the fact that diabetes
specifically targets DRG. Certain features associated with DRG
might imply that it would be exposed to changes known to occur
in diabetes such as excessive polyol flux, microangiopathy, and
protein glycosylation (106).

c) Several studies, including streptozocin-induced DPN, also
highlighted the fact that DRG is closely related to painful DPN
acquiring several metabolic and immunological processes (107).

d) Certain receptors such as TRPV1 present in DRG are
closely associated with DNP (108).
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4.2 Precision Medicine
Several techniques are available to mitigate DNP, but neither
glucose control nor the symptomatic treatment is very successful
in doing so. Therefore, to overcome this issue, a concept has been
taken into account that hypothesizes the study of patient
characteristics. The concept could possibly be helpful to stratify
individuals, thus providing them specific and targeted therapy to
get better pain relief. This whole concept of studying patient
characteristics [clinical features, quantification sensory testing
(QST), genetics, and cerebral imaging] and then developing
targeted therapy is termed “precision medicine” (109).
5 CONCLUSION

Diabeticneuropathy is themost entrenched complicationofdiabetes.
Typically, it affects the distal foot and toes, gradually approaching the
lower part of the legs. Diabetic foot ulcer (DFU) could be one of the
worst complications of DM. Long-term diabetes leads to
hyperglycemia, which is considered to be the utmost contributor to
neuropathic pain. Therefore, using antidepressants, GABA analogs,
opioids, and topical agents to treat pain in PDN is recommended.
Currently available systemicmedicationsprovideadequatepain relief
for approximately half of affected patients and are limited by
unwanted adverse reactions and multiple-dose regimens. So, other
treatment options need to be explored to treat this widespread
complication of diabetes, mainly involving novel nanotechnological
approaches. Nanotechnology plays a significant role in effectively
delivering drugs (analgesics) to a specific site, thusmitigating chronic
pain. Someof the standardpainkillers,namely,baclofen, bupivacaine,
and morphine, were formulated with liposomes, polyesters, PLGA,
and nanoemulsions, etc., to improve their efficacy. siRNA can also be
used as potential therapeutics to treat DPN but are limited by its
unstable nature under normal physiology in the blood, wherein it
undergoes digestion by nuclease enzymes. Therefore, innovative
nanotechnological approaches such as liposomes, niosomes,
nanoemulsions, SLNs, and NLCs have been utilized to overcome
conventional therapy’s drawbacks.
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6 FUTURE PERSPECTIVES

Despite having so many alternative therapeutic options for treating
DNP, still, pharmacological treatment remains a big never-ending
issue for physicians. Therefore, there is a need to find out various
important target areas that can be utilized directly to mitigate DPN.
Wecanalsoexpectmultiplenovelnanotechnology-basedproducts in
the market to treat diabetic neuropathy, which can adequately
manage the condition with enhanced effects. Moreover, natural
plant-based products are also being studied to a large extent to
providemore safe and cheap treatment to the patients. Furthermore,
many advancements have been made about gene therapy, including
new therapeutic approaches thatmaybecome combination therapies
with various siRNAs targeting various survival pathways or a
combination of specific siRNAs that may sensitize the treatment of
DNP with other pain-relieving drugs. Therefore, in association with
novel technological approaches, conventional medicines can
significantly enhance their action toward diabetic neuropathy, and
we can expect plenty of nano-based products in the market for the
mitigation of diabetic neuropathy.
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