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Abstract: The aim of this study was combining multi-level resting-state functional magnetic resonance
imaging (rs-fMRI) features with machine learning method to distinguish breast cancer patients with
chemotherapy-related subjective cognitive complaints (SCC) from non-chemotherapy (BC) and
healthy controls (HC). Forty subjects in SCC group, forty-nine in BC group and thirty-four in HC
group were recruited and underwent rs-fMRI scanning. Based on the anatomical automatic labeling
brain atlas, the functional metrics of all subjects included functional connectivity, amplitude of low
frequency fluctuation and fractional amplitude of low frequency fluctuation, regional homogeneity,
voxel-mirrored homotopic connectivity and degree centrality were calculated and extracted as
features set. Then, the rs-fMRI features were selected by two-sample t-test, removing variables with a
high pairwise correlation and least absolute shrinkage and selection operator regression. Finally, the
support vector machine models were built for classification (SCC vs. BC, SCC vs. HC). Thirty-eight
features (SCC vs. BC) and seventeen features (SCC vs. HC) were selected separately, and the accuracy
of the models were 82.0% and 91.9%, respectively. These findings demonstrated a valid machine
learning approach that effectively distinguished breast cancer patients with chemotherapy-related
SCC from non-chemotherapy and healthy controls, providing potential neuroimaging evidence for
early diagnosis and clinical intervention of chemotherapy-related SCC.

Keywords: resting-state functional magnetic resonance imaging; machine learning; breast cancer;
chemotherapy-related cognitive impairment; subjective cognitive complaints

1. Introduction

Breast cancer is the most common malignant disease that threatens women all over
the world [1], and chemotherapy is one of the most important treatments. More than 50%
of breast cancer patients have cognitive impairment in many aspects, including memory,
execution, attention and reaction speed, during or after chemotherapy (also known as
“chemo-brain”), and more than half of them are mainly manifested as subjective cognitive
impairment (SCC) [2,3], which seriously affects the ability to work and socialize [4]. With
the continuous development of medical technology, the number of breast cancer survivors is
increasing, and the social and economic burden brought by chemotherapy-related cognitive
impairment (CRCI) is becoming heavier. Therefore, early identification of the occurrence of
CRCI is crucial for early clinical intervention and prognosis of patients.
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Several neuroimaging studies have shown the reduced volume and density of brain
gray matter and the destroyed structural integrity of white matter in CRCI [5–7]. Addi-
tionally, the resting-state functional magnetic resonance imaging (rs-fMRI) studies had
also confirmed that there were extensive abnormalities of local functional activities and
connections in breast cancer patients with CRCI [8–10]. Dumas et al. [11] reported that
decreased functional connectivity (FC) one month after chemotherapy that partially recov-
ered to baseline at one year in the dorsal attention network and decreased FC in the default
mode network (DMN) at one month and one year following chemotherapy. A previous
study on the hippocampus showed that this brain region in breast cancer patients after
chemotherapy has higher FC than that of healthy controls and was associated with poor
subjective cognitive performance [12]. Chen et al. [9] found older breast cancer patients
have increased amplitude of low frequency fluctuation (ALFF) of bilateral subcallosal gyri
and right anterior cingulate gyrus after chemotherapy, and decreased fractional ALFF
(fALFF) in the left precuneus, while there was no significant difference in regional ho-
mogeneity (ReHo) analysis. However, most of these studies are carried out separately
according to the brain functional connectivity or regional activity, and the result is based
on the comparison of the population level. Given the multimodal characteristics of brain
function, it will be a challenge to identify the distinguishing features and apply them to the
individual classification of CRCI, particularly for the survivors at the period of SCC.

To solve these problems, the classification models combining rs-fMRI with machine
learning has been applied to the early accurate diagnosis of CRCI. Kesler et al. [13] con-
structed the support vector machine (SVM) with patterns of DMN connectivity, and distin-
guished CRCI from both survivors without chemotherapy and HCs with 90–91% accuracy,
while the effect of other parameters of rs-fMRI functional connection and activity on breast
cancer patients after chemotherapy was ignored. Furthermore, there were insufficient
concerns for breast cancer survivors who were still experiencing chemotherapy-related
SCC. Previous studies have suggested that the combination of multi-level rs-fMRI features
could improve the disease diagnosis classification performance [14,15].

Based-on these, in this present study, we assumed that we can use the method of
machine learning to construct the SVM models through a variety of rs-fMRI functional
parameters, including FC, ALFF, fALFF, ReHo, voxel-mirrored homotopic connectivity
(VMHC) and degree centrality (DC), which could effectively identify breast cancer patients
with chemotherapy-related SCC from breast cancer patients before chemotherapy and HCs,
and these might provide a valuable message for the accurate diagnosis of the occurrence of
CRCI and clinical intervention in breast cancer patients.

