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OBJECTIVE—Rictor is an essential component of mammalian
target of rapamycin (mTOR) complex (mTORC) 2, a kinase that
phosphorylates and activates Akt, an insulin signaling interme-
diary that regulates glucose and lipid metabolism in adipose
tissue, skeletal muscle, and liver. To determine the physiological
role of rictor/mTORC2 in insulin signaling and action in fat cells,
we developed fat cell–specific rictor knockout (FRic�/�) mice.

RESEARCH DESIGN AND METHODS—Insulin signaling and
glucose and lipid metabolism were studied in FRic�/� fat cells. In
vivo glucose metabolism was evaluated by hyperinsulinemic-
euglycemic clamp.

RESULTS—Loss of rictor in fat cells prevents insulin-stimulated
phosphorylation of Akt at S473, which, in turn, impairs the
phosphorylation of downstream targets such as FoxO3a at T32
and AS160 at T642. However, glycogen synthase kinase-3� phos-
phorylation at S9 is not affected. The signaling defects in FRic�/�

fat cells lead to impaired insulin-stimulated GLUT4 translocation
to the plasma membrane and decreased glucose transport.
Furthermore, rictor-null fat cells are unable to suppress lipolysis
in response to insulin, leading to elevated circulating free fatty
acids and glycerol. These metabolic perturbations are likely to
account for defects observed at the whole-body level of FRic�/�

mice, including glucose intolerance, marked hyperinsulinemia,
insulin resistance in skeletal muscle and liver, and hepatic
steatosis.

CONCLUSIONS—Rictor/mTORC2 in fat cells plays an impor-
tant role in whole-body energy homeostasis by mediating signal-
ing necessary for the regulation of glucose and lipid metabolism
in fat cells. Diabetes 59:1397–1406, 2010

M
ammalian target of rapamycin (mTOR) is a
serine/threonine (S/T) kinase that is a key
regulator of cell growth and metabolism (1).
mTOR is found in two separate multiprotein

complexes: mTOR complex (mTORC) 1, in which mTOR
interacts with raptor, mLST8, and PRAS40; and mTORC2,
formed by mTOR interaction with rictor, mLST8, and mSin
(1–3). mTOR kinase activity associated with mTORC1 can
be specifically inhibited by rapamycin (1). When mTOR
binds to rictor it is not inhibited by rapamycin (1), but
long-term treatment with rapamycin inhibits the formation
of mTORC2 in some cell types (4). Both mTORCs are
mediators of insulin and growth factor signaling in cul-
tured cells through the classical tyrosine kinase receptor/
phosphatidylinositol-3-kinase (PI3K) pathway (1). mTOR
complexes phosphorylate and activate a subgroup of the
AGC family of protein kinases, including the mTORC1
target S6 kinase 1 (S6K1) (5) and the mTORC2 substrate
Akt (also known as protein kinase B) (6). The mTORC1/
S6K1 arm of insulin signaling is known to be involved in
the regulation of cell growth and protein synthesis (5). Akt
mediates insulin regulation of glucose and lipid metabo-
lism in adipose tissue, skeletal muscle, and liver (7).

Full activation of Akt kinase activity requires phosphor-
ylation at S473 by mTORC2 and T308 by phosphoinositide-
dependent kinase (PDK1) (8). In cell culture models,
short-hairpin RNA (shRNA)-mediated depletion of rictor
results in loss of mTORC2-mediated Akt S473 phosphory-
lation (6). Interestingly, loss of S473 phosphorylation after
rictor knockdown in cultured cells reduced the phosphor-
ylation of some, but not all, Akt substrates. The effects of
the loss of rictor on insulin-mediated metabolic responses
were not tested. Because Akt is downstream of mTORC2
in the insulin signaling pathway and is a mediator of
insulin’s effect on metabolic processes, we were interested
in determining the role of mTORC2 in controlling glucose
and lipid metabolism in insulin target tissues. Since whole-
body rictor knockout mice are embryonic lethal (9,10), we
previously developed mice in which rictor expression was
ablated specifically in skeletal muscle (MRic�/�) (11).
MRic�/� mice exhibited impaired insulin-stimulated Akt
S473 phosphorylation and glucose transport defects in
skeletal muscles that resulted in mild glucose intolerance.

