
Appendix A: Details About Supported Models in DANCE

A.1 Single Modality Module

A.1.1 Imputation

dance.modules.single modality.imputation.deepimpute DeepImpute [32] builds multiple neural networks in parallel

to impute target genes using a set of input genes. Given a scRNA-seq matrix X, target genes, i.e, genes to be

imputed, are selected based on the variance over mean ratio, which are split into N random subsets. Each subset

corresponds to a neural network consisting of two layers: a dense layer and a dropout layer with ReLu and softplus

as activations, respectively. The inputs to each neural network are genes highly correlated with corresponding target

genes based on Pearson’s correlation coefficient. The loss function is the Weighted mean squared error (MSE).

dance.modules.single modality.imputation.scgnn scGNN [40] uses an integrative autoencoder framework for

scRNA-seq gene expression imputation that incorporates gene regulatory signals (TRS). It includes a feature

autoencoder, a graph autoencoder, and a cluster autoencoder that are trained iteratively, whose outputs are used in

the final imputation autoencoder to recover gene expressions.

scgnn uses left-truncated mixed Gaussian (LTMG) to account for regulatory signals. The normalized expression for a

gene is modeled by a mixture of k Gaussian distributions representing k TRSs, and left truncation is used to

account for dropouts and lowly expressed values. The expression of gene i in cell j can then be assigned to the TRS

under whose Gaussian distribution the observed value is most likely to occur. All parameters in this step are

estimated by MLE.

Given an input scRNA-seq expression matrix X, the feature autoencoder extracts a lower-dimensional embedding

X′ and reconstructs the expression X̂, which is composed of two dense layers in both the encoder and the decoder.

The loss function is MSE integrated with gene regulation information

L = (1 − α)
∑

(X − X̂)
2
+ α

∑(
(X − X̂)

2 ⊙ TRS
)

(1)

where α ∈ [0, 1] and ⊙ denotes element-wise product.

A KNN cell graph is constructed from the learned embeddings in the feature autoencoder, which is pruned by the

Isolation Forest. With node feature matrix X′, the two-layer GCN encoder is constructed as

Z = ReLU(ÃReLU(ÃX
′
W1)W2). (2)

where Ã is the symmetrically normalized adjacency matrix of the cell graph and W1,W2 are learnable parameters.

The associated decoder is:

Â = sigmoid(ZZ
⊤
) (3)

The parameters are learned through the cross-entropy loss

L(A, Â) = −
1

N2

N∑
i=1

N∑
j=1

(aij ∗ log (âij) + (1 − aij) ∗ log (1 − âij)) (4)

where aij and âij are elements in A and Â.

The k-means clustering is then applied to the learned embedding in the graph autoencoder. The number of clusters

is determined by the Louvain algorithm. Each cell cluster has an autoencoder to regenerate gene expressions within

a cluster, whose structure is the same as the feature autoencoder without being regularized by TRS. The

reconstructed gene expression is fed back into the feature encoder iteratively until the convergence of adjacency

matrix (Ãt − Ãt−1 < γ1)and cell clusters converge (ARI> γ2).

After convergence, a final imputation autoencoder is trained, which has a similar structure and loss to the feature

autoencoder but with three additional regularizations:

L = (1 − α)
∑

(X − X̂)
2
+ α

∑(
(X − X̂)

2 ◦ TRS
)

+ β
∑

|w| + γ1

∑(
A · (X − X̂)

2
)
+ γ2

∑(
B · (X − X̂)

2
) (5)

where β ∈ [0, 1] controls the intensity of the L1 penalization and B is a matrix indicating whether two cells belong

to the same cluster.

dance.modules.single modality.imputation.graphsci GraphSCI [41] is a GNN-based method to impute scRNA-seq

data expressions. Given a gene expression matrix X with N genes and M cells, a gene graph associated with an

N × N adjacency matrix A is derived based on gene-wise Pearson correlation coefficients. The gene expression

matrix and the constructed gene graph are the input to 1) a two-layer GCN whose lower-dimensional embedding

gives the Gaussian distribution representing gene relationships and 2) a two-layer fully connected neural network

(NN) from which a ZINB distribution for scRNA-seq data expressions can be inferred. In particular, the GCN is

formulated as

H
(1)
N = ReLU

(
ÃXW

(0)
N

)
(6)

[
µN , σ

2
N

]
= ÃH

(1)
N W

(1)
N (7)

where W
(0)
N ,W

(1)
N are the trainable parameters.

The fully-connected neural network is defined as

H
(1)
M = tanh

(
X

⊤
(
W

(0)
M ⊙ A

)
+ b

(0)
)

(8)

[µM, θM, πM] = σ
(
H

(1)
M W

(1)
M + b

(1)
)

(9)

where µM, θM, πM are the mean, dispersion, and dropout probability for the ZINB distribution, and

W
(0)
M ,W

(1)
M , b(0), b(1) are trainable parameters.

The learned latent variables
[
µN , σ2

N
]
, [µM, θM, πM] are re-parameterized as ZN and ZM, i.e, the latent

space representation of the GCN and NN, to be used by the decoder to construct the imputed gene expression X̂.

Specifically, the imputed gene expression for gene i in cell j is

X̂ij = gφ1

(
Z

cMj
)

= diag (s⃗j) × Z
M
j (10)

where s⃗j is the size factor of cell j.