2. Materials and Methods
2.1. Participants

All breast cancer patients were recruited in the First Affiliated Hospital of Nanchang
University from July 2018 to May 2020. Patient inclusion criteria include the following:
(1) female patients with primary invasive breast cancer confirmed by postoperative patho-
logically, and with no brain metastasis confirmed by MRI; (2) right-handed; (3) aged 35 to
64 years old; (4) appearance of subjective cognitive complaints that are not related to the
disease and corresponding treatment after chemotherapy in post-operative chemotherapy.
SCC are defined as self-reports of memory, execution, attention, processing speed and other
cognitive impairment. Exclusion criteria include the following: (1) non-primary invasive
breast cancer; (2) any history of brain trauma, tumor, nerve demyelination, mental illness,
or alcohol and drug abuse; (3) any contraindications to MRI scanning (vertigo, claustro-
phobia, etc.). According to the above criteria, a total of forty-six breast cancer patients with
subjective cognitive complaints after postoperative chemotherapy (SCC group) who met
above inclusion criteria were recruited. Additionally, fifty-one breast cancer patients before
postoperative chemotherapy (BC group) who met the above first three inclusion criteria
and all exclusion criteria were recruited as control group. Meanwhile, thirty-four age- and
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sex-matched healthy controls (HC group) were volunteered from the local community,
which according with above exclusion criteria.

This study was approved by the Medical Research Ethics Committee and the Insti-
tutional Review Board of the First Affiliated Hospital of Nanchang University (Protocol
number 2018039 from 1 July 2018) and was performed in accordance with the Declaration of
Helsinki. Each subject signed a written informed consent before participating in this study.

2.2. Cognitive Assessment

The subjective and objective cognitive performance of breast cancer patients was mea-
sured by using neuropsychological cognitive assessments, and it was completed within the
same day of MRI scanning. The subjective cognitive complaints were estimated by the ques-
tionnaire of Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) [16]
version 3. There are four subdomains to evaluate the perceived cognitive impairment,
impact of perceived cognitive impairments on quality of life, comments from others, and
perceived cognitive abilities. Additionally, objective cognition would be measured from
different cognitive subdomains by the following six neurophysiological tests: (1) Montreal
Cognitive Assessment Beijing version [17]; (2) Trail making test [18]: it consists of parts A
and B; (3) Stroop color-word test (CWT) [19]: there are three parts in this test, including
word test, color test and color-word test; (4) The Chinese version of auditory verbal learning
test (AVLT) [20]: it included immediate and delayed recall; (5) Symbol digital modalities
test [21]; (6) Clock drawing test [22].

Moreover, the Beck Depression Inventory [23] was used to assess the severity of
depression in patients, the higher scores the more severe the symptoms.

2.3. MRI Data Acquisition

All MRI data were collected on a 3.0-Tesla Siemens Trio TIM Scanner (Siemens Medical
Solutions, Erlangen, Germany) using an eight-channel head coil at the Radiology Depart-
ment of the First Affiliated Hospital of Nanchang University. To minimize head motion
and discomfort, all participants laid supine with their head fixed using foam pads in the
scanner. During the MRI data acquisition, the participants were required to keep their eyes
closed without thinking anything specifically or falling into sleep.

The rs-fMRI gradient-echo echo-planar imaging sequences were collected as follows:
repetition time = 2000 ms, echo time = 30 ms, flip angle = 90◦, matrix size = 64 × 64,
field of view = 220 × 220 mm2, voxel size = 3.0 × 3.0 × 4.0 mm3, inter-slice gap = 0 mm,
slice thickness = 4 mm, 30 axial slices, and 240 time points with a scan time of 8 min and
40 s. The high-resolution T1-weighted images were collected using three-dimensional
magnetization-prepared rapid gradient-echo sequence with the following parameters: repe-
tition time = 1900 ms, echo time = 2.26 ms, inversion time = 900 ms, matrix size = 240 × 256,
field of view = 250 × 250 mm2, voxel size = 1.0 × 1.0 × 1.0 mm3, slice thickness = 0.5 mm,
and 176 sagittal slices with a scan time of 4 min and 20 s. Each participant also underwent
conventional sequences including T1-weighted, T2-weighted, T2-weighted dark fluid, and
diffusion-weighted imaging sequences to analyze brain structural injury and metastasis.

