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Forest cover mapping in post-
Soviet Central Asia using multi-
resolution remote sensing imagery
He Yin 1,2, Asia Khamzina3, Dirk Pflugmacher4 & Christopher Martius5

Despite rapid advances and large-scale initiatives in forest mapping, reliable cross-border information 
about the status of forest resources in Central Asian countries is lacking. We produced consistent 
Central Asia forest cover (CAFC) maps based on a cost-efficient approach using multi-resolution satellite 
imagery from Landsat and MODIS during 2009–2011. The spectral-temporal metrics derived from 
2009–2011 Landsat imagery (overall accuracy of 0.83) was used to predict sub-pixel forest cover on the 
MODIS scale for 2010. Accuracy assessment confirmed the validity of MODIS-based forest cover map 
with a normalized root-mean-square error of 0.63. A general paucity of forest resources in post-Soviet 
Central Asia was indicated, with 1.24% of the region covered by forest. In comparison to the CAFC map, 
a regional map derived from MODIS Vegetation Continuous Fields tended to underestimate forest 
cover, while the Global Forest Change product matched well. The Global Forest Resources Assessments, 
based on individual country reports, overestimated forest cover by 1.5 to 147 times, particularly in 
the more arid countries of Turkmenistan and Uzbekistan. Multi-resolution imagery contributes to 
regionalized assessment of forest cover in the world’s drylands while developed CAFC maps (available at 
https://data.zef.de/) aim to facilitate decisions on biodiversity conservation and reforestation programs 
in Central Asia.

Central Asia comprises five predominantly agricultural countries of the former Soviet Union (Kazakhstan, 
Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) that, although largely covered by drylands, are home to 
diverse and important forest ecosystems, ranging from continuous forests in the higher-rainfall upstream areas 
to patchy riparian forests in the more arid downstream areas1–3. Notwithstanding their relatively small coverage 
area, forests in Central Asia play a key role in the regional hydrology by helping maintain a steady river discharge 
from the high mountains to the irrigated lowlands4. Mountainous forests are particularly rich in terms of the 
genetic diversity of wild fruit and nut tree species and serve as carbon sinks5–8. Given their great ecological and 
environmental importance, most of the forests in Central Asia have been placed in Group I of the Soviet Union 
forestry system, which is designated for conservation and protection4, 9–12. However, following the collapse of the 
Soviet Union, regular and standardized forest inventories have stopped, with the effect that the status and condi-
tion of these forests is currently uncertain.

Forest statistics provided by these Central Asian countries to the Food and Agriculture Organization of the 
United Nations (FAO) are mostly out-dated or missing. For example, the country report by Uzbekistan states that 
the last forest inventory was conducted in 1987; no national statistics are provided by Turkmenistan; Kazakhstan 
reports results based on a desk study (http://www.fao.org/countryprofiles/en/); and in general, the capacities of 
these countries for forest monitoring is unknown13–15. There are substantial discrepancies between datasets gen-
erated from different sources, with the effect that there is no commonly agreed upon estimate for the total forested 
area in Central Asia4. Based on individual country reports, the Global Forest Resources Assessments (FRA)16 
estimates that 11.7 million ha, or less than 5% of the land area, are covered by forest in Central Asia. However, 
official statistics often overestimate the total forested area and do not reflect the actual forest condition17. The 
use of different definitions for forest, some of which deviate from international definitions, introduces further 
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ambiguities between estimates from Central Asian countries18–20. Spatially explicit, comparable methodologies 
for obtaining forest information are much needed in Central Asian countries, so that high quality datasets can be 
established that will enable adequate assessment of ecosystem services (e.g., biodiversity, climate, and water cycle 
regulation) and development of sustainable management options21.