Recently, adipose tissue has gained increased attention
not only for storing body’s excess energy but also as an
endocrine organ secreting adipokines, such as leptin,
adiponectin, and resistin (12). The adipokines, as well as
nonesterified fatty acids (NEFAs) formed during lipolysis
in fat cells, impact whole-body insulin sensitivity and
insulin secretion by pancreatic �-cells (13). mTOR has
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been implicated in fat cell function (1). Patients treated
with rapamycin have elevated circulating NEFAs, suggest-
ing that mTORC1 plays a role in the regulation of fat cell
lipolysis (14,15). However, because chronic rapamycin
treatment can affect the activity of both mTORC1 and
mTORC2 (4), it was unclear which complex was involved
in the regulation of lipolysis in adipocytes. As demon-
strated in fat cell–specific GLUT4 (insulin-responsive
GLUT) knockout mice (16), glucose transport by fat cells
is critical for the maintenance of whole-body glucose
homeostasis. Our study with MRic�/� mice had shown a
role for rictor/mTORC2 in the regulation of glucose uptake
(11). To determine the role of rictor/mTORC2 in fat cell
function and the regulation of glucose and lipid metabo-
lism, we developed mice in which rictor expression was
specifically ablated in fat cells (FRic�/� mice).

RESEARCH DESIGN AND METHODS

Generation of FRic�/� mice. Rictorflox/flox mice (10) were crossed with
aP2-cre transgenic mice [strain, B6-Cg-Tg(Fabp4-cre)1Rev/J; The Jackson
Laboratory, Bar Harbor, ME] to obtain heterozygous aP2-cre;rictorflox/WT

offspring (where WT refers to wild type) in the F1 generation. These
heterozygous mice were crossed with rictorflox/flox mice to obtain the FRic�/�

mice with genotype aP2-cre;rictorflox/flox and their rictorflox/flox littermates
lacking aP2-Cre expression (referred to here as FRic�/�). Age-matched
FRic�/� and FRic�/� mice of both sexes were studied at 3–5 months of age
(young) and when they were aged �9 months (old). For all mice used, the
genotypes were determined by PCR analysis of tail genomic DNA as described
previously (10). Both rictorflox/flox mice as well as aP2-cre transgenic mice
used for breeding had been backcrossed for 6 and 9 generations to the
C57BL/6 strain, respectively. The mice were maintained under temperature-
and humidity-controlled conditions with a 12-h light/dark cycle and were
allowed food (total calories from fat 17%, LM-485; Harlan-Teklad) and water
ad libitum. All animal studies performed in this investigation were approved
by the University of Virginia Animal Care and Use Committee.
Hyperinsulinemic-euglycemic clamps. Following an overnight fast (�15 h),
a 2-h hyperinsulinemic (insulin at 150 mU/kg body wt priming followed by 2.5
mU/kg/min)-euglycemic clamp was conducted in awake mice using [3-3H]-
glucose and 2-deoxy-D-[1-14C]-glucose to assess glucose metabolism in indi-
vidual tissues as described in Kim et al. (17). Other experimental protocols

are described in detail in the online appendix (available at http://
diabetes.diabetesjournals.org/cgi/content/full/dc09-1061/DC1).
Statistics. Values given are means � SE for the numbers of animals indicated
in the figure legends. Significance was determined by unpaired two-tailed
t tests. Differences were considered significant if the P value was �0.05.

RESULTS

Ablation of rictor in fat cells impairs insulin signaling.
FRic�/� mice were generated by breeding rictorflox/flox mice
with mice expressing Cre recombinase under the control
of the aP2 promoter. Rictor protein levels were measured
in isolated fat cells, liver, and skeletal muscle from
FRic�/� and FRic�/� littermates. While fat cells from
FRic�/� mice showed an �90% reduction (P � 0.0001) in
rictor protein levels when compared with FRic�/� fat
cells, there was no change in rictor protein levels in liver
and skeletal muscle of FRic�/� mice (Fig. 1A). This result
confirmed that the aP2-Cre–mediated recombination event
was restricted to fat cells. mTOR, the binding partner of
rictor in mTORC2, and Akt, a known substrate of mTORC2
kinase, were expressed at similar levels in FRic�/� and
FRic�/� fat cells (Fig. 1A).

To test the effect of loss of rictor on mTORC2 activity,
we measured levels of Akt phosphorylation at the S473
residue in insulin-stimulated FRic�/� and FRic�/� fat cells.
Consistent with the data we obtained in MRic�/� muscles
(11), in FRic�/� fat cells insulin caused only a threefold
increase in Akt phosphorylation at S473, whereas in
FRic�/� fat cells an �10-fold increase above the basal
level was observed (Fig. 1B). This result suggests that
mTORC2 is the major kinase responsible for phosphory-
lating Akt at the S473 residue in response to insulin in fat
cells.