2.4. MRI Data Preprocessing

The conventional sequence images and diffusion weighted imaging were checked
by three experienced radiologists to weed out structural brain injury and metastasis
before preprocessing. The rs-fMRI and high-resolution T1-weighted images were pre-
processed by using a toolbox called Data Processing Assistant for Resting-State fMRI
(http://rfmri.org/DPARSF (accessed on 20 November 2021)) [24] based on Statistical Para-
metric Mapping 12 (http://www.fil.ion.ucl.ac.uk/spm/ (accessed on 20 November 2021))
running on MATLAB 8.4.0. (Mathworks Inc., Sherborn, MA, USA) through the following
seven steps: (1) removing the first ten time points for magnetization stabilization and
adaptation the environment; (2) slice-timing correction; (3) realignment to corrected head
motion (whose maximum head motions exceed 2.0 mm of displacement in any direction or

http://rfmri.org/DPARSF
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2 degrees in any angular motion should be excluded); (4) spatial normalization: the indi-
vidual registration between functional images and high-resolution T1 data, then T1 images
segmentation and functional data registration to Montreal Neurological Institute space, and
resampling to 3 × 3 × 3 mm3 voxel; (5) smoothing by using a 6 × 6 × 6 mm3 full-width
at half-maximum Gaussian kernel; (6) linear de-trending to remove nuisance signals and
linear regression to obtain Friston 24-head motion parameters, cerebrospinal fluid and
white matter signal; and (7) band-pass filtering at 0.01–0.08 Hz to control high-frequency
physiological noise and low-frequency drift.

2.5. Feature Extraction

After data preprocessing, based on 90 brain regions of the automated anatomical
labeling (AAL) atlas, we calculated the following six types of rs-fMRI measures, including
FC, ALFF, fALFF, ReHo, VMHC and DC as the variables.

(1) FC can reflect the temporal correlation between neurophysiological activities in differ-
ent brain regions spatially. The mean time courses of each regions of interest (ROI)
were attained by averaging the rs-fMRI time series of all the voxels within the ROI.
Pearson’s correlation analysis was performed on all pairs of ROIs time courses, and
then the correlation coefficients were transformed into z-values with Fisher’s r-to-z
transformation. Total 4005 z-transformed correlation coefficients were taken as the
FCs between all pairs of ROIs.

(2) ALFF and fALFF reflect the intensity of intrinsic spontaneous brain oscillatory activity.
ALFF was achieved as the averaged square root in a voxel over the preceding fre-
quency range, while fALFF was calculated as the ratio between ALFF and the average
square root of the power spectrum within the entire frequency range. We calculated
individual ALFF/fALFF values within each voxel and then matched the mean to the
brain maps. Fisher’s r-to-z transformation was performed to obtain zALFF/zfALFF
map of the whole brain. Finally, we obtained 90 zALFF/zfALFF values using the
AAL atlas.

(3) ReHo as a local brain connectivity metric is measured to detect the regional temporal
homogeneity of neural intrinsic activity. After spatial normalization, all images were
then band-pass filtered as described at step 7 and smoothing would be conducted. We
calculated individual ReHo values within each voxel and adjacent 26 voxels, then the
mean be segmented into 90 ROIs. Fisher’s r-to-z transformation was performed to
obtain zReHo map of the whole brain as well. Thus, we obtained 90 zReHo values.

(4) VMHC can reflect the functional connectivity of mirrored voxels in two hemispheres.
Individual VMHC values within each voxel were calculated, then segmented into 90
ROIs. After performing Fisher’s r-to-z transformation, we obtained 90 zVMHC values
of brain map.

(5) DC reflects the importance of this brain region by calculating the number of functional
connections directly connected with this brain region in the whole brain. Each region’s
DC with positive binary values of AAL atlas would be calculated and transformed to
zDC values, then we obtained 90 zDC values.

2.6. Feature Selection

First, we performed two-sample t-test on each feature between the SCC and BC group,
and the features that were significantly different (p < 0.01) between the two groups were
retained. Then, we eliminated the features with high pairwise correlation to weaken the
multi-collinearity. If there was a high Pearson’s correlation between two features (we set
0.65 as the correlation absolute threshold), we checked the mean absolute correlation of
each variable and removed the variable with a larger mean absolute correlation. Lastly,
we used the least absolute shrinkage and selection operator (LASSO) logistic method with
10-fold crossing validation using classification accuracy as cost function to select the most
discriminative features for classification. After LASSO, the features whose coefficients were
non-zero were remained to train a model for classifying the SCC and BC group. The features



J. Clin. Med. 2022, 11, 2267 5 of 16

for classifying the SCC and HC group were selected as per the above identical procedures.
The feature selection was performed in Python 3.8.8 with packages “scikit-learn”.