Meanwhile, the reconstructed edge weight between gene i and gene j is

Âij = gφ2

(
Z

N
i , Z

N
j

)
= sigmoid

((
Z

N
i

)⊤
Z

N
j

)
(11)

ZN and ZM are optimized by variational lower bound

L(ϕ, φ) = Eqϕ

 ∑
i∈N ,j∈M

log pφ1

(
X̂ij | ZN

i , Z
M
j

)+ Eqϕ

 ∑
i,j∈N

log pφ2

(
Âij | ZN

i , Z
N
j

)
− DKL

(
qϕ

(
Z

M | A,X
⊤
)
∥p
(
Z

M
))

− DKL

(
qϕ

(
Z

N | A,X
⊤
)
||p
(
Z

N
)) (12)

where Eqϕ
is the cross-entropy function and and DKL(q||p) is the Kullback-Leibler divergence between

distributions q and p.

A.1.2 Cell Type Annotation

dance.modules.single modality.cell type annotation.scdeepsort Scdeepsort [26] includes three modules: an

embedding layer, a weighted graph aggregator, and linear classification towers. Given m genes and n cells, we have

the input single-cell data matrix D ∈ Rm×n. To generate the weighted cell-gene graph, we first apply PCA to

extract d dimensional representations of initial representations. A weighted adjacency matrix A ∈ R(m+n)2 and a

node embedding X ∈ R(m+n)×d are generated from D. For a gene node j, the shareable parameter βj denotes

the confidence value for the edges interacting with node j. For the self-loop edge for each cell, we use α to denote

its confidence value. Let hk
i be the node i’s embedding vector in the kth layer, the aggregator layer is

h
k
i = σ(W

k−1
αhk−1

i +
∑

j∈N(i) βjaijh
k−1
j

1 + |N(i)|
+ b

k−1
), (13)

where aij is the normalized weight of an edge from nodes i to j. Then cell node representations are fed into linear

classifier layers

ŷi = softmax(Wh
k
i + b) (14)

Cross entropy loss is applied in the objective function:

θ̂ = argminθ

C∑
c=1

yc log ŷc (15)

where θ represents all trainable parameters.

dance.modules.single modality.cell type annotation.celltypist Celltypist [64] uses a multinomial logistic regression

classifier defined as:

l(x) =
1

1 + e−wtx
, (16)

where l(x) is the decision score with x as the input vector. Then the decision score for each cell is defined as the

linear combination of the scaled gene expression and the model coefficients associated with the given gene type, and

the possibility is calculated by transforming the decision score by a sigmoid function.

dance.modules.single modality.cell type annotation.singlecellnet SingleCellnet [65] revamped the random forest

classifier method to enable classification of scRNA-seq data cross platforms and cross-species. It sends the input

features into a number of decision tree classifiers and uses majority voting to make predictions.

dance.modules.single modality.cell type annotation.actinn ACTINN [33] proposes a neural network based model for

cell type annotation. It applies multilayer perceptron for the identification of cell types that can be implemented as:

xi = g(Wixi−1 + bi−1), (17)

where xi is the output from the ith layer, Wi and bi represent the weight matrix and the bias in the ith layer and

g represents the activation function used in the neural network. In the input layers and hidden layers, the activation

function is ReLU as:

ReLU(x) = max(0, x). (18)

It utilizes the softmax function as the activation function g for the output layer, which is defined as:

softmax(xj) =
exp(xj)∑k
i=1 exp(xi)

(19)

where xj represents the jth element of the input vector for the output layer and k is the length of the vector x.

dance.modules.single modality.cell type annotation.svm Support vector machine(SVM) is widely adopted as a

benchmark in many studies [26,66]. Given the input x and label y, the prediction function is

ŷ = wx + b, (20)

where w represents the weights and b is the interception in the SVM. Based on Eq 20, SVM optimizes the following

problem:

min
w,b

1

2
||w||2,

subject to y(wx + b) − 1 ≥ 0.

A.1.3 Clustering

dance.modules.single modality.clustering.scdeepcluster scDeepCluster [34] introduces a ZINB-based autoencoder.

The input matrix is corrupted by a Gaussian noise e: Xcorrupt = X + e. Then the encoder produces latent

representation Z from Xcorrupt. The decoder can be formulated as:

Π = sigmoid (WπfD(Z))

M = diag(si) × exp (WµfD(Z))

Θ = exp (WθfD(Z))

(21)

where fD(·) is the decoder function; si is the size factor; {Π,M,Θ} are the estimations of ZINB distribution

parameters {π, µ, θ}, respectively. The clustering process is based on soft assignment. The soft label qij of

embedded point zi is defined as:

qij =

(
1 + ∥zi − µj∥2

)−1∑
k (1 + ∥zi − µk∥2)−1

(22)

where µj is the j-th cluster center.

dance.modules.single modality.clustering.scdcc scDCC [52] shares the same model structure as scDeepCluster. In

the training process, pairwise constraints are integrated into the loss function. There are two types of pairwise

constraints, i.e., must-link (ML) and cannot-link (CL). Two instances with a must-link constraint should have

similar soft labels as:

LML = −
∑

(a,b)∈ML

log
∑
j

qaj × qbj (23)

While two instances with cannot-link should have different soft labels as:

LCL = −
∑

(a,b)∈CL

log

∑
j

qaj × qbj

 (24)

where qaj and qbj are soft labels defined in (22).

dance.modules.single modality.clustering.graphsc graph-sc [25] utilizes gene-to-cell graph as the input of graph

autoencoder. In the gene-to-cell graph, genes and cells are nodes, and there are weighted edges between cell nodes

and the expressed gene nodes. Let the raw data matrix be X, then the weight of gene i to cell j is

wij =
X[i,j]∑m

k=0
X[k,j]

. We use W , Z0, and A to denote the graph weight matrix, the input features, and the

adjacency matrix. Ā = D− 1
2 AD− 1

2 is the normalized adjacency matrix with D as the degree matrix of A. The

cell embeddings can be obtained by:

Z = ReLU(ReLU(ĀZ0W1W)W2) (25)

where W1 and W2 are learnable weights. The new adjacency matrix Â is then reconstructed by

Â = sigmoid(ZZ⊤).

dance.modules.single modality.clustering.sctag scTAG [51] first generates a K-nearest neighbor cell-to-cell graph.