Similar to what we had previously reported in MRic�/�

mice (11), the level of Akt phosphorylation at T308 (a site
phosphorylated by PDK1) in insulin-stimulated FRic�/� fat
cells was comparable with that seen in FRic�/� fat cells
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FIG. 1. Analysis of rictor expression and insulin signaling in FRic�/� fat cells. A: Lack of rictor protein in FRic�/� fat cells. Tissue extracts
prepared from isolated fat cells, liver, and skeletal muscle were subjected to SDS-PAGE (6.5% gel) and immunoblotted with anti-rictor antibody
(top). The immunoblots for mTOR, Akt, and actin (loading control) are shown in the bottom panels. B: Insulin signaling in isolated FRic�/� fat
cells. Immunoblot analysis of insulin (ins)-stimulated phosphorylation of Akt at S473, Akt at T308, IR at Y972, FoxO3A at T32, GSK-3� at S9, and
AS160 at T642 in FRic�/� and FRic�/� fat cells (shown here are representative immunoblots, four mice for each genotype were analyzed). Also
shown are immunoblots of total Akt, FoxO3A, GSK-3�, and AS160 used for normalizing the corresponding anti-phospho immunoblots.
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(Fig. 1B). Also, insulin-stimulated phosphorylation of the
insulin receptor (IR) at the tyrosine (Y) 972 residue was
normal (Fig. 1B). When evaluating phosphorylation of Akt
substrates in response to insulin, we found that in FRic�/�

and FRic�/� fat cells phosphorylation of glycogen syn-
thase kinase (GSK) 3� at S9 was similar between the two
genotypes (Fig. 1B). However, phosphorylation of both
FoxO3a at T32 (Fig. 1B) and AS160 at T642 was dramati-
cally reduced (69% reduction in insulin-stimulated AS160
T642 phosphorylation in FRic�/� fat cells, P � 0.03) (Fig.
1B). FoxO3a is also shown to be phosphorylated at T32 by
serum- and glucocorticoid-induced protein kinase (SGK)
1, another target of mTORC2 kinase activity (18). How-
ever, in insulin-stimulated fat cells, whether mTORC2
mediates SGK1 phosphorylation is not known. Recently,
mTORC2 has been reported to promote the phosphoryla-
tion of turn motif sites in protein kinase C (PKC) �, thus
mediating its stabilization (19,20). In mTORC2-null
FRic�/� fat cells, we observed a decrease in PKC� levels
(P � 0.001; supplemental Fig. 1).
Loss of rictor does not affect fat mass and fat cell size
but increases organ weights. Body composition of
FRic�/� and FRic�/� mice, assessed by proton–magnetic
resonance spectroscopy, showed similar fat and lean mass
(supplemental Fig. 2A). Also, fat cell sizes of FRic�/� and
FRic�/� mice were not different (supplemental Fig. 2B and
C). However, as previously reported (21), parametrial fat
pads (40%), pancreas (20%), kidney (24%), liver (19%), and
heart (22%) were heavier in FRic�/� mice compared with
FRic�/� mice (supplemental Fig. 3).
Loss of rictor impairs glucose transport in fat cells.
Consistent with previous findings demonstrating de-
creased glucose transport in skeletal muscle lacking rictor
(11), glucose transport was reduced in FRic�/� fat cells.
While insulin caused a three- to fourfold increase (P �
0.004) in glucose uptake above basal levels in both
FRic�/� and FRic�/� fat cells (Fig. 2A), in FRic�/� fat cells
basal as well as insulin-stimulated glucose uptake were
reduced by �75% (P � 0.0002) and �65% (P � 0.002),
respectively, when compared with FRic�/� fat cells.

To elucidate the possible defect underlying the reduc-
tion in glucose uptake in FRic�/� fat cells, we analyzed the
expression of proteins known to be essential for insulin-
stimulated glucose uptake. Total levels of the GLUT4 (Fig.
2B), the insulin-regulated aminopeptidase (IRAP), a pro-
tein associated with GLUT4 (22), and myosin 1c (Myo1c),
a protein involved in insulin-regulated GLUT4 transloca-
tion to the plasma membrane (23), were similar in FRic�/�

and FRic�/� fat cells (Fig. 2B). However, the amount of
GLUT4 in plasma membranes prepared from basal and
insulin-stimulated FRic�/� fat pads was reduced by �40%
when compared with plasma membranes prepared from
FRic�/� fat pads (n 	 3, P � 0.01 for basal and P � 0.05
for insulin stimulated) (Fig. 2C, upper and lower panels,
and D).
Dysregulation of lipolysis in FRic�/� mice. When mea-
suring serum metabolite levels, we found normal fed and
slightly decreased fasting triglyceride (TAG) levels (P �
0.04) (Table 1) in FRic�/� mice (Table 1). Glycerol levels
in serum from fasted (P � 0.01) (Table 1) and fed (P �
0.02) (Table 1) male FRic�/� mice were higher compared
with FRic�/� mice. Similarly, female FRic�/� mice had
elevated glycerol levels (3- to 5-month-old fed mice, 12.9 �
2.4 
g/ml in FRic�/� mice and 24.5 � 4.3 
g/ml in FRic�/�

mice, n 	 5–6, P 	 0.057). In addition, fasting NEFA levels
were increased significantly (P � 0.04) (Table 1) in

FRic�/� mice, while fed NEFA levels were unchanged
(Table 1).

Since serum levels of both NEFAs and glycerol, the
products of lipolysis, were elevated in FRic�/� mice
(Table 1), we examined whether FRic�/� mice are resis-
tant to insulin-induced inhibition of lipolysis. To test this
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FIG. 2. Glucose uptake in FRic�/� fat cells. A: [U14C]-glucose uptake in
fat cells isolated from FRic�/� and FRic�/� mice (3- to 5-month-old
female mice, n � 4, *P < 0.004; **P < 0.0002; ***P < 0.0001). B:
Representative immunoblots of isolated FRic�/� and FRic�/� fat cell
extracts from 3- to 5-month-old female mice, probed for GLUT4, Myo1c,
and IRAP (n � 5). C: Immunoblots showing GLUT4 levels in plasma
membrane isolated from basal and insulin-stimulated fat pads from
FRic�/� and FRic�/� mice (3- to 5-month-old female, representative
blots of two sets of FRic�/� and FRic�/� fat pads labeled as I and II out
of a total of three sets). Cadherin levels in plasma membrane deter-
mined by immunoblotting with pan-cadherin antibody served as the
loading control for plasma membrane preparations (middle panel). D:
The GLUT4 quantification data (means � SE) shows band intensity of
GLUT4 after normalization to the levels of cadherin detected in the
same sample (n � 3, *P < 0.05; **P < 0.01 and ***P < 0.006). arb.,
arbitrary. ins, insulin.

TABLE 1
Serum insulin, metabolite, and adipokine levels in FRic�/� mice

FRic�/� FRic�/�

Triglycerides (mg/dl)
Fasting 41.4 � 1.6 35.7 � 1.9*
Fed 53.1 � 1.5 49.8 � 3.8

Glycerol (
g/ml)
Fasting 19.7 � 2.9 30.5 � 2.5*
Fed 23.7 � 2.8 34.8 � 3.4*

NEFAs (mEq/l)
Fasting 0.75 � 0.05 1.01 � 0.04*
Fed 0.82 � 0.04 0.88 � 0.04

Insulin (ng/ml)
Fasting 0.15 � 0.02 0.45 � 0.09*
Fed 0.39 � 0.06 3.4 � 0.6*

Adiponectin (
g/ml) 14.1 � 1.7 16.2 � 1.7
Leptin (ng/ml) 7.7 � 1.3 8.0 � 1.6
Resistin (ng/ml) 15.6 � 0.7 15.3 � 1.5

Data are means � SE. Male mice, aged 3–5 months, n 	 5–9. *P �
0.05 vs. FRic�/� mice of the same group.
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in vivo, we determined the levels of glycerol and NEFAs in
serum taken from FRic�/� and FRic�/� mice before and 15
min after an intraperitoneal insulin injection (16). In
FRic�/� mice, insulin caused an �50% reduction in both
glycerol and NEFA levels, indicating inhibition of lipolysis
by insulin (Fig. 3A), whereas in FRic�/� mice there was
only a 13% reduction in glycerol levels (n 	 8, P � 0.002 vs.
FRic�/� mice) (Fig. 3A). Serum NEFA levels also declined
significantly less after insulin injection in FRic�/� mice
compared with FRic�/� mice (n 	 5–8, P � 0.004) (Fig.
3B). We next evaluated lipolysis ex vivo by determining
glycerol release from isolated FRic�/� and FRic�/� fat
cells in the presence of either CL316243 (specific �3-
adrenergic receptor agonist) alone to induce lipolysis and
CL316243 together with insulin to suppress lipolysis. As
shown in Fig. 3C, FRic�/� fat cells showed twofold higher
levels of basal lipolysis (n 	 4, P � 0.01) when compared
with FRic�/� fat cells, but the levels of CL316243-stimu-
lated lipolysis was similar between FRic�/� and FRic�/�

fat cells (Fig. 3C). Insulin suppressed CL316243-induced
lipolysis in FRic�/� fat cells by �50% (n 	 4, P � 0.0001)
(Fig. 3C) but in FRic�/� fat cells only by 15% (n 	 4) (Fig.
3C). These data clearly demonstrate a defective regulation
of lipolysis in FRic�/� mice.

