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Abstract

The interaction effect coefficient ψ has been a much-discussed, fundamental parameter of indirect 
genetic effect (IGE) models since its formal mathematical description in 1997. The coefficient 
simultaneously describes the form of changes in trait expression caused by genes in the social 
environment and predicts the evolutionary consequences of those IGEs. Here, we report a striking 
mismatch between theoretical emphasis on ψ and its usage in empirical studies. Surveying all IGE 
research, we find that the coefficient ψ has not been equivalently conceptualized across studies. 
Several issues related to its proper empirical measurement have recently been raised, and these 
may severely distort interpretations about the evolutionary consequences of IGEs. We provide 
practical advice on avoiding such pitfalls. The majority of empirical IGE studies use an alternative 
variance-partitioning approach rooted in well-established statistical quantitative genetics, but 
several hundred estimates of ψ (from 15 studies) have been published. A significant majority are 
positive. In addition, IGEs with feedback, that is, involving the same trait in both interacting partners, 
are far more likely to be positive and of greater magnitude. Although potentially challenging to 
measure without bias, ψ has critically-developed theoretical underpinnings that provide unique 
advantages for empirical work. We advocate for a shift in perspective for empirical work, from ψ 
as a description of IGEs, to ψ as a robust predictor of evolutionary change. Approaches that “run 
evolution forward” can take advantage of ψ to provide falsifiable predictions about specific trait 
interactions, providing much-needed insight into the evolutionary consequences of IGEs.

Subject area:  quantitative genetics
Key words:  indirect genetic effect, interacting phenotype, interaction coefficient, social evolution, trait-based analysis, variance 
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The Interaction Coefficient ψ: Theoretical 
Importance vs. Empirical Evidence

The interaction coefficient ψ is a central, much-discussed parameter 
of indirect genetic effect (IGE) models. This class of models describes 
the evolutionary consequences of social environments and is rooted 

in conceptual and mathematical descriptions of the process by which 
genes expressed in socially interacting individuals can affect the ex-
pression of their partners’ phenotypes (Moore et al. 1997). Such ef-
fects can cause evolutionary feedback, and modeling the feedback 
changes our perspective about the genetics of an enormous variety 
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of interacting phenotypes. Considering IGEs that arise from social 
interactions also provides clarified detail about the action of selec-
tion that then acts upon such traits, informing how they are then 
predicted to respond to selection. IGE theory uses a quantitative gen-
etic approach that combines and formalizes arguments about social 
dynamics that have been made in other contexts and subdisciplines 
of evolutionary biology, such as Griffing’s (1967, 1968a, 1968b) 
concept of associate effects, West-Eberhard’s (1979, 1983) verbal 
arguments about the evolutionary consequences of social selection, 
Dawkins’ (1982) concept of extended phenotypes, and maternal 
effects theory (e.g., Mousseau and Fox 1998). Since its inception, 
the interacting phenotype framework has been used to detect and 
characterize IGEs for a wide variety of traits and contexts, such 
as behavior (reviewed in Bailey et al. 2017), agriculture (reviewed 
in Bijma 2014), ecology (e.g., Shuster et al. 2006; Mutic and Wolf 
2007; Genung et al. 2011; Wolf et al. 2011; Riedel et al. 2018), and 
medicine (e.g., Baud et al. 2017, 2020).