It then adopts a ZINB-based graph autoencoder to process it, which takes topology adaptive graph convolutional

network (TAGCN) [63] as the graph encoder. Consider the l-th hidden layer, let the input data be x(l)
c ∈ RN ,

where c = 1, 2, . . . , Cl, Cl is the number of features of each node, and N denotes the number of samples. The

graph convolution process can be defined as follows:

x
(l+1)
f = ReLU

 Cl∑
c=1

K∑
k=0

g
(l)
c,f,kA

k
x
(l)
c + bf1N

 (26)

where bf is a learnable bias; K is the number of convolution kernels; and g
(l)
c,f,k denotes the polynomial

coefficients. Denote Z as the latent embedded representation. The new adjacency matrix Â is then reconstructed by

Â = sigmoid(ZZ⊤). The estimations of ZINB distribution parameters {π, µ, θ} are obtained by (21).

dance.modules.single modality.clustering.scdsc scDSC [35] consists of a ZINB-based autoencoder and a graph

autoencoder with the KNN cell-to-cell graph. In the ZINB-based autoencoder, let the latent representation be H,

the output of last decoding layer be D, benc and bdec be bias of encoder and decoder, respectively. The autoencoder

is formulated as follows:

H = fenc(WencX + benc)

X̄ = fdec(WdecH + bdec)
(27)

where X̄ is the reconstructed expression matrix. The estimations of ZINB distribution parameters {π, µ, θ} are

similar to those in (21). In the graph encoder, denote the representation of l-th layer as Z(l), the adjacency matrix

as A, and the degree matrix as D. The new representation is generated by:

Z(l+1) = ϕ
(
D

− 1
2 AD

− 1
2
(
σZ(l) + (1 − σ)H(l)

)
W(l)

)
(28)

where ϕ(·) is an activation function; σ is a hyperparameter; and H(l) is the representation of l-th layer of

ZINB-based encoder.

A.2 Multimodality Module

A.2.1 Modality Prediction

dance.modules.multi modality.predict modality.scmogcn scMoGNN [11] first converts the input feature matrix

into a cell-feature bipartite graph G = (V, E) where each node v represents a cell or a feature. For instance, for the

input of gene expression, each node can be a cell or a gene. Meanwhile, additional gene-gene connections are added

based on an external pathway dataset [92]. Every pair of vertices in V are connected by a weighted edge, which

either depends on the read count of a feature in a cell, or the correlation between features.

Specifically, we use X ∈ RN×k to denote the feature matrix of input modality with N the number of cells and k

the dimension of input features. The adjacency matrix A of the constructed cell-feature bipartite graph G is:

A =

(
O X

XT P

)
, (29)

where O is a zero matrix, and P ∈ Rk×k indicates the gene-gene links.

To learn node embeddings on G, scMoGNN introduce a heterogeneous graph convolutional network. The proposed

heterogeneous graph convolutional network can be stated as:

H
(l+1)
c = GCNfc(Afc,H

(l)
), (30)

H
(l+1)
f = GCNcf(Acf,H

(l)
) + GCNfc(Aff,H

(l)
), (31)

where H
(l)
f is the embeddings of feature nodes in l-th layer, H(l)

c is the embeddings of cell nodes in l-th layer.

Subscripts cf, textfc and textff denote the graph convolution over all the cell-to-feature edges, feature-to-cell

edges and feature-to-feature edges respectively. After stacking convolutional layers, cell node embeddings from each

layer are collected by a weighted sum, denoted as

Ĥ =

L∑
l=1

wlH
l
c, (32)

where w is a learnable weight vector, L is the total number of layers. Ĥ is then passed to the downstream modules.

In the case of modality prediction, a fully-connected predictive head is added. The final prediction Z ∈ RN×d of

scMoGNN can be thus written as:

Z = ReLU
(
ĤW + b

)
(33)

where W and b are the parameters of the predictive head. Overall, a mean squared error MSE(Z,Y) is optimized

through training, where Y ∈ RN×d is ground-truth features of the target modality.

dance.modules.multi modality.predict modality.babel BABEL [36] trains two neural-network-based encoders and

two decoders on the paired data to translate data from one modality to the other and to reconstruct itself, thus

eventually obtaining shared embedding. A special design in BABEL is to add a prior distribution to the decoder.

Instead of directly outputting the feature values, the decoder estimates the parameters of feature distribution.

Formally, for each cell, the RNA decoder models the likelihood of expressions y as a negative binomial (NB)

distribution, written as:

P (y; ŷ, θ) =
Γ(y + θ)

y!Γ(y)

(
θ

θ + ŷ

)θ (ŷ

θ + ŷ

)y

(34)

where Γ denotes the gamma function, ŷ and θ are the estimation of the mean and dispersion of the distribution. In

practice, these estimations come from neural network encoders and decoders. The optimization problem is thus

formalized by minimizing the negative log-likelihood:

LNB(y; ŷ, θ) = −θ(log(θ + ϵ) − log(θ + ŷ)) − y(log(ŷ + ϵ) − log(θ + ŷ))

− log Γ(y + θ) + log Γ(y + 1) + log Γ(θ + ϵ)
(35)

where ϵ is a tiny constant for numerical stability.

The ATAC decoder has a different modeling approach since the feature for each peak is binary. The loss function for

the ATAC decoder is based on binary cross-entropy, shown below:

LBCE(x; x̂) = −(x log x̂ + (1 − x) log(1 − x̂)) (36)

where x represents ground-truth ATAC-seq features, and x̂ denotes the prediction from the ATAC decoder.