Remote sensing provides seamless and periodic observations of the Earth, and for countries with few or no 
inventories, it is the only viable source of forest area estimates e.g.22. The independence of remote sensing from 
national forest agencies is an additional advantage for forest monitoring across political boundaries23. Several 
continental and global land cover mapping efforts based on coarse resolution satellite data (i.e., spatial resolutions 
greater than 250 m) provide a number of land cover products, such as the GLC200024, GlobCover25, and MODIS 
Land Cover Type26, 27 products. These datasets map the distribution of forest types with acceptable accuracies on 
a global scale but, due to their coarse resolution, are insufficient for national forest area reporting28. Products that 
estimate the sub-pixel proportion of forest area, such as MODIS Vegetation Continuous Fields (VCF)29, seek to 
overcome the coarse resolution bias30, 31. However, the accuracy of global maps can vary substantially between 
regions32–39. It is difficult and not always feasible to capture regionally important ecological gradients with global 
products that are based on globally selected reference data26, 40, 41. Large discrepancies between global land cover 
products have been found, especially at biome borders and in sparsely vegetated environments42, 43.

With recent developments in data access and distribution policies for Landsat and Sentinel-2, improved forest 
monitoring using medium-resolution satellite image time series data has become feasible44, 45. Medium-resolution 
sensors capture more spatially detailed information, which is important for forest monitoring in heterogeneous 
drylands46, 47. In addition, using multi-temporal instead of single-date imagery allows for more accurate land 
cover classification48–50. Recently, the concomitant use of all available Landsat imagery time series data has pro-
vided opportunities for large-area forest cover mapping23, 51, 52. Taking advantage of all available observations per 
pixel, it is possible to use Landsat time series data for improved classification53–55.

Combining medium- and coarse-resolution imagery can support cost-effective forest mapping over large 
areas56–58. In spite of the rapid developments in computational capability, processing the large volumes of data 
associated with higher resolution images is still challenging. In addition, data scarcity due to low observation den-
sity and persistent cloud and snow coverage make it difficult to use Landsat to produce wall-to-wall forest cover 
maps59, 60. Therefore, coarse resolution archive imagery, such as from AVHRR and MODIS, has been combined 
with Landsat data for the land cover mapping of large areas56, 57, 61–63. The higher resolution of Landsat makes 
it feasible to estimate the percentage of different land cover types at the MODIS level of coverage and predict 
wall-to-wall sub-pixel forest cover through regression or other approaches64–67.

The goal of this study was to develop a consistent and improved forest cover map for Central Asia, and to 
assess the current national and global forest cover estimates for this region. To achieve this, we first produced 
land cover maps from a sample of Landsat footprints corresponding to the World Reference System 2. We then 
used the Landsat-based map as a reference to train a fractional forest cover model based on MODIS time series 
data at a resolution of 250 m. The objectives of this study were thus to: 1) assess the usefulness of dense Landsat 
time series data for forest cover mapping in drylands; 2) produce a Central Asia Forest Cover (CAFC) map using 
MODIS time series data for 2010 that distinguishes the prevalent forest types; and 3) compare this regionalized 
forest cover map with the FRA and other available global coverage products to evaluate the relative strengths and 
limits of all available tools for forest monitoring in Central Asia.

Results
Classification of Landsat imagery. The use of spectral-temporal metrics generated from three years of 
imagery yielded the highest classification accuracy (overall accuracy OA: OA = 0.83 ± 0.04) while using sin-
gle-date composite produced the lowest (OA: 0.56 ± 0.04) (see Supplementary Table S1, and Fig. S1). Using 
temporal metrics improved the separation of deciduous forest and herbaceous vegetation (see Supplementary 
Fig. S2). In addition, the confusion between mixed and evergreen forest decreased, resulting in improved map-
ping accuracy for these two classes. Extending the observation period from one to three years reduced the classifi-
cation uncertainty further. Most of the land cover classes, particularly forest, exhibited fewer classification errors. 
Fewer cases of confusion occurred between forest and wetland (see Supplementary Fig. S2). Adding observa-
tions from 2009 and 2011 to the 2010 dataset led to more accurate distinctions between different forest classes, 
especially for deciduous forest. The data scarcity effect, e.g. the strip artefact of ETM + Scan Line Corrector 
(SLC)-off, was largely eliminated when including temporal metrics and the extended observation period (see 
Supplementary Fig. S2).