2.7. SVM Classification

Based on the selected features, we constructed SVM models to discriminate the three
groups (SCC vs. BC, SCC vs. HC). To enhance the interpretability of the models, the linear
kernel function was considered in this study. The regularization parameter C in the linear
kernel SVM models was used to find the optimal hyperplane. The hyper-parameter C
was left at default setting, searched by ranging from 2−10 to 210 with 20.2 as step sizes via
five-fold cross-validation. The leave-one-out cross-validation method and permutation
test (5000 times) were used to build the optimal SVM model. The accuracy, sensitivity and
specificity of models were calculated, and the receiver operating characteristic (ROC) curve
and the area under the curve (AUC) are used to evaluate the performance of the models.
The weights of all selected rs-fMRI features were calculated to quantify the contribution to
the SVM models. The procedures of building the linear kernel SVM models were performed
in MATLAB 8.4.0. with the libsvm version 3.24 packages (https://www.csie.ntu.edu.tw/
~cjlin/libsvm/) (accessed on 30 December 2021) [25].

2.8. Statistical Analyses

Statistical analysis was performed using SPSS 26.0 software for clinical characteristics
and cognitive function assessment by independent sample t-test or one-way analysis
of variance (ANOVA). Prior to ANOVA, clinical data were checked for normality and
homogeneity of variance. If the differences were significant, they were further compared
using the least significant difference test; otherwise, non-parametric tests were employed,
and p < 0.05 was considered significant.

3. Results
3.1. Demographics and Clinical Characteristics

Two patients (all in the SCC group) with brain metastasis and six patients (four in the
SCC group and two in the BC group) with excessive head motion were ruled out, and this
study were recruited 40 participants in the SCC group, 49 in the BC group and 34 in the HC
group finally. All patients in the SCC group treated with standard-dosage chemotherapy
regimens: (1) 24 patients with docetaxel (75 mg/m2) + cyclophosphamide (500 mg/m2) +
doxorubicin (50 mg/m2) or epirubicin (100 mg/m2) by intravenous infusion every 3 weeks;
(2) 16 patients with docetaxel (75 mg/m2) + cyclophosphamide (500 mg/m2) + fluorouracil
(500 mg/m2) + doxorubicin (50 mg/m2) or epirubicin (100 mg/m2) by intravenous infusion
every 3 weeks. Seventeen patients in the SCC group have completed the chemotherapy
treatment at the time of the MRI scan, while the rest were still undergoing treatment (6
patients completed two cycles, 6 patients completed five cycles, 5 patients completed
six cycles, and 6 patients completed seven cycles). Demographic and clinically relevant
characteristics and cognitive function parameters are presented in Table 1. No significant
differences in age, years of education, or head motion were found among these three
groups. There were no significant differences between the SCC and BC group in the Beck
Depression Inventory and objective cognitive assessment scores. However, the SCC group
had significantly worse subjective cognitive performance, including the FACT-Cog total
scores, perceived cognitive impairment and comments from others, compared with the BC
group (Table 1).

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 1. Comparison of clinical characteristics and cognitive function among the three groups.

SCC (N = 40) BC (N = 49) HC (N = 34) p Values

Mean SD Mean SD Mean SD

Age (years) 47.85 6.87 46.98 6.64 46.38 9.88 0.712
Education (years) 4.60 3.63 5.58 3.86 5.74 3.12 0.317
Stage of tumor (I, II, III, IV) 0, 24, 15, 1 8, 27, 11, 3
From the start of
chemotherapy (days) 205.21 272.17

Head motion (mm) 0.11 0.05 0.10 0.04 0.10 0.05 0.585
Beck Depression Inventory
scores 14.63 7.91 12.04 9.50 0.173

FACT-Cog total scores 95.89 16.44 106.94 10.95 <0.001
Perceived cognitive

impairment 53.13 9.74 60.79 6.39 <0.001

Quality of life 12.23 3.02 13.31 3.40 0.120
Comments from others 14.13 2.63 15.42 1.03 0.002
Perceived cognitive

abilities 16.41 3.66 17.42 3.80 0.210

Montreal Cognitive
Assessment scores 20.83 4.52 20.51 4.44 0.742

Trail making test—A (s) 36.28 57.23 20.40 21.04 0.163
Trail making test—B (s) 198.10 89.21 186.66 84.47 0.638
CWT—word test (s) 31.16 18.29 28.95 11.66 0.525
CWT—color test (s) 40.22 9.19 41.09 14.49 0.766
CWT—color-word test (s) 78.69 20.69 74.57 23.06 0.425
AVLT—immediate recall 40.23 12.37 40.45 11.14 0.944
AVLT—delayed recall 9.88 3.56 9.16 3.03 0.311
Clock drawing test 19.08 6.15 20.72 7.84 0.284
Symbol digital modalities test 29.79 14.42 32.79 14.78 0.344

Abbreviations: SCC, breast cancer patients with postoperative chemotherapy-related subjective cognitive com-
plaints; BC, breast cancer patients with postoperative non-chemotherapy; HC, healthy control; SD, standard
deviation; FACT-Cog, Functional Assessment of Cancer Therapy-Cognitive Function; CWT, Stroop Color-Word
Test; AVLT, Auditory Verbal Learning Test.