The overall loss function is hereby formulated as:

L = LNB (r, rRNA) + βLBCE (a, aATAC) + βLBCE (a, aRNA) + LNB (r, rATAC) (37)

where r and a are the ground-truth RNA-seq features and ATAC-seq features respectively, subscripts indicate from

which modality the features are predicted (e.g., aRNA represents the ATAC features predicted from RNA). The first

two terms in the loss function are similar to reconstruction loss in autoencoders. The latter two terms can be

considered as modality prediction loss.

For testing, we simply take aRNA as the prediction of ATAC-seq from RNA-seq, and take rATAC as the prediction of

RNA-seq from ATAC-seq.

dance.modules.multi modality.predict modality.cmae Cross-modal Autoencoders [37] uses autoencoders to map

vastly different modalities (including images) to a shared latent space. Specifically, a discriminator and adversarial

loss are added to force the distributions of different modalities to be matched in the latent space. To make use of

prior knowledge, an additional loss term can further be added to align specific markers or anchoring cells.

Formally, an invariant latent distribution for two modalities i and j is learned as follows. We denote the input

features of two modalities as Xi and Xj . For modality i, we optimize the objective:

min
Ei,Di

Ex∼PXi
L1 (x,Di (Ei(x))) + λL2

(
Ei#PXi

| PẐ

)
(38)

while for modality j, we optimize:

min
Ej ,Dj

Ex∼PXj
L1 (x,Dj (Ej(x))) + λL2

(
Ej#PXj

| PẐ

)
(39)

Here, Ei#PXi
refers to the distribution of modality i in the latent space Z, PẐi

is the expected distribution of

joint latent space Z. D and E refer to encoders and decoders parameterized by neural networks. L1 is the Euclidean

distance metric, which is equivalent to a reconstruction loss. L2 represents a divergence between probability

distributions, since PẐi
is unknown, it can be adapted to a discriminator and an adversarial loss.

Several additional losses can be added to the model to incorporate prior knowledge. For example, if training data

include paired multimodal data, those cells with more than one modality can be considered as anchors. Suppose(
x1, x

′
1

)
,
(
x2, x

′
2

)
, . . . ,

(
xm, x′

m

)
are corresponding points from two datasets, we can add the following anchor

loss,

m∑
i=1

||E (xi) − E′ (
x
′
i

)
|| (40)

where E and E′ are encoders for the two modalities, respectively.

The final prediction from modality i to modality j is Dj (Ei(X)).

dance.modules.multi modality.predict modality.scmm scMM [38] leverages a mixture-of-experts (MoE)

multimodal variational autoencoder [87] (VAE) to explore the latent dimensions that associate with multimodal

regulatory programs. It models raw count features from each modality using various probability distributions in an

end-to-end way. Specifically, an MoE multimodal VAE (MMVAE) is to learn a multimodal generative model:

pΘ (z,x1:M) = p(z)
M∏
m

pθm (xm | z) , (41)

where pθm (xm | z) is the likelihood for m-th modality, and pθm is parameterized by a neural network decoder.

To optimize the model, a typical training objective for VAE is to maximize the ELBO:

ELBO = Ez∼qΦ
(z | x1:M)

[
log

pΘ (z, x1:M)

qΦ (z | x1:M)

]
(42)

where qΦ (z | x1:M) is the joint variational posterior that can be parameterized by a neural network encoder. In

addition, an MMVAE factorizes the joint posterior with an MoE:

qΦ (z | x1:M) =
M∑
m

αmqφm (z | xm) , αm = 1/M, (43)

where the posterior of the m-th modality is qφm (z | xm). It is parameterized by the encoder. When using

stratified sampling, ELBO can be re-written as:

ELBO =
1

M

M∑
m

Ezm∼qφm
(z | xm)

[
log

pΘ (zm,x1:M)

qϕ (zm | x1:M)

]

=
1

M

M∑
m

{
Ezm∼qφm (z|xmi)

[log pΘ (x1:M | zm)] − KL [qφm (z | xm) ∥p(z)]
} (44)

The first expectation term is to measure the reconstruction performance. Here, latent variables of each modality

would be used to reconstruct all modalities, including cross-modal translation. The second term is a regularization

term forcing the variational posterior to be consistent the prior distribution p(z), which is a Laplacian distribution in

practice. In the modality prediction task, we take the cross-modal generation results as the prediction of the model.

A.2.2 Modality Matching

dance.modules.multi modality.match modality.scmogcn The overall structure of scMoGNN in the modality

matching task is the same as in the modality prediction task. However, in the modality prediction task, the input is

only one modality, while in the modality matching task, features of two modalities are given altogether. Therefore,

scMoGMM constructs two graphs G1 and G2 for two modalities respectively. The cell node embeddings are obtained

in the same way as before, denoted as Ĥ1 and Ĥ2. Then a matching head is added, formulated as:

S = Ĥ1 · ĤT
2 (45)

where S is the desired output matrix of matching scores. For training, we calculate the cross entropy loss between S

and a ground-truth matching matrix M ∈ Rn×n, where Mi,j = 1 only when cell i in modality 1 corresponds to

cell j in modality 2. In addition, several auxiliary losses are added, including a reconstruction loss and a translation

loss.

For testing, a bipartite matching via the Hungarian algorithm is implemented as post-processing. It generates an

optimized sparse score matrix over the raw S matrix.

dance.modules.multi modality.match modality.cmae The overall structure of Cross-modal Autoencoders is the

same as in the modality prediction task, where we implement encoders and decoders for all the modalities. Hereby

in the modality matching task, we directly utilize the latent space instead of using a decoder to generate target

modality.