Forest cover percentage prediction using MODIS. The Central Asia Forest Cover (CAFC) map pro-
duced from the MODIS data indicates that forest covers 4.96 million ha (1.24% of the land area in Central Asia) 
with a distinct variation in forest types between the countries (Figs 1 and 2). Kyrgyzstan was found to have the 
largest proportion of forest cover (3.3% of its land area), while Turkmenistan carried the least (0.06% of the land 
area). Due to its large territory, Kazakhstan is home to most of the forest (79.4% of the total forest in Central 
Asia), with forests relatively evenly distributed between deciduous, evergreen, and mixed forest types. In the 
mountainous countries Tajikistan and Kyrgyzstan, evergreen forests were more prominent, occupying 67.9% and 
60.2% of the total forest area, respectively. Deciduous forests prevailed in Turkmenistan (68.3% of the country’s 
forest area), a much more arid country. Prediction accuracy varied by forest type (Fig. 3). Overall forest cover 
was predicted with the highest accuracy. The normalized root-mean-square error (NRMSE) of the predicted 
evergreen forest cover (NRMSE = 1.19) was lower than the errors for deciduous (1.35) and mixed forests (1.84). 
The overall forest cover map had the lowest NRMSE (0.63). The linear relationship between predicted forest cover 

http://S1,
http://S1
http://S2
http://S2
http://S2


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 1375  | DOI:10.1038/s41598-017-01582-x

Figure 1. Land area covered by forests (A) and the composition of forest types (B) in Central Asia.

Figure 2. Forest cover percentage with (A) all forest types, (B) deciduous, (C) evergreen, and (D) mixed forest. 
This figure was produced using ArcGIS 10.3.
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and reference forest cover was stronger (Pearson’s r = 0.96) than that between the cover estimates of any single 
forest type and the reference.

Comparison of forest cover estimates. Comparison of the forest cover estimates for Central Asia 
showed both agreement and discrepancies between the CAFC and the global products. In general, the CAFC 
produced patterns similar to GFC (Fig. 4; also see Supplementary Fig. S3). Although the GFC is more detailed 
because of its higher spatial resolution, we found localized but substantial over- and underestimations in this map. 
For example, GFC overestimated forest cover in non-woody wetlands (Figure S3, Ili River Delta) and tended to 
underestimate forest cover in riparian forests (Figure S3, Amu Darya) and evergreen forests (Figure S3, Eastern 
Kazakhstan Region). When comparing GFC and MODIS VCF, we found that MODIS VCF overestimated forest 
cover in regions with low forest cover and underestimated the dense forest areas in most of Central Asia (Fig. 4, 
see also Supplementary Fig. S3). Overall, the strong agreement between the CAFC and GFC further improved 
when we aggregated the maps to coarser spatial resolutions (Fig. 4). The correlation (Pearson’s r) between the 
CAFC and GFC increased from 0.77 at a pixel size of 250 × 250 m to 0.86 at 5 × 5 km. At a pixel size of 5 × 5 km, 
the regression slope was close to 1 (0.95). MODIS VCF and GFC had a strong positive relationship at pixel sizes 
of 250 × 250 m (r = 0.7) to 5 × 5 km (r = 0.89); however, MODIS VCF made lower tree cover predictions with 
regression slopes ranging between 1.13 and 1.37. Forest cover estimates from the CAFC and GFC tended to 
agree closely, with the exception of mountainous Tajikistan. MODIS VCF typically provided a much lower esti-
mate, totalling 0.3% of Central Asia as a whole (Table 1). The FAO FRA 201068 and FRA 201516, relying on indi-
vidual country reports, largely overestimated forest cover, with the exception of Kazakhstan and Kyrgyzstan in 
most recent assessment. For the other countries, the FRA estimates were between 1.5 and 147 times higher than 
the CAFC estimates, with particular extremes for the more arid, downstream countries of Turkmenistan and 
Uzbekistan.

Figure 3. Scatterplots of reference forest cover derived from Landsat land cover maps and the estimated forest 
cover from MODIS data as deciduous, mixed, evergreen, and overall forest.
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Discussion
Using all available Landsat imagery rather than single-date spectral reflectance, we were able to adequately dis-
tinguish between forests and other land cover classes with an overall accuracy of 0.83 ± 0.04, increased from 
0.56 ± 0.04 when only one date was used. Metrics derived from time series data provide information on phenol-
ogy patterns and therefore are less influenced by inter-annual variability in the imaging dates and overall image 
availability55. This is critical for land cover mapping in drylands characterized by high diversity in plant phenol-
ogy. Moreover, metrics calculated from full time series are more resistant to the noise from geometric errors in 
single images69.