Insulin suppresses lipolysis largely through the regula-
tion of hormone-sensitive lipase (HSL). Phosphorylation
of HSL at S563 by cAMP-dependent protein kinase (also
known as protein kinase A, PKA) increases the lipolytic
activity of HSL, and insulin suppresses HSL activity by
inhibiting the activation of PKA (24,25). Although HSL
levels were similar in isolated fat pads of both genotypes
(Fig. 3D), there was an increased basal level of phosphor-
ylation of HSL at S563 in FRic�/� compared with FRic�/�

fat pads (Fig. 3D). Furthermore, whereas an �30% reduc-
tion in HSL S563 phosphorylation was observed in FRic�/�

fat pads, no repression of HSL S563 phosphorylation was
found in FRic�/� fat pads in response to insulin (n 	 3)
(Fig. 3D). Isoproterenol (a �-adrenergic receptor agonist)
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FIG. 3. Resistance to insulin-mediated inhibition of lipolysis in
FRic�/� mice. A and B: Insulin-mediated inhibition of lipolysis was
determined by measuring the levels of glycerol (shown in A, n � 8,
*P < 0.002) and NEFAs (shown in B, n � 5–8, *P < 0.004) in serum
before and 15 min after an intraperitoneal injection of insulin in
FRic�/� and FRic�/� mice. Data shown are means � SE. C: Lipolysis
was determined ex vivo in fat cells isolated from FRic�/� and FRic�/�

mice (3- to 5-month-old female mice, n � 4, *P < 0.01; **P < 0.001) in
the absence or presence of CL316243 (CL, 1 nmol/l) without and with
insulin (1 and 10 nmol/l) for 30 min and measuring glycerol released
into the medium. D: Phosphorylation of HSL at S563 in basal and
insulin-stimulated fat pads from FRic�/� and FRic�/� mice (represen-
tative immunoblots are shown, n � 3). E: PKA activity in FRic�/� and
FRic�/� fat cells incubated in the absence or presence of CL316243
(CL, 1 nmol/l) without and with insulin (1 nmol/l) for 10 min (n � 4,
*P < 0.04; **P < 0.001). ins, insulin.
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and CL316243 are known to stimulate HSL S563 phosphor-
ylation by inducing cAMP production and consequently
activating PKA. In isolated fat pads, isoproterenol stimu-
lated HSL S563 phosphorylation in both FRic�/� and
FRic�/� fat pads (supplemental Fig. 4). However, the
insulin-mediated inhibition of isoproterenol-induced HSL
S563 phosphorylation was seen only in FRic�/� fat pads
(supplemental Fig. 4). Consistent with these findings,
basal PKA activity in isolated FRic�/� fat cells was 50%
higher (n 	 4, P � 0.01) (Fig. 3E) than in FRic�/� fat cells,
but CL316243 stimulated PKA activity in FRic�/� and
FRic�/� fat cells to a similar level. Insulin suppressed
CL316243-mediated activation of PKA in FRic�/� fat cells
by 50% (n 	 4, P � 0.001) (Fig. 3E) but had no effect in
FRic�/� fat cells (n 	 4) (Fig. 3E). This finding, together
with reduced repression of lipolysis in insulin-stimulated
FRic�/� fat cells, strongly supports a role for rictor/
mTORC2 in the regulation of PKA activity to suppress
lipolysis in fat cells.
Rictor/mTORC2 in fat cells regulates whole-body glu-
cose homeostasis. Fat cell function affects whole-body
glucose homeostasis and insulin sensitivity (26). In
FRic�/� mice, serum insulin levels were significantly
higher than in FRic�/� mice (for fasting, P � 0.008; for fed,
P � 0.0001) (Table 1). Furthermore, young FRic�/� mice
showed impaired insulin sensitivity in insulin tolerance
tests (supplemental Fig. 5C). Younger FRic�/� mice (3–5
months old) of either sex showed slightly better glucose
clearance during a glucose tolerance test when compared
with FRic�/� controls (supplemental Fig. 5A) as previ-
ously reported (21). However, old FRic�/� mice (�9
months old) showed significantly higher blood glucose
levels after an overnight fast and a dramatic impairment in
glucose clearance after an intraperitoneal glucose load
(Fig. 4A and supplemental Fig. 5B). These data indicate
the presence of severe insulin resistance in young and old
FRic�/� mice.