To be specific, the embeddings from each modality can be denoted as:

H1 = E1 (X1) ,H2 = E2 (X2) (46)

where we denote input matrix, encoder and embeddings of m-th modality as Em, Hm and Xm respectively. Then

the score matrix is obtained by:

S = H1 · HT
2 (47)

where S is the output score matrix.

dance.modules.multi modality.match modality.scmm The overall structure of scMM is the same as in the

modality prediction task, where we implemented a neural network encoder Em for each modality m to estimate the

variational posterior qΦ (z | x1:M). In the modality matching task, we hereby take the latent vectors generated by

encoders as the source for matching. The whole process is the same as Eq. 46 and 47.

A.2.3 Joint Embedding

dance.modules.multi modality.joint embedding.scmogcn The overall structure of scMoGNN in the joint

embedding task is still similar to what is shown in the modality prediction task. However, different from previous

tasks, here scMoGNN first preprocesses data as suggested by Seurat [93]. It reduces the dimension of modality m to

a predefined km dimension, using latent semantic indexing (LSI). Empirically, we set km = 256 for RNA-seq

features, km = 512 for ATAC-seq features, and no dimension reduction for surface protein features. Next, the

preprocessed features of two modalities are concatenated and jointly considered as feature nodes in the graph

construction, as described in Eq. 29. Since no feature interactions are specified, here we replace matrix P in Eq. 29

with O. With the graph G so constructed, scMoGNN is further trained by minimizing a reconstruction loss, a cell

type auxiliary loss and a regularization loss.

Specifically, cell embeddings Ĥ are obtained as Eq. 32. An MLP decoder fθ is involved to reconstruct the input

features from Ĥ. The first T dimensions in Ĥ are also used to predict cell type, where T is equal to the number of

predefined cell types, and a regularization loss is added to the rest of the dimensions. The overall loss function can

be written as:

L = Lrecon + Lcell type + Lregular

=
1

N

N∑
i=1

(X − fθ(Ĥ))
2
+

T∑
t=1

Yt log(Ŷt) + β ∗ ∥ĤJ̃ ∥2

(48)

where fθ is a two-layer MLP decoder, X ∈ Rn×(k1+k2) is the pre-processed feature matrix, k1 and k2 are

specified feature dimensions of two modalities, Y ∈ RN×T is predefined cell types for each cell in a sparse form,

and ĤJ̃ refers to the hidden dimensions other than first T dimensions. Ŷ is calculated by a softmax function over

the first T dimensions of Ĥ, formulated as:

Ŷi,t =
eĤi,t∑T

k=1 eĤi,k
(49)

In the end, Ĥ is the resulting joint cell embeddings from scMoGNN, which is expected to encode cellular

information that is essential in the joint embedding task.

dance.modules.multi modality.joint embedding.jae JAE is an adapted model from scDEC [72]. It is proposed by

the authors of scDEC in the NeurIPS competition [84] to better leverage cell annotations. Formally, JAE follows the

typical autoencoder architecture with an encoder fθ and a decoder gθ . They are parameterized by MLPs, denoted

as:

H = fθ (X) ,Z = gθ (H) (50)

where H ∈ Rn×d is the joint embeddings, and Z is the recovered input features. The novelty of JAE is that it

separates cell embeddings into four parts, written as:

H = [H
′|C|B|S] (51)

where | denotes concatenation, C ∈ Rn×c is additionally supervised by cell type labels, B ∈ Rn×b is additionally

supervised by batch labels, S ∈ Rn×s is additionally supervised by cell cycle phase score, H′ ∈ Rn×z is the

remaining dimensions. Therefore z + b + s + c = d. The overall loss function of JAE is formulated as:

L = Lrecon + Lcell type + Lbatch + Lcell cycle

= MSE(Z,X) + CrossEntropy(C, Ĉ)

+ CrossEntropy(B, B̂) + MSE(SW + b, Ŝ)

(52)

where Ĉ, B̂, Ŝ are cell type labels, batch labels and cell cycle scores, respectively. W ∈ Rs×2 and b ∈ R2 are an

extra linear transformation to project S to cell cycle score vector space. Eventually, H is the output joint embedding

from JAE.

dance.modules.multi modality.joint embedding.scmvae The scMVAE [39] model employs three simultaneous

learning strategies to understand the distribution of multi-omics data: the product of experts (PoE), neural

networks, and concatenation of multi-omics features. Furthermore, scMVAE handles raw count features from each

modality using a Zero-Inflated Negative Binomial (ZINB) distribution. Specifically, let z represent the joint

embeddings obtained from multimodal encoders. The conditional distribution p(z | c) follows a Gaussian mixture

distribution, with its mean vector µc and covariance matrix σc conditioned on a discrete categorical variable c

indicating cell types. This Gaussian mixture prior for z is introduced in MVAE to improve the interpretability of

latent representations and enhance generation performance. Considering x and y as features of two modalities, the

distribution p (x, y, z, c, lx, ly) is formulated as follows:

p (x, y, z, c, lx, ly) = p (x | z, lx) p (y | z, ly) p(z | c)p(c)p (lx) p (ly) (53)

where lx and ly are the library size factors of two modalities.