Extending the observation period from one year to three years (called epoch imagery) for land cover classi-
fication with the Landsat data further reduced mapping errors (OA: 0.83 ± 0.04 compared to 0.71 ± 0.04). Using 
MODIS time series data, Hüttich et al.70 arrived at similar accuracy levels with increasing length of observation 
period in the drylands of Africa. In contrast to the frequent MODIS observations, Landsat imagery has lower 
temporal resolution and the time series data has many gaps45, 71. Our study suggests that data scarcity due to 
sensor errors or frequent cloud/snow cover could be reduced by including imagery from neighbouring years. 
Furthermore, classification errors due to considerable intra-annual variations in dryland vegetation can be largely 
avoided by including multi-annual time series data from remote sensing observations72.

Figure 4. Joint distribution of forest cover percentage from CAFC vs. GFC (upper row) and tree cover 
percentage from MODIS VCF vs. GFC (lower row) at the sampling resolutions of 250 m, 1 km, and 5 km, with 
the colour scheme representing local densities at each point of the scatterplot (obtained through a kernel density 
estimate) and the dotted regression line demonstrating the coherence between different products.

Data source Kazakhstan Kyrgyzstan Tajikistan Turkmenistan Uzbekistan

CAFC 1.45 3.3 1.05 0.06 0.29

GFC 1.59 3.42 0.43 0.02 0.24

MODIS VCF 0.41 0.54 0.02 0.00 0.01

FRA (2010) 1.2 5 2.9 8.8 7.7

FRA (2015) 1.2 3.3 3.0 8.8 7.3

Table 1. Forest cover percentage (%) in Central Asian countries estimated from the Central Asia Forest Cover 
map (CAFC), Global Forest Change (GFC), MODIS VCF, and Forest Resources Assessments (FRA).
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Extreme land cover conversions could produce large variations in a time series, thus undermining its suita-
bility for use in epoch imagery for classification. To the best of our knowledge, there were no dramatic changes 
for the examined land cover categories in Central Asia during the observation period of 2009–2011. The map-
ping confusion between deciduous forest and herbaceous land was likely due to general landscape heterogeneity 
in Central Asia. Mixed land cover produces mixed pixels which are prone to classification errors73. Hindsight 
examination on the confused validation samples revealed that 53% of all deciduous forest/herbaceous land mis-
classifications were mixed pixels dominated by herbaceous vegetation and scattered trees. Another challenge is 
the separation of land cover classes with similar spectral and temporal responses. Mixed forest has a wide range 
of spectral reflectance and is thus often confused with deciduous or evergreen forests74. These uncertainties are a 
problem inherent to land cover mapping based on remote sensing in heterogeneous landscapes and can be largely 
reduced through the use of temporal metrics from multi-annual Landsat time series data. Compared to other 
forest cover maps our mapping approach using Landsat time series captures forest cover in drylands reasonably 
well (Supplementary Table S1). For example, the National Land Cover Database (NLCD) of the Conterminous 
United States, also using Landsat data, reported the forest user’s accuracy of 47% and the producer’s accuracy of 
99% in the dryland region, covering the great plains and deserts75.

We found strong agreement between MODIS- and Landsat-based forest cover estimates indicating that 
MODIS can provide reliable data for forest cover monitoring in dryland forests. Although uncertainty was rel-
atively high at the pixel level (e.g., an NRMSE of 0.63 for overall forest cover), the precision of the estimates 
improved when aggregated over larger areas. Using MODIS to estimate the proportional cover of different forest 
types in Central Asia revealed uncertainty due to contamination of the Landsat training dataset. Mapping errors 
also originated from training data imperfections76. Using a land cover map derived from high resolution imagery 
as a reference in the estimation of fractional land cover at coarse resolutions could lead to inter-resolution error 
propagation46. The slight overestimation of forest cover in the wetlands of the Ili River delta (see Supplementary 
Fig. S3) could be traced back to the residual error in the Landsat map (see Supplementary Fig. S2). The higher 
mapping error of deciduous forest in the Landsat map may decrease a mapping accuracy of the CAFC decidu-
ous forest map (see Supplementary Fig. S1). The challenge of distinguishing between spectrally similar classes 
persisted at the MODIS scale, as shown by the relatively moderate mapping accuracy for mixed forest (Fig. 3). In 
the same vein, mapping accuracy was highest for the overall forest fractional cover, eliminating confusion errors 
between forest types (Fig. 3).