To measure insulin sensitivity in individual tissues, we
performed a 2-h hyperinsulinemic-euglycemic clamp in
conscious young male FRic�/� mice. During the clamp, the
glucose infusion rate required to maintain euglycemia
(Fig. 4B), and insulin-stimulated whole-body glucose turn-
over rates (Fig. 4C) were significantly lower in the FRic�/�

mice compared with FRic�/� mice (glucose infusion rate,
80% reduction P � 0.0001; glucose turnover rate, 49%
reduction, P � 0.0001), indicating pronounced systemic
insulin resistance in FRic�/� mice. Insulin-stimulated
whole-body glycolysis (Fig. 4D) and glycogen plus lipid
synthesis (Fig. 4E) were also reduced in FRic�/� mice
when compared with FRic�/� mice (glycolysis, �44%
reduction, P � 0.01; glycogen plus lipid synthesis, �59%
reduction, P � 0.001). As shown in Fig. 4F and G, in vivo
insulin-stimulated glucose uptake in adipose tissue and
skeletal muscle during the hyperinsulinemic-euglycemic
clamp was also significantly reduced in FRic�/� mice
(�50% reduction in adipose tissue, P � 0.01; �33% reduc-
tion in skeletal muscle, P � 0.04). In addition, insulin
induced a marked suppression of hepatic glucose produc-
tion (HGP) during the clamp in FRic�/� mice (46% reduc-
tion compared with basal levels, P � 0.001) (Fig. 4H);
however, insulin completely failed to suppress HGP in
FRic�/� mice (Fig. 4H). These results point not only to
severe insulin resistance in adipose tissue but also marked
insulin resistance in skeletal muscle and liver of FRic�/�

mice.
Adipokines can affect whole-body insulin sensitivity.

However, we found that serum levels of leptin, adiponec-
tin, and resistin were similar in FRic�/� and FRic�/� mice
(Table 1). This result shows that changes in at least these
adipokines do not play a causative role in the reduced
insulin sensitivity in FRic�/� mice.
Decreased glucose metabolism, impaired insulin sig-
naling, and increased lipid accumulation in skeletal
muscles of FRic�/� mice. Since fat cell–specific loss of
rictor/mTORC2 decreased skeletal muscle glucose trans-
port in response to insulin, we measured insulin-stimu-
lated glycogen synthesis in isolated soleus and extensor
digitorum longus (EDL) muscles. We found that insulin-
stimulated glycogen synthesis was markedly reduced in
both soleus (�41% reduction, P � 0.0001) (Fig. 5A) and
EDL (�27% reduction, P � 0.0004) (supplemental Fig. 6)
muscles from FRic�/� mice when compared with FRic�/�

mice. The isolated EDL muscle from FRic�/� mice showed
normal insulin-stimulated phosphorylation of the IR at
Y972. However, a marked reduction in insulin-stimulated
phosphorylations of insulin receptor substrate (IRS) 1 at
Y896 and of Akt at both T308 and S473 (Fig. 5B) was
observed. Interestingly, basal phosphorylation of IRS1 at
S302 in isolated EDL muscles from FRic�/� mice was
slightly increased when compared with FRic�/� mice
(�30%, n 	 4, data not shown). In addition, we found a
twofold increase (P � 0.03) in levels of IRS1 phosphory-
lated at S302 (Fig. 5C, top panel) and a 37% reduction (P �
0.04) in the total IRS1 (Fig. 5C, middle panel) levels in
tibialis anterior (TA) muscles from FRic�/� mice.