The prior distributions for all the random variables are listed below:

z ∼ N
(
µc, σ

2
cI
)

lx ∼ log norm
(
µlx, σ

2
lx

)
, ly ∼ log norm

(
µly, σly

2
)

µx ∼ Gamma (fµx(f(z)), fθx(f(z))) , µy ∼ Gamma (fµy(f(z)), fθy(f(z)))

x
′ ∼ Possion (lxµx) , y

′ ∼ Possion (lyµy)

πx ∼ Bernoulli (fπx(f(z))) , πy ∼ Bernoulli (fπy(f(z)))

xr =

{
x′ if πx = 0

0 otherwise
, yr =

{
y′ if πy = 0

0 otherwise

(54)

where fθx (f(z)) and fθy (f(z)) are the inverse desperations of two modalities from the variational Bayesian

inference. fµx and fµy are two neural network decoders that estimate the mean proportions of features for two

modalities in each cell by using a softmax function, which simulates the library-size normalized features. fπx and

fπy are neural network decoders that estimate the probability of features being dropped out due to technical issues.

They use a sigmoid function to model this probability.

To train scMVAE, we maximize the log-likelihood of the multi-omics observations. Following the convention of

variational autoencoders, this objective is converted to optimizing an evidence lower bound (ELBO):

log p (x, y | z, c, lx, ly) ≥ Eqφ (z, c, lx, ly | x, y)
)

[
λ1 log

(
pθ1

(x | z, lx)
)
+ λ2 log

(
pθ2

(y | z, ly)
)]

−α1DKL (q (lx | x) ∥p (lx)) − α2DKL (q (ly | y) ∥p (ly))

−βDKL(q(z, c | x, y)∥p(z, c))

(55)

Both modalities in the ELBO have two reconstruction terms, and three regularization terms are implemented by KL

divergence. qφ refers to a multimodal encoder. While pθ1
and pθ2

refer to decoders, for two modalities respectively.

The latent vector z estimated from E is the eventual joint embedding.

dance.modules.multi modality.joint embedding.dcca In DCCA [39], data of each modality are modeled by a

variational autoencoder (VAE). Specifically, for modality m, an encoder Em transforms the input features into

latent space zm. A decoder Dm then transforms zm into the parameters of the NB or Bernoulli. For example,

RNA-seq and ADT data follow NB distribution, denoted as:

p (x | zx) = NB (x;ux, θx) = NB (x, lx;Dux (zx) , Dθx (zx))

NB (x;ux, θx) =
Γ (x + θx)

Γ (θx) Γ(x + 1)

(
ux

ux + θx

)x (θx

θx + ux

)θx (56)

where Dux and Dθx are decoders, each dimension of ux and θx indicates the mean and variance of NB

distribution for each feature, and one-dimensional constant variable lx indicates the library size of each cell. While

ATAC-seq data follow Bernoulli distribution, denoted as:

p (y | zy) = Bernoulli (y;uy) = Bernoulli
(
y;Duy (zy)

)
Bernoulli (y;uy) = y log (uy) + (1 − y) log (1 − uy)

(57)

where Duy refers to the ATAC-seq decoder.

Each VAE is first trained separately with each modality. Then, two VAEs are trained together to maximize the

similarity between two latent spaces. For example, given the embeddings from a VAERNA and a VAEATAC, they

optimize an objective function that combines reconstruction loss with the cell embeddings similarity loss. Hence, the

total ELBO for VAERNA and VAEATAC can be written as:

LRNA = log p (x | zx) − β1

K−1∑
i=0

∥∥∥zyi − zx
i
∥∥∥
2

≥ Ezx∼q(zx|x;Ex) (log p (x | zx;Dux, Dθx)) − λ1DKL (q (zx | x;Ex) ∥p(z))

−β1

K−1∑
i=0

∥∥∥zyi − zx
i
∥∥∥
2

(58)

LATAC = log p (y | zy) − β2

K−1∑
i=0

∥∥∥zxi − zy
i
∥∥∥
2

≥ Ezy∼q(zy|y;Ey) (log p (y | zy ;Duy)) − λ2DKL (q (zy | y;Ey) ∥p(z))

−β2

K−1∑
i=0

∥∥∥zxi − zy
i
∥∥∥
2

(59)

According to the DCCA paper, after jointly training two VAEs, the embedding from VAERNA is selected as the final

embedding for downstream analysis.

A.3 Spatial Transcriptomics Module

A.3.1 Spatial Domain

dance.modules.spatial.spatial domain.spagcn SpaGCN [42] first constructs a weighted undirected graph, G(V,E)

from the gene expression and histological image data. In G, each vertex v ∈ V is a spot, and every pair of vertices

in V are connected by a weighted edge, which assesses the correlation between the two spots. The weight for the

pair (u,v) is calculated as:

w(u, v) = exp

(
−

d(u, v)2

2l2

)
(60)

where hyperparameter l represents characteristic length scale, and d(u, v) calculates Euclidean distance between

spots u and v. This distance is computed by the spatial distance and the corresponding histology information

between two spots. The initial node representation in the graph is gene expression after dimension reduction. A

process known as graph convolution is utilized by SpaGCN to aggregate gene expression data in accordance with

edge weights. Then the output of the graph convolution layer would be new node representation capturing

information on gene expression, histology and physical location. Based on the new spot representation, an

unsupervised clustering algorithm is further employed to iteratively cluster the spots into spatial domains. The

probability of assigning spot i to cluster j is defined as:

qij =

(
1 + hi − µ2

j

)−1

∑K
j′=1

(
1 + hi − µ2

j′

)−1
(61)

where hi is the embedded point for spot i, and uj indicates centroid j. Then the clusters are refined iteratively by a

target distribution P from qij :

pij =
q2ij/

∑N
i=1 qij∑K

j′=1

(
q2
ij′/

∑N
i=1 qij′

) (62)

which gives more weight to locations that have been recognized with high confidence and normalizes each centroid’s

contribution to the loss function to avoid having large clusters distort the hidden feature space. The objective

function is based on a Kullback–Leibler (KL) divergence as:

L = KL(P∥Q) =
N∑

i=1

K∑
j=1

pij log
pij

qij
(63)

where N is the number of spot samples, and K is the number of clusterings.

dance.modules.spatial.spatial domain.stagate STAGATE [43] is a graph attention based autoencoder [45] with

encoder, decoder and graph attention layers. For graph construction, it builds up an undirected graph with a radius

r that has been predefined based on physical distance. We useA to denote the adjacency matrix of the graph where

Aij = 1 if the Euclidean distance between spots i and j is less than r. In addition, STAGATE also builds up a cell

type-aware graph via updating the previously constructed graph based on the pre-clustering of gene expressions.