3.2. Feature Selection

Between the SCC and BC group, we finally obtained 38 rs-fMRI features, includ-
ing 25 FC, 6 ALFF, 2 fALFF, 4 ReHo and 1 VMHC after the feature selection procedure
(Figures 1 and 2, Table 2). Between the SCC and HC group, we finally obtained 17 rs-fMRI
features, including 7 FC, 2 ALFF, 4 fALFF, 3 ReHo and 1 DC after feature selection (Figure 3
and Table 3).
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Table 2. The selected rs-fMRI features set for discriminating the SCC from BC group.

ID Features Brain Network SCC (N = 40) BC (N = 49) p
Values Weight

Mean SD Mean SD

1 Pallidum_R–Angular_R Subcortical-DMN 0.222 0.179 0.115 0.158 0.004 5.629

2 Temporal_Mid_R–
Cingulum_Post_L DMN-DMN 0.467 0.271 0.602 0.189 0.007 −3.573

3 Insula_R–Frontal_Inf_Tri_R CON-SN 0.439 0.233 0.560 0.188 0.008 −2.735
4 Pallidum_L–Precuneus_L Subcortical-DMN 0.295 0.191 0.295 0.191 0.006 2.221
5 Pallidum_L–Cingulum_Post_R Subcortical-DMN 0.264 0.166 0.15 0.158 0.001 2.159

6 Cingulum_Post_L–
Frontal_Inf_Tri_R DMN-SN 0.154 0.227 0.023 0.228 0.008 2.144

7 Putamen_L–Frontal_Inf_Orb_L Subcortical-Other
regions 0.337 0.208 0.44 0.143 0.007 −1.888

8 Parietal_Inf_L–
ParaHippocampal_L FPCN-Other regions 0.156 0.229 0.287 0.167 0.002 −1.867

9 Thalamus_L–Rectus_R Subcortical-Other
regions 0.125 0.203 0.229 0.160 0.008 −1.433

10 Angular_L–Olfactory_L DMN-Subcortical 0.145 0.210 0.281 0.224 0.004 −1.284
11 Temporal_Inf_R–Fusiform_L DMN-Other regions 0.709 0.296 0.864 0.217 0.005 −1.150
12 Insula_R–Insula_L CON-CON 1.134 0.215 1.261 0.232 0.009 −1.063

13 ParaHippocampal_L–Rectus_L Other regions-Other
regions 0.401 0.264 0.543 0.197 0.005 −1.027

14 Parietal_Inf_L–
Frontal_Sup_Orb_R FPCN-Other regions 0.293 0.191 0.410 0.162 0.002 −0.993

15 Temporal_Mid_R–Precuneus_L DMN-DMN 0.557 0.282 0.688 0.183 <0.010 −0.918
16 SupraMarginal_R–Insula_R AN-CON 0.593 0.241 0.744 0.219 0.003 −0.880
17 Cingulum_Post_L–Frontal_Sup_L DMN-DMN 0.591 0.202 0.712 0.224 <0.010 −0.690

18 Parietal_Inf_L–
Frontal_Sup_Orb_L FPCN-Other regions 0.352 0.202 0.463 0.194 0.009 0.678

19 Temporal_Mid_R–
Frontal_Mid_Orb_R DMN-DMN 0.447 0.229 0.588 0.184 0.002 −0.526

20 Pallidum_R–Cingulum_Post_L Subcortical-DMN 0.245 0.184 0.144 0.159 0.007 0.481
21 SupraMarginal_L–Insula_R AN-CON 0.521 0.246 0.66 0.209 0.005 0.377
22 Occipital_Mid_L–Olfactory_L VN-Subcortical 0.301 0.256 0.439 0.187 0.004 −0.342
23 Putamen_L–Frontal_Inf_Orb_R Subcortical-AN 0.302 0.194 0.409 0.154 0.005 −0.337
24 Temporal_Mid_L–Frontal_Sup_L DMN-DMN 0.637 0.282 0.791 0.216 0.005 0.243