We detected considerable differences between the forest maps generated from continuous tree cover products 
for Central Asia. Saturation of spectral reflectance, phenological variation, and confusion with dense herbaceous 
vegetation are possible reasons for commission errors in sparsely covered areas and omission errors in densely 
covered regions in the MODIS VCF product77, 78. In contrast, GFC generally provided a reliable forest estimate in 
Central Asia. However, calibration, especially to correct mapping errors in riparian and evergreen forests, would 
be needed for regional applications of the GFC product in Central Asia. In our study model-based inferential 
framework was used to obtain forest area estimates79, 80. In contrast to design-based inference, the validity of the 
model-based inference was supported by the strong linear relationship (r = 0.96) and the coefficient close to 1. 
Both suggest the unbiasedness of our model-based area estimate. To overcome uncertainty in the map data, there 
is a need to integrate various resources such as ground-based measurements and satellite-derived maps to gener-
ate systematic forest cover estimates at a national level28, 81.

In general, the differences between the FRA estimates and all satellite-derived data were substantial. The 
greater forest cover reported by Turkmenistan and Uzbekistan in the FRA is at least partially attributed to these 
countries reporting sparse desert woodland as part of the national forest areas18, 82. Desert woodlands are char-
acterized by low primary production, but are highly valuable in the regional ecology18, which explains the high 
importance given to them in the national forest reports.

The minimum area used in the forest definition could be another factor causing differences between the 
remote sensing estimates and the country reports. Applying a minimum mapping unit can influence forest area 
estimates from map data20, particularly in heterogeneous and fragmented landscapes. Forest inventories In 
Central Asian countries traditionally have not followed a fixed minimum area criterion hence various values were 
used, which might be above or below the uniform FAO requirement of >0.5 ha16, 82. In this study, we did not apply 
a minimum area requirement for the definition of a forest. Because the majority of the forests in Central Asia are 
contiguous areas, the effect is likely negligible or could even increase the difference between the remote sensing 
estimates and the country reports.

While countries might choose their own forest definition when reporting to the FRA, the large discrepancy in 
forest area estimates between the remote sensing assessment and the national statistics68 calls for a more coherent 
approach to forest monitoring across Central Asia. To this end, our proposed cost-effective approach using time 
series data from multi-resolution imagery and coherent maps of forest cover with 250 m resolution across Central 
Asia can complement and facilitate national forest inventories still largely dependent on resource demanding 
field surveys.

In particular, land cover classification using the Landsat imagery revealed the value of dense time series for 
land cover mapping in the drylands. With the release of more advanced medium resolution imagery such as the 
upcoming Sentinel-2 archive, uncertainty due to data scarcity might be further reduced. In contrast to the availa-
ble global coverage products, the CAFC map provides information on prevalent forest types while considering the 
specific environmental settings of Central Asia. It could serve as a useful basis for standardized forest monitoring 
across country borders in Central Asia and, for example, carbon reporting to the United Nations Framework 
Convention on Climate Change (UNFCCC) and Reducing Emissions from Deforestation and Forest Degradation 
(REDD+). Moreover, our approach to the forest cover map for 2010 might be applicable to historic imagery, thus 
aiding in the continuous monitoring of forest cover changes in the Central Asian drylands.
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Methods
Study area. Landlocked deep inside the Eurasian continent, Central Asia is dominated by a distinctive conti-
nental arid to semi-humid climate83–85. The sparsely vegetated deserts (Karakum and Kyzylkum) and the Eurasian 
Steppe belt stretching from the Caspian Sea to the Tian Shan Mountains cover most of the region, but a strong 
gradient in temperature and precipitation exists from north to south and from the lowlands to the mountains 
(see Supplementary Fig. S4). Associated with the diverse climates and terrains, forests in Central Asia consist of 
various types, with a rich species composition3. Dense needle-leaved evergreen forests are found in the mountains 
of Kazakhstan, Kyrgyzstan, and Tajikistan. The prevalent tree species include Scots pine (Pinus sylvestris), Siberian 
fir (Abies sibirica), Asian spruce (Picea schrenkiana), and junipers (Juniperus spp.). Broadleaved trees such as 
Tianshan birch (Betula tianschanica) and English oak (Quercus robur), and wild fruit and nut bearing species 
(e.g., walnut [Juglans regia], pistachio [Pistacia vera], and wild apple [Malus sieversii]) are more abundant in the 
lowlands and the lower mountain zone. Along the large river systems of the Amu Darya and Syr Darya, riparian 
forests dominated by Euphrates poplar (Populus euphratica) provide important corridors for wildlife and harbor 
a rich biodiversity86. Sparse stands of saxaul trees (Haloxylon spp.) and various xeric shrubs form “desert forests” 
in the sandy deserts of Turkmenistan and Uzbekistan18.