The encoder in STAGATE takes the gene expressions that have been normalized as its inputs. It then generates

embedding for each spot by aggregating information from its surrounding nodes collectively. The latent

representation for spot i is calculated as:

h
(k)
i = σ

∑
j∈Si

att
(k)
ij

(
Wkh

(k−1)
j

) (64)

where σ is the activation function, Wk is the trainable weight matrix, Si is the neighbors of spot i, k indicates

k-th encoder layer and att
(k)
ij is the attention score (i.e., the edge weight) between spots i and j obtained from the

k-th graph attention layer’s output.

Contrarily, using the encoder’s output as input, the decoder transforms the latent embedding into a reconstructed

normalized expression profile.

ĥ
(k−1)
i = σ

∑
j∈Si

âtt
(k−1)
ij

(
Ŵkĥ

(k)
j

) (65)

In graph attention layer, a widely-used self-attention technique for graph neural networks is adopted to learn the

similarity between surrounding spots in an adaptive manner. The edge weight between spot i and its surrounding

spot j in the k-th encoder layer is calculated as:

e
(k)
ij = Sigmoid

(
v
(k)T

s

(
Wkh

(k−1)
i

)
+ v

(k)T

r

(
Wkh

(k−1)
j

))
(66)

where v(k)
s and v(k)

r are the trainable weights.

The attention score is further normalized by a softmax function in the following way:

att
(k)
ij =

exp
(
e
(k)
ij

)
∑

i∈Si
exp

(
e
(k)
ij

) (67)

Eventually, STAGATE aims to minimize the reconstruction loss of normalized expressions in the following way:

N∑
i=1

∥∥∥xi − ĥi

∥∥∥
2

(68)

where xi is the original normalized gene expressions, and ĥi is the reconstructed normalized gene expression for

spot i.

dance.modules.spatial.spatial domain.louvain Louvain [73] is to extract the community structure of large

networks, which draws inspiration from the optimization of modularity. A modularity measure shows how densely

edges inside communities are clustered in comparison to edges outside communities. Theoretically, optimizing this

value leads to the optimal grouping of nodes in a particular network. Due to the impracticality of traversing all

possible iterations of the nodes into groups, heuristic approaches are utilized. The modularity is defined as:

Q =
1

2m

∑
ij

[
Aij −

kikj

2m

]
δ (ci, cj) (69)

where Aij is the edge weight between nodes i and j, m represents the total weight of all edges in the graph, the

weights of the edges that connect nodes i and j are added up to get ki and kj , ci and cj denote node

communities, and δ represents Kronecker delta function [94] (δ(x, y) = 1 if x = y; else, 0).

To efficiently maximize the modularity, there are two looping phases. First, a community is associated with each

node in the network. Because of this primary partitioning, there is consequently the same number of communities as

nodes. Then, the change in modularity is determined for each node i by removing it from its own community and

inserting it in the community of each of i’s neighbors j. Integration of a previously isolated node i into a community

C results in an increase in modularity ∆Q equal to:

∆Q =

[
Σin + 2ki,in

2m
−
(

Σtot + ki

2m

)2]
−
[
Σin

2m
−
(

Σtot

2m

)2

−
(

ki

2m

)2]
(70)

where
∑

tot is the total link weights occurring to nodes in C,
∑

in represents the total link weights within C, ki

denotes the sum of the link weights associated with node i, ki,in represents the total link weights from node i to

all other nodes in C, and m is the total link weights for the whole network. Once this value is computed for all

communities to which i belongs, i is assigned to the community where the modularity increase was largest. If there

is no possibility of expansion, i stays in the same community. This technique is repeated and applied successively to

all nodes until no further growth in modularity is possible. The first step concludes when this modularity maximum

is reached.

In the second phase, all nodes inside the same community are grouped together and a new network consisting of

communities from the first phase is constructed. The connections between multiple nodes within the same

community and a node in a separate community are now described by weighted edges between communities. The

second stage is complete when the new network is set up, at which point the first stage can be applied to it again.

dance.modules.spatial.spatial domain.stlearn stLearn [74] performs unsupervised clustering on SME-normalized

data to group similar areas into clusters and discover sub-clustering alternatives based on the geographic separation

of clusters inside the tissue. The name of this stLearn function is SMEcluster. Using normalized expression values,

stLearn separates cell types in a tissue through a two-step spatial clustering approach. stLearn implements a

conventional Louvain clustering technique for scRNAseq data as the initial step. Linear Principal Component

Analysis (PCA) is used to reduce the dimensionality of the SME normalized matrix, and then non-linear UMAP

embedding is used to generate the k-nearest neighbor (kNN) graph. kNN’s graph adjacency matrix is then clustered

using Louvain clustering or k-means clustering. In the second stage, spatial information is utilized to identify

sub-clusters from large clusters that span two or more physically distinct places. Using each location’s spatial

coordinates, a two-dimensional k-d tree neighbour search is conducted.