Since the FRic�/� mice showed increased lipolysis and
muscle is known to take up NEFAs to store as TAG, we
measured TAG levels in TA muscle homogenates. Indeed
TAG levels in muscles from FRic�/� mice were signifi-
cantly increased when compared with FRic�/� mice (P �
0.04) (Fig. 5D). Consistent with the increase in TAG levels,
we found that lipin 1, an enzyme involved in the synthesis
of TAG (27), was increased (1.4-fold, P � 0.002) in the TA
muscles of FRic�/� mice (Fig. 5E, top panel). Thus, the
loss of rictor in fat cells leads to increased lipid deposition
and impaired insulin signaling in skeletal muscle.
FRic�/� mice develop hepatic steatosis. Livers from
both young and old FRic�/� mice showed increased lipid
accumulation (hepatic steatosis) when compared with
age-matched FRic�/�mice (Fig. 6A and B). Consistent with
this finding, gene expression of two important hepatic
lipogenic enzymes, L-type pyruvate kinase (L-PK) and fatty
acid synthase (FAS) were increased two- and threefold,
respectively, in livers from old FRic�/� mice (P � 0.05)
(Fig. 6C and D).

DISCUSSION

The loss of fat cell rictor expression in mice results in a
metabolic phenotype similar to type 2 diabetes with im-
paired fat cell function associated with severe insulin
resistance in adipose tissue, skeletal muscle, and liver.
This suggests that rictor plays an important role in regu-
lating fat cell metabolism and, consequently, whole-body
glucose and lipid homeostasis and insulin sensitivity.

FRic�/� fat cells showed impaired regulation of glucose
transport and lipolysis in response to insulin. Defective
insulin signaling in FRic�/� fat cells most likely causes
these metabolic abnormalities. Our analyses of insulin
signaling events that lie downstream of mTORC2 and
mediate metabolic responses revealed a dramatic reduc-
tion in phosphorylation of Akt at S473 and, consequently,
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FoxO3a at T32 and AS160 at T642. At this time, it is not
clear whether FoxO3a has a role in the observed metabolic
defects in FRic�/� fat cells. However, the Akt-mediated
AS160 phosphorylation at T642 and consequent inhibition
of the Rab-GAP (GTPase activating protein) activity of
AS160 is essential for insulin-stimulated GLUT4 transloca-
tion to the plasma membrane (28,29). Consistent with
decreased phosphorylation of AS160, GLUT4 translocation
to the plasma membrane in response to insulin is impaired
and glucose uptake is decreased in FRic�/� fat cells.

Rictor/mTORC2 activity has not been linked to regula-
tion of either basal lipolysis or insulin-mediated suppres-
sion of lipolysis. However, our observations that in
FRic�/� fat cells increased phosphorylation of HSL at S563
concomitant with upregulated PKA activity and that insu-

lin failed to inhibit these events suggests a role for
mTORC2 in the regulation of lipolysis by modifying PKA
and HSL activities. It is not clear how mTORC2 regulates
basal PKA activity. In response to insulin, Akt directly
phosphorylates and activates phosphodiesterase 3B
(PDE3B) (30) increasing cAMP to AMP conversion and
thereby decreasing PKA activity (31). Since PKA activates
lipolysis via phosphorylation of HSL, a defect in insulin
activation of PDE3B would impair downregulation of
lipolysis. In fact, defective regulation of lipolysis in re-
sponse to insulin is reported in PDE3B knockout mice
(32). While our data supports a model whereby mTORC2
activity controls Akt-mediated activation of PDE3B by
insulin, this remains to be established. Rapamycin-medi-
ated inhibition of mTOR has implicated mTORC1 in the
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regulation of lipolysis (14,15); however, eliminating
mTORC1 by ablating raptor in fat cells does not affect
lipolysis (33). Considering that prolonged rapamycin treat-
ment inhibits the formation of mTORC2 in some cell types
(4), our studies suggest that clinical observations of ele-
vated NEFA levels during rapamycin treatment (14,15)
could be due to inhibition of mTORC2.

How do fat cell–specific genetic alterations in the insulin
signaling pathway lead to impairment of whole-body glu-
cose homeostasis? Although FRic�/� mice show a pro-
found reduction in glucose transport in fat cells, this
defect is likely to be only partly responsible for impaired
glucose homeostasis in the FRic�/� mice. Adipose tissue
contributes only �10% to whole-body glucose clearance
(34). The major contributors to impaired glucose ho-
meostasis in FRic�/� mice are reduced insulin-stimulated
skeletal muscle glucose transport and impaired suppres-
sion of hepatic glucose production by insulin. We propose
that elevated circulating NEFAs due to upregulation of
lipolysis in fat cells cause the insulin resistance in skeletal
muscle and liver observed in the FRic�/� mice.