Land cover classification from Landsat imagery. We randomly selected sixteen Landsat footprints 
covering the principal forest biomes of Central Asia based on the terrestrial ecoregions used by the World Wildlife 
Fund (WWF)87. Two extra footprints (152/31 and 154/31) for which ground data were available were added man-
ually. We downloaded all available precision terrain corrected Landsat TM and ETM + L1T products with less 
than 100% cloud coverage for the period 2009–2011 for the eighteen Landsat footprints from the U.S. Geological 
Survey (USGS) (see Supplementary Fig. S4). Detailed information about the Landsat imagery used in this study 
can be found in Supplementary Table S2.

For each Landsat image, we performed atmospheric correction and radiometric calibration using the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) to ensure consistency between different sensors, 
dates, and footprints88. We used an object-based algorithm FMASK to generate cloud/shadow/snow masks for 
each image89. All imagery was then reprojected to a regional Albers equal-area conic projection.

To develop cloud- and gap-free forest cover maps with Landsat data for 2010, we built temporal composites 
using all available imagery. We tested three different composite types yielding three different sets of predictors 
(see Supplementary Table S3). The first set of predictors was based on a single date compositing strategy. For 
each reflectance band, a target day of the year (DOY) in mid-summer (DOY 210) was set and a clear observation 
closest to the target day was selected for compositing a gap-free clear image. The second set was comprised of all 
clear observations from 2010 and was used to calculate five metrics for each reflectance band: the mean, median, 
standard deviation, 25th percentile, and 75th percentile. The third set used the same statistical metrics as the sec-
ond set, but for an expanded observation period of 2009 to 2011.

To map the forest composition in Central Asia, we classified forest types into deciduous forest, evergreen 
forest, and mixed forest (in which deciduous or evergreen tree species have a canopy cover of less than 60%). 
In addition to forests, we also mapped four other land cover classes, including non-woody wetland, herbaceous 
land (including grassland and cropland), barren land, and water bodies, to gain a deeper understanding of error 
sources when mapping forests in the drylands. The definition of forest and other land cover types was adapted 
from the IGBP DISCover dataset90. Because tree stands are relatively sparse in the drylands, we defined forest as 
lands dominated by tree cover greater than 30%.

We used the random forest (RF) classification algorithm91 to predict land cover for each set of predictors. 
The number of variables randomly sampled as candidates at each split was set to the square root of the number 
of input variables, and the minimum sizes of the terminal nodes and the number of the trees were set to 10 and 
1000, respectively. Per-pixel class was predicted based on the majority of tree votes for a given class. The package 
‘randomForest’92 implemented in the statistical software CRAN R93 was employed to conduct the analysis.

The training and validation samples for Landsat land cover mapping were selected independently from ref-
erences collected in the field, high-resolution images from Google Earth and Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER), for assessing Landsat imagery and MODIS time series acquired 
for the period 2009–2011. First, 4389 training polygons were labelled with the aid of high resolution imagery 
from Google Earth. To guarantee geometric accuracy, we cross-checked the geolocation of the polygons on 
ASTER imagery to ensure there were no major terrain displacements. Multi-date imagery, such as winter acquisi-
tions together with the spring leaf-onset and autumn leaf-shading imagery (either from Google Earth, ASTER or 
Landsat), were used to better distinguish deciduous, evergreen, and mixed forests. Second, Landsat pixels within 
the training polygons were selected as the final training samples. In all, we created 24,238 training pixel samples, 
with 8,661 labelled as forest.