A.3.2 Cell Type Deconvolution

dance.modules.spatial.cell type deconvo.dstg DSTG [44] is a GNN based method that constructs a graph from

similarities between real mixed-cell expression data X ∈ Rd×n and pseudo mixed-cell expression data X̃ ∈ Rd×np

from reference scRNA-seq expression data Xs ∈ Rd×N . First, the pseudo mixed-cell expression data is generated

taking np random samples (with replacement) of 2 to 8 cells from the scRNA-seq reference, and aggregating their

UMI counts, downsampling to adjust for realistic bulk UMI counts. The pseudo and real mixed-cell data are then

aligned in a lower dimensional (S < d) gene-space using Canonical Correlation Analysis (CCA). The projections to

the s = 1, 2, ..., S dimensions are given by the canonical variables

Us = X̃µ
∗
s

Vs = Xν
∗
s

(71)

where

µ
∗
s , ν

∗
s = argmax

µs,νs∈Rd
{νT

s X̃
T
Xνs} s.t. UT

s Us′ = V
T
s Vs′ = δss′ (72)

are the canonical correlation vector pairs. These embeddings are then used to construct a graph by considering

Mutual Nearest Neighbors (MNN) as adjacent in the graph. That is, given a pair of sample cell-pools i, j, we let

Ai,j =

{
1 if i and j are mutual nearest neighbors

0 otherwise
(73)

Here, adjacencies can be between simulated-to-real and real-to-real samples. With Xin = [X̃X] ∈ Rd×N

(N = np + n) and the normalized adjacency matrix Ã as input, the L ≥ 1 (default 1) graph convolution (GCN)

layers of the DSTG model are given by

H
(0)

= Xin

H
(l)

= ReLU(ÃH
(l−1)

W
(l)

) for l ∈ [1, L]
(74)

where W (l) is the weight matrix for the lth layer. The output of the DSTG model is the predicted composition of

K cell-types, given by

[
Ŷp

Ŷ

]
= softmax(ÃH

(L)
W) ∈ RN×K

(75)

where Ŷp and Ŷ are the predictions for the pseudo and real cell-pools, respectively. The loss function is then defined

as the cross-entropy between the predicted and true cell-type compositions of the pseudo cell-pools

L = −
np∑
i=1

K∑
k=1

y
(p)
i,k ln(ŷ

(p)
i,k) (76)

where ŷ
(p)
i,k and y

(p)
i,k are the predicted and true composition of cell-type k in the ith pseudo cell-pool.

dance.modules.spatial.cell type deconvo.spotlight SPOTlight [76] builds on the classic non-negative least squares

approach to cell-type deconvolution by incorporating topic-modeling for both the reference scRNA-seq expression

data Xs ∈ Rd×N and the mixed-cell expression data X ∈ Rd×n. First, non-negative matrix factorization (NMF) is

applied to the reference Xs to get

W,H = argmin
W ′,H′≥0

∥∥Xs − W
′
H

′∥∥
F

(77)

where the rows of H ∈ RK×N are the cell-topic embeddings, and the columns of W ∈ Rd×K the corresponding

weightings. Cell-topic profiles H̃ ∈ RK×K are then constructed from H by taking the median over each cell-type.

Next, spot-topic profiles P ∈ RK×n are constructed through NNLS of X onto W

P = argmin
P ′≥0

∥X − WP
′∥F (78)

Finally, the estimator of cell-type compositions for the n cell-pools is then given by

Ŷ = argmin
B≥0

∥P − H̃B∥F (79)

dance.modules.spatial.cell type deconvo.spatialdecon SpatialDecon [77] is non-negative linear regression based

method that assumes a log-normal multiplicative error model between the mixed-cell data X ∈ Rd×n and a

cell-profile (signature) matrix X̃ ∈ Rd×K . The cell-profile matrix X̃ is a measure of center (median by default)

expression for each of the K cell-types, constructed from the reference scRNA-seq data Xs ∈ Rd×N . The

log-normal multiplicative error model is given by

log(Xi·) = log(X̃
T
i·B) + ϵi, where ϵi ∼ N (0, σ

2
In) and B ∈ RK×n

(80)

The estimator of cell-type compositions for the n cell-pools is then given by

Ŷ = argmin
B≥0

∥∥log(X) − log(X̃
T
B)
∥∥
2

(81)

dance.modules.spatial.cell type deconvo.card CARD [78] applies a conditional autoregressive (CAR) assumption

on the coefficients of the classical non-negative linear model between the mixed-cell expression X and a cell-profile

matrix X̃s, constructed from reference scRNA-seq Xs. The linear model is given by

X = X̃sB + ϵ, ϵ ∼ N (0, σ
2
eIn) (82)

The CAR assumption then incorporates 2D spatial information

S =

s1
.
.
.

sn

 ∈ Rn×2 through an intrinsic prior on the cell-type compositions (the model coefficients) by modeling

compositions in each location as a weighted combination of compositions in all other locations. This modeling

assumption is given by

Bki = bk + ϕ

n∑
j=1,j ̸=i

Wij(Bkj − bk) + ϵki, ϵki ∼ N (0, σ
2
ki) (83)

where the weights Wij are given by the Gaussian kernel

Wij = KG(si, sj ;σ
2
) = exp(−

∥si − sj∥2
2

2σ2
) (84)

with default scaling parameter σ2 = 0.1. CARD then estimates the cell-type composition of the n cell-pools

through constrained maximum likelihood estimation.

	Abstract
	Details About Supported Models in DANCE
	Single Modality Module
	Imputation
	Cell Type Annotation
	Clustering

	Multimodality Module
	Modality Prediction
	Modality Matching
	Joint Embedding

	Spatial Transcriptomics Module
	Spatial Domain
	Cell Type Deconvolution

	Environment Dependencies in DANCE
	Codebase Structure Tree in DANCE
	Contribution Instructions in DANCE
	More Performance Showup in DANCE.