25 Occipital_Inf_R–
Frontal_Sup_Medial_L VN-DMN 0.332 0.280 0.482 0.192 0.004 0.151

26 zALFF of Frontal_Mid_R FPCN −0.052 0.149 0.048 0.166 0.004 −1.345
27 zALFF of Frontal_Mid_L FPCN −0.022 0.170 0.079 0.185 0.009 1.064
28 zALFF of Cingulum_Mid_R SN −0.081 0.169 0.019 0.178 0.008 −0.965
29 zALFF of Frontal_Inf_Oper_R FPCN −0.209 0.123 −0.116 0.132 0.001 −0.781
30 zALFF of Frontal_Inf_Tri_R SN −0.242 0.118 −0.156 0.115 0.001 0.265
31 zALFF of Cingulum_Post_L DMN 0.406 0.369 0.664 0.461 0.005 0.260
32 zfALFF of Occipital_Mid_L VN 0.894 0.371 0.69 0.316 0.006 3.148
33 zfALFF of Occipital_Mid_R VN 0.927 0.367 0.717 0.376 0.009 0.389
34 zReHo of Occipital_Sup_R VN 0.586 0.300 0.412 0.311 0.009 −2.314
35 zReHo of Caudate_R Subcortical −0.307 0.239 −0.109 0.253 <0.001 −1.966
36 zReHo of Cingulum_Mid_R SN 0.227 0.150 0.342 0.156 0.001 −1.272
37 zReHo of Cingulum_Ant_R DMN −0.004 0.188 0.110 0.211 <0.010 −1.158
38 zVMHC of Insula_R CON 0.414 0.122 0.485 0.130 <0.010 −0.542

Abbreviations: SCC, breast cancer patients with postoperative chemotherapy-related subjective cognitive com-
plaints; BC, breast cancer patients with postoperative non-chemotherapy; SD, standard deviation; DMN, default
mode network; FPCN, frontal-parietal control network; SN, salience network; CON, cingular-opercular network;
AN, auditory network; VN, visual network.
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Table 3. The selected rs-fMRI features set for discriminating the SCC from HC group.

ID Features Brain Network SCC (N = 40) HC (N = 34) p
Values Weight

Mean SD Mean SD

1 Cingulum_Ant_R–
Frontal_Mid_Orb_R DMN–DMN 0.607 0.260 0.783 0.263 0.005 −3.121

2 Temporal_Sup_L–
Insula_L AN–CON 0.822 0.202 0.650 0.246 0.001 2.750

3 Temporal_Pole_Sup_R–
ParaHippocampal_R

DMN–Other
regions 0.653 0.215 0.491 0.224 0.002 2.677

4 Cingulum_Ant_R–
Frontal_Sup_Medial_R DMN–DMN 0.756 0.171 0.922 0.203 <0.001 −2.285

5 Temporal_Sup_R–
Insula_L VAN–CON 0.604 0.211 0.457 0.253 0.008 1.639

6 Frontal_Mid_Orb_L–
Frontal_Sup_Orb_R

DMN–Other
regions 0.852 0.326 0.774 0.303 0.008 1.233

7 Temporal_Pole_Sup_L–
ParaHippocampal_R

DMN–Other
regions 0.606 0.254 0.430 0.248 0.004 0.004

8 zALFF of
Frontal_Inf_Oper_R FPCN −0.209 0.123 0.080 0.189 0.001 −3.947

9 zALFF of
Frontal_Inf_Oper_L FPCN −0.162 0.129 0.010 0.223 <0.001 0.633

10 zfALFF of
Frontal_Inf_Tri_L FPCN 0.166 0.223 0.327 0.241 0.004 −3.043

11 zfALFF of Insula_L CON 0.220 0.232 0.383 0.264 0.006 −1.225

12 zfALFF of
Temporal_Pole_Sup_R DMN 0.471 0.236 −0.314 0.270 0.009 1.139

13 zfALFF of
Frontal_Inf_Oper_L FPCN 0.075 0.367 0.360 0.456 0.004 −0.546

14 zReHo of Frontal_Mid_R FPCN −0.446 0.250 −0.262 0.196 0.001 −3.864
15 zReHo of Insula_L CON −0.401 0.172 −0.279 0.179 0.004 −1.580

16 zReHo of
Rolandic_Oper_L AN 0.369 0.182 0.528 0.188 <0.001 −0.434

17 zDC of Cingulum_Ant_R DMN −0.527 0.110 −0.418 0.148 0.001 −3.346
Abbreviations: SCC, breast cancer patients with postoperative chemotherapy-related subjective cognitive com-
plaints; BC, breast cancer patients with postoperative non-chemotherapy; HC, healthy control; SD, standard
deviation; DMN, default mode network; AN, auditory network; CON, cingular-opercular network; VAN, ventral-
attention network; FPCN, frontal-parietal control network.