The increased serum NEFA levels in FRic�/� mice are
most likely responsible for the elevated intramuscular
accumulation of TAG, which in turn may be mediated by
increased lipin 1 levels in FRic�/� skeletal muscles. In-
creased NEFAs flux into skeletal muscle leads to elevated
intramuscular levels of lipid metabolites, such as fatty acyl
CoA and diacylglycerol (35). These lipids induce insulin
resistance in skeletal muscle by causing defects in insulin
signaling (36). Previously, NEFAs have been shown to
activate serine/threonine kinases such as I�B kinase-2

(37), Jun NH2-terminal kinase (38), and protein kinase C�
(39). All of these kinases can phosphorylate IRS1 on
critical serine residues, thereby blocking phosphorylation
of IRS1 by IR kinase on tyrosine sites that are required for
PI3K association and activation (40). IRS1 S302 phosphor-
ylation through I�B kinase-2 (41) or Jun NH2-terminal
kinase (42) can lead to IRS1 degradation. Since we see an
increase in phosphorylation of IRS1 at S302 in FRic�/�

muscle, a decrease in IRS1 Y896 phosphorylation, as well
as a reduction in total IRS1 levels, we suggest that elevated
lipids are responsible for the insulin resistance observed in
vivo and ex vivo in the skeletal muscles of FRic�/� mice.

The development of hepatic steatosis in FRic�/� mice
may be due to the prolonged elevation of NEFAs and
glycerol in serum, as both are used for synthesis of TAG in
the liver. Furthermore, under hyperglycemic conditions,
an increased glucose flux into the liver in FRic�/� mice
could compensate for skeletal muscle insulin resistance to
maintain normoglycemia (43). The surplus glucose is
converted to TAG and contributes to the development of
hepatic steatosis. Thus, liver function also becomes af-
fected in FRic�/� animals after chronic exposure to ele-
vated circulating NEFAs, glycerol, and glucose.

A different line of fat cell–specific rictor knockout mice
(referred to as rictorad�/�) has recently been described
(21). Rictorad�/� mice showed that visceral organs such as
liver, pancreas, kidney, fat pads, spleen, and heart in-
creased in size with concomitantly increased lean mass
that was more apparent on a high-fat diet. This finding
suggests that rictor/mTORC2 in fat cells is important for
organismal growth (21). Our FRic�/� mice also showed
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increased organ size (supplemental Fig. 3). The rictorad�/�

mice were hyperinsulinemic but were normoglycemic in
the fed and fasting state, similar to young FRic�/� mice.
Increased pancreatic �-cell mass could contribute to hy-
perinsulinemia in FRic�/� mice, as suggested for the

rictorad�/� mice. However, increased �-cell mass alone is
not sufficient to induce hyperinsulinemia (44) but requires
a factor that would induce insulin secretion. It is well
known that insulin resistance is compensated by increased
�-cell mass and insulin secretion (45). Our results from
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hyperinsulinemic-euglycemic clamp studies in FRic�/�

mice show severe whole-body insulin resistance including
adipose tissue, skeletal muscle, and liver. While the insulin
sensitivity in rictorad�/� mice was not directly measured,
results from insulin tolerance tests suggest that these mice
are also insulin resistant. Cybulski et al. (21) ascribe the
insulin resistance in the rictorad�/�mice to decreased
circulating adiponectin levels. There was no change in
adiponectin levels in the FRic�/� animals on a standard
diet. The reason for this discrepancy is not clear, as both
fat cell–specific rictor knockout models have very similar
genetic backgrounds of 129 crossed to C57BL/6J, although
the 129 substrains differ (129S6 for FRic�/� mice and
129S1/Svlmj for rictorad�/� mice). However, since the
genetic loss of adiponectin does not affect insulin sensi-
tivity of standard diet–fed mice (46), it is unlikely that
decreased adiponectin is the cause for decreased insulin
sensitivity arising from fat cell–specific loss of rictor in
mice. The elevated circulating NEFA levels that we ob-
serve in the FRic�/� mice could not only contribute to
peripheral insulin resistance but also directly stimulate
insulin secretion from �-cells (data not shown) as well as
increase pancreatic �-cell mass (47). Therefore, we pro-
pose that hyperinsulinemia and increased �-cell mass in
FRic�/� mice is predominantly a consequence of insulin
resistance and increased NEFAs.

In conclusion, we demonstrate that mTORC2 is essen-
tial for insulin action on glucose transport and lipolysis in
fat cells. Our studies further demonstrate the important
role for mTORC2 in the regulation of fat cell function and
control of whole-body glucose and lipid homeostasis and
insulin sensitivity. Thus, mTORC2 may serve as a drug
target for the treatment of obesity and type 2 diabetes.
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