To avoid smaller samples for smaller classes such as forest or wetland, we used disproportionate stratified sam-
pling at the Landsat pixel level for accuracy assessment94. First, we randomly selected 300 Landsat pixels as refer-
ence samples within each land cover class from the map produced from the temporal metric 2009–2011. Second, 
each sample was manually labelled by an expert interpreter, without knowledge of the mapped class label, using 
high resolution imagery from Google Earth, ASTER, and Landsat images acquired around 2010. In addition to 
the Landsat images, the interpreter also used temporal profiles of the MODIS NDVI time series (MOD13Q1) 
to aid in the labelling of samples with data gaps in the Google Earth, ASTER, and Landsat images. For each set 
of classifications, we constructed an error matrix from which we calculated overall accuracy, commission and 
omission errors. Finally, we selected the map with the best classification accuracy for use as a reference when 
predicting forest cover percentage using the MODIS time series.
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MODIS preprocessing and fractional forest cover mapping. Two MODIS Vegetation Index (VI) 
Collection 5 products from Terra (MOD13Q1) and Aqua (MYD13Q1) were used as the main sources for the 
production of the fractional forest cover map for Central Asia. The two products have a nominal spatial reso-
lution of 250 m and contain 16-day composites of two vegetation indices and four spectral reflectance bands: 
the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), surface reflectance in 
the blue, red, near-infrared (NIR), and shortwave-infrared (SWIR) wavelengths. We downloaded all imagery 
for eight MODIS tiles (h21v03, h22v03, h23v03, h21v04, h22v04, h23v04, h22v05, and h23v05) covering the 
entire Central Asia land area (see Supplementary Fig. S4) between January and December 2010 from the United 
States Geological Survey (USGS) Land Processes Distributed Active Archive Center (LPDAAC, available: https://
mrtweb.cr.usgs.gov/). All imagery was reprojected to an Albers equal-area conic projection.

To increase the observation density, we combined the indices and spectral reflectance acquired from Terra and 
Aqua to achieve a temporal resolution of 8 days. The combined time series was reconstructed based on the order 
of the DOY information provided along with the MOD13Q1/MYD13Q1 spectral reflectance. To reduce residual 
noise in the time series caused by clouds, ozone, dust, off-nadir viewing, and low sun zenith angles, we smoothed 
the data using a Savitzky-Golay filter in the TIMESAT software95. Pixels flagged as no data, snow/ice, or cloud in 
the MOD13Q1/MYD13Q1 pixel reliability layer were excluded prior to the filtering. Outliers that were not iden-
tified as such in the MODIS reliability layer were removed with a seasonal-trend decomposition based on loess 
(STL)96, which is global in character and not dependent on ancillary data. We calculated several seasonal statistics 
from the MODIS time series to serve as predictor variables. For each smoothed MODIS time series (NDVI, EVI, 
and the four reflectance bands), we computed the mean, minimum, maximum, range, and standard deviation for 
spring (March-May), summer (June-August), and autumn (September-November).

The Landsat land cover map served as a source for the generation of training data. First, we randomly selected 
MODIS pixel samples, during which we enforced a minimum distance of 1000 m between samples to avoid spa-
tial autocorrelation and along-scan triangular point spread function (PSF) effects97. Second, we calculated the 
proportion of each forest type in each sample using the Landsat land cover map. As a result, we obtained 16,173 
training samples comprising the percentage cover of each forest type to train the MODIS forest cover model.

We applied Random Forest (RF) regression using the R-package randomForest92 implemented in R93 to predict 
per-pixel forest cover percentage. While RF classification estimates class membership of categorical data by applying 
a majority vote to individual tree predictions, RF regression predicts a continuous response by averaging individ-
ual tree predictions per-pixel. The model was run separately for deciduous, evergreen, and mixed forests. We also 
summed the forest cover fractions of all forest types to estimate the percentage of overall forest cover for each pixel.