3.3. SVM Classification

The regularization parameter C in the SVM models were determined as 22.6

(SCC vs. BC) and 20 (SCC vs. HC), respectively, by iterative attempts using the 5-fold
cross-validation scheme. With the 38 rs-fMRI features having been chosen after the above
three screening procedures, after the hyper-parameter optimization and leave-one-out cross-
validation, we obtained the optimal SVM model with an accuracy of 82.0% and an AUC
of 0.903 (95% confidence interval: 82.2–95.6%) for discriminating the SCC from BC group
(sensitivity = 82.50%, specificity = 87.76%, and the p values was 0.0003 after 5000 times
permutation test) (Figure 4). With the 17 rs-fMRI features, we built optimal SVM model for
discriminating the SCC from HC group with an accuracy of 91.9% and an AUC of 0.943
(95% confidence interval: 86.3–98.3%) (sensitivity = 92.50%, specificity = 91.18%, and the p
values was 0.0004 after 5000 times permutation test) (Figure 4).
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4. Discussion

In the present study, we constructed the SVM models with excellent performance
that combined a variety of rs-fMRI functional parameters, including FC, ALFF, fALFF,
ReHo, VMHC and DC with machine learning method, which could effectively discriminate
breast cancer patients with chemotherapy-related SCC from breast cancer patients before
chemotherapy and HCs, and these suggested the remarkable potentialities of rs-fMRI to
identify CRCI and could provide more evidence for early clinical intervention.

4.1. SVM Classification

Based on multi-level rs-fMRI features, this study utilized one of the most popular
machine learning classifiers SVM to discriminate breast cancer patients with chemotherapy-
related SCC in breast cancer survivors with excellent classification accuracy and reliability.
Kesler et al. [13] analyzed the DMN resting-state functional connectivity patterns, combined
the SVM model, and discriminated chemotherapy-treated from non-chemotherapy-treated
breast cancer survivors and healthy controls with high accuracy, suggesting DMN func-
tional connectivity might be used as a neuroimaging marker for predicting CRCI. While
the features type was limited to FC, local functional activity metrics were not considered.
Similarly, Hosseini et al. [26] applied the multi-variate pattern analysis method to decoding
the brain functional connectivity pattern during an executive-prefrontal task fMRI and
built an SVM model for distinguishing chemotherapy-treated breast cancer patients. The
connectivity of frontal lobe, supplementary motor area, and inferior parietal lobule brain
regions contributed significantly to the model, but the classification performance was
mediocre (the accuracy was about 70%). Kesler et al. [27] combined connectome-based pre-
dictive modeling [28] with rs-fMRI, built a random forest classifier model for unsupervised
machine learning, and obtained three different biotypes in the breast cancer group with
chemotherapy treatment. There were significant differences in cognitive impairment types
and brain functional network connection patterns among patients with different biotypes.
It suggested that there may be various clinical types of CRCI in breast cancer, which could
provide new insights into the heterogeneity of cognitive symptoms in CRCI, but a large
sample longitudinal follow-up study design is needed in the future to track individual
cognitive trajectories.

In addition, brain local functional variables and white matter network characteristics
were also used to classify breast cancer patients after chemotherapy. Based on rs-fMRI and
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generalized q-sampling imaging, Chen et al. [29] constructed multiple machine learning
models separately for classification of post-chemotherapy breast cancer patients versus
healthy controls. Among them, the following showed good performance, and the classifica-
tion accuracies could reach more than 80%: the logistic regression characterized by ReHo,
generalized fractional anisotropy and normalized quantitative anisotropy; the classifica-
tion and regression tree characterized by generalized fractional anisotropy; the XGBoost
classifier characterized by normalized quantitative anisotropy.

Furthermore, the effectiveness of these three classifiers was also verified by functional
network and structural network constructed using graph theory analysis [30]. Among
the features of topological network, the classification and regression tree and XGBoost
constructed with the functional global efficiency as feature and the classification and
regression tree model constructed with the structural transitivity as feature still obtained
good accuracies (classification accuracies could reach more than 80%). Graph theory
analysis simplified the connectivity relationships of complex brain topological networks.
The use of different network metrics to quantitatively assess alterations in brain integrative
and isolated functions may also provide new directions for investigating neuroimaging
diagnostic markers of cognitive changes underlying CRCI in breast cancer.

In this study, combined with the multi-level rs-fMRI features included brain functional
activity (FC and VMHC), local functional activity (ALFF, fALFF and ReHo) and graph
theory analysis (DC), and selected by t-test, removal of high pairwise correlation and LASSO
regression, we finally built the linear kernel SVM models with excellent classification
accuracy for distinguishing breast cancer patients with chemotherapy-related SCC from
breast cancer patients before chemotherapy and healthy controls.

4.2. Rs-fMRI Features

The features screened between the SCC and BC group covered a wide range of brain
network areas, but they were mainly distributed in DMN and subcortical regions. DMN
was a set of brain regions that included hubs around the anterior and posterior medial
cortex, bilateral temporal lobes, as well as superior frontal and parietal cortices, which
characterized by whose activity is high when the mind is not engaged in specific behav-
ioral tasks and low during focused attention on the external environment. These regions
played important roles in internal orientation cognition, cognitive control and self-reference
cognitive processing [31], which closely associated with a variety of neuropsychiatric dis-
eases [32]. For instance, Feng et al. [33] reported the significant alterations of hippocampal
functional connectivity with DMN mainly in the left insula, temporal lobe and the left
inferior frontal gyrus in breast cancer patients underwent chemotherapy. In the previous
study [13], the difference of functional connectivity in DMN was used as the imaging
features for identifying breast cancer patients receiving chemotherapy. These findings
suggested that abnormal functional alterations in DMN may be one of the most effective
biomarkers for distinguishing CRCI in breast cancer.

The subcortical regions involved hippocampus, amygdala and basal ganglia (caudate
nucleus, putamen, pale balloon and claustrum) and other brain regions, which were
associated with cognitive, emotional and social functioning, such as emotional regulation,
long-term memory and spatial orientation [34–37]. Furthermore, the other brain networks
involved in this mechanism, such as the frontal-parietal control network (FPCN), salience
network (SN), cingular-opercular network (CON), auditory network (AN) and visual
network (VN), suggested that cognitive impairment caused by chemotherapy may involve
abnormal alterations in a wide range of functional networks in the whole brain.

The features screened between the SCC and HC group seldom overlapped with those
between the SCC and BC group, but the engaged brain network areas were comparable. In
addition to the highest proportion in DMN regions, the rs-fMRI features selected between
the SCC and HC group were also mainly involved FPCN and CON related brain regions.
The FPCN, also called central executive network, including prefrontal lobe, dorsolateral
prefrontal lobe, dorsolateral superior frontal lobe/anterior cingulate gyrus, inferior parietal



J. Clin. Med. 2022, 11, 2267 13 of 16

anterior lobule and anterior insular cortex, which mainly involved in executive, top-down
cognitive control processes and externally oriented cognition [38]. Miao et al. [39] took ante-
rior cingulate cortex as the seed regions, reported there were lower functional connectivity
with the bilateral superior frontal gyrus and cuneus, left medial frontal gyrus and middle
temporal gyrus in breast cancer patients after receiving chemotherapy, and significantly
correlated with the executive function. Chen et al. [40] also demonstrated that the breast
cancer survivors who had undergone chemotherapy showed significantly lower regional
functional activity in prefrontal cortex regions, further presented the disorder of functional
activity of FPCN brain area in breast cancer survivors.

The CON involved dorsal anterior cingulate gyrus/medial superior frontal cortex,
anterior insula/frontal operculum and anterior prefrontal cortex area, was generally associ-
ated with the maintenance of cognitive setting during performance of cognitive tasks of
external attention [41], and played a critical and causal role in switching between the FPCN
and the DMN [42]. In a visual episodic memory task-fMRI study, Pergolizzi et al. [43]
reported the increased activation of prefrontal cortex regions for the breast cancer group
compared to controls for both before and after chemotherapy treatment; in addition, Chen
et al. [40] showed similar findings by an rs-fMRI study, remarking that the alterations of
functional activity in the CON might be one of the effective biomarkers to identify breast
cancer patients after chemotherapy with cognitive impairment.

4.3. Comparison of Subjective and Objective Cognition between the SCC and BC Group

In this study, there was no significant difference in objective cognitive scores between
the SCC and BC group, which corresponds to the results of previous studies [2,44]; mean-
while, in the subjective questionnaire, the total score of FACT-Cog in the SCC group was
significantly lower than that in the BC group, and the perceived cognitive impairment and
comments from others were significantly decreased in the SCC group, which indicated that
the patients in the SCC group suffered more subjective cognitive impairment. Although
there were no clear diagnostic criteria for FACT-Cog to confirm the decline of subjective
cognitive function, according to a previous study [45], the total score of FACT-Cog de-
creased by 6.9–10.6 points, which could be diagnosed as subjective cognitive impairment.
It suggested that the SCC group in this study was in accordance with the diagnosis of
subjective cognitive impairment than the BC group at the group level.

4.4. Limitations

The current study has some limitations. First, the number of samples was still small, so
increasing the sample size and verifying the model through external data sets would be our
next research direction. Then, although the brain atlas used in this study is limited to the
cerebrum and did not involve the cerebellum, the performance of the models were excellent,
and other brain atlas and functional activity of the cerebellum could be considered in the
future. Third, we only discussed the availability of functional features for rs-fMRI in this
study. Given the multi-modal characteristics of MRI, a future study that combined with
other MRI features such as gray and white matter volume and white matter fiber tract
connectivity for the prediction of CRCI in breast cancer would be beneficial.

5. Conclusions

In this study, our findings demonstrated a valid machine learning approach us-
ing multiple rs-fMRI features that could effectively identify breast cancer patients with
chemotherapy-related SCC from breast cancer patients without chemotherapy and healthy
controls, providing potential neuroimaging evidence for early diagnosis of the occurrence
of CRCI and clinical intervention in breast cancer patients.
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