The accuracy of the final forest cover map was assessed based on a stratified random sample using the mapped 
class proportions to define two strata: pixels with an overall forest proportion >0% (forest) and pixels with an 
overall forest proportion of 0% (non-forest). Within each stratum, we randomly selected 1000 MODIS pixel sam-
ples. Again, we used the Landsat maps to estimate the reference forest cover proportion for each pixel. We then 
assessed the agreement between the MODIS forest proportions and the Landsat-based proportions of deciduous, 
evergreen, and mixed forests by estimating the normalized root-mean-square error (NRMSE) between predic-
tions and reference data:

= ∑ −=NRMSE
P R
n

R
( )

/ ,
(1)

i
n

i i1
2

where Pi and Ri are the model prediction and reference for forest cover, respectively, for pixel i with a sample size 
of n, and R  is the mean value of the reference.

Comparison of tree cover maps in Central Asia. Two global tree cover products were compared with our 
MODIS forest cover map (CAFC) to determine the strengths and limits of all available maps for Central Asia. We 
selected the Global Forest Change (GFC) dataset and MODIS Vegetation Continuous Fields (VCF) for these com-
parisons. GFC is a state-of-the-art global forest change product by Hansen et al.52 with a 30-meter resolution. It 
estimates per-pixel tree cover percentage for 2000 and annual forest cover change between 2000 and 2013 using a 
rigorous data processing chain. To derive tree cover in 2010, we summarized forest changes during 2000 and 2010 
and used the results to update the tree cover layer produced for the year 2000. Pixels labelled as forest loss during 
2000–2010 were assigned 0% tree cover in 2010. Inversely, pixels mapped as forest gain before 2010 were labelled 
as 100% tree cover. In all, a number of pixels equal to 2.1% of the area with >25% tree cover in 2000 were rela-
belled. The MODIS VCF product was developed by the University of Maryland at a spatial resolution of 250 m29. 
The inputs for MODIS VCF include the 16-day surface reflectance composites of ten MODIS spectral bands. 
MODIS VCF Collection 5 (MOD44B) for the year 2010 was downloaded and used for the comparison. Several 
other global land cover maps provide categorical land cover information at a coarse resolution. However, we only 
selected continuous tree cover data because sub-pixel proportions are likely to capture heterogeneous and sparse 
forest cover better than discrete maps at that spatial resolution, and these data are more comparable to our map.

In the absence of information from GFC and MODIS VCF on specific forest types, we only selected the overall 
forest cover layer from the CAFC for the comparison. GFC was translated into a forest cover map for comparison 
with the CAFC. MODIS VCF was then compared with GFC without translation into forest cover because of the 
coarse resolution of MODIS VCF product. We followed this procedure to identify similarities and discrepan-
cies between the forest cover products without losing detail. Comparisons were performed at the same spatial 
scale. First, all maps were re-projected to an Albers equal-area conic projection. Second, the GFC product was 
translated to a forest/non-forest map using a tree cover threshold of 30%. Third, we standardized all of the maps 
originating from the products to a resolution of 250-m by averaging all pixel values within a 250-m sampling 
unit. Because geolocation errors in remote sensing data and maps can influence per-pixel comparisons, we also 
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included a comparison of larger pixel blocks by gradually decreasing the spatial resolution of the maps to 1 km 
and 5 km. Further, we only selected pixels with a tree cover or forest cover greater than 0% according to GFC, 
MODIS VCF, or CAFC. We also compared per-country forest cover statistics according to CAFC, GFC, MODIS 
VCF, and FAO FRA68. MODIS VCF was converted to a forest/non-forest map by applying a 30% tree-cover 
threshold before using it for per-country forest coverage calculations.

To improve information on worldwide forest cover, FRA 1990 and FRA 2000 included a remote sensing survey 
in tropical areas to complement national reporting. The FRA 2010 expanded the previous surveys to a global scale 
based on a systematic sampling approach with the aim of providing statistics on forest area change and land use 
dynamics at the regional, biome, and global scales98. We took forest data from the FRA 2010 and 2015 reports 
without adjustment since, according to the individual country reports, the national data had been adjusted and 
re-classified to comply with the FRA format, as well as because of a lack of details provided for the (re-) classifi-
cation procedures99.
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