In these and other research contexts focusing on the effects of 
IGEs, the interaction coefficient ψ is of significant practical import-
ance because it broadly indicates the direction and magnitude of 
IGEs on specific traits identified by the experimenter. But what is 
ψ? We discuss the biological meaning of ψ and raise the issue that 
several important assumptions made in theoretical models are likely 
to be violated in empirical studies that estimate ψ. In many cases, 
confounded or biased estimates of ψ risk overinflating the apparent 
magnitude of IGEs, but in other cases, it can be highly illuminating 
to relax assumptions about ψ. We then survey published estimates 
of ψ. Although ψ is a central component of most theoretical IGE 
models that have been published in the nearly quarter-century since 
the interacting phenotype framework was mathematically formal-
ized by Moore et al. (1997), we identify a considerable gap between 
this theoretical emphasis and efforts to estimate ψ empirically. 
Although few studies have estimated it, these studies report hun-
dreds of estimates of ψ. Further examination reveals heterogeneity 
in methods used to estimate ψ and its multivariate counterpart, the 
matrix Ψ. However, interesting trends are evident in published es-
timates of ψ, which suggest, though do not firmly establish, that 
general principles may govern the strength and magnitude of dif-
ferent types of IGEs. Finally, we assert that an important attribute of 
the interaction coefficient ψ has not been capitalized on in empirical 
studies of IGEs, and that is its power as a predictor of evolutionary 
dynamics for specified sets of interacting phenotypes. Thus far, ψ has 
almost exclusively been treated as an output of experimental work 
describing IGEs. We advocate running IGE experiments forward: ψ 
can be treated as powerful input to set predictions about the evolu-
tion of specific interacting traits important to basic, agricultural, or 
medical applications.

What Is ψ?

IGEs occur when genes expressed by one organism affect the expres-
sion of traits in a conspecific—such effects are indirect in that genes 
have a causal effect on phenotypic expression in focal individuals, 
while not actually residing in those individuals (Moore et al. 1997). 
This insight can change our view of environmental effects on trait 
expression and evolution. The environment an individual organism 
experiences throughout its life cycle can consist of nongenetic fea-
tures, such as a particular temperature or daylight regime, but pro-
vided individuals have social interactions with conspecifics at some 
point, the environment will also consist of the expressed phenotypes 

of genes that those individuals carry. If the genes in the environ-
ment are variable and cause IGEs, the environmental component of 
trait expression can itself can be heritable and evolve (Wolf et  al. 
1999; Bijma 2010; McGlothlin et al. 2010). Understanding this evo-
lutionary feedback between social environments and direct genetic 
effects (DGEs) can change our perspective of how interacting pheno-
types such as aggression, dominance, reproductive behavior, and 
others evolve (Wolf et al. 1998; Bleakley et al. 2010; Bailey 2012; 
Bijma 2014).

IGE theory has developed around 2 frameworks that are concep-
tually different takes on the same phenomenon, but can be math-
ematically reconciled (McGlothlin and Brodie 2009; Bijma 2014). 
Variance-partitioning approaches estimate phenotypic variance as-
sociated with IGEs, assigning genetic influences on target pheno-
types to interacting individuals present in the social environment 
and quantifying their magnitude relative to DGEs and other sources 
of environmental variation. The second is a trait-based approach, 
which focuses on IGEs that are mediated through the expression of 
traits identified by the experimenter. In trait-based IGE models, the 
parameter ψ is a path coefficient that reveals relationships between 
these specific traits of focal and interacting individuals (Moore et al. 
1997; Bleakley et  al. 2010; Bijma 2014; Bailey et  al. 2017). It is 
functionally equivalent to the maternal effect coefficient m, and 
like m, ψ is assumed to represent a causal relationship (Lande and 
Price 1989). The interaction coefficient broadly describes how so-
cial environments change trait expression within generations. When 
empirically measured using standardized phenotypic data, it scales 
between [−1,1] to describe the direction and magnitude of effects 
of one trait upon another (or upon itself in the case of reciprocal 
IGEs with feedback, i.e. in which the same trait is involved in both 
focal and partner individuals). In a univariate example, the effect of 
trait j in a partner on trait i in a focal individual with whom they 
interact would be represented ψij. The coefficient ψ, its multivariate 
analogue, the matrix ψ, and path diagrams describing the underlying 
effects they represent have been extensively defined and described 
elsewhere. Box 1 provides an overview of the biological meaning of 
the interaction coefficient and its empirical measurement.

A less well-studied but equally important feature of ψ is that it 
provides predictive information about likely evolutionary impacts 
of IGEs across generations (Moore et  al. 1997; Wolf et  al. 1998; 
Bleakley et  al. 2010). In the time since Moore et  al. (1997) first 
described the interaction coefficient in IGE models, ψ has been per-
sistently emphasized in IGE theory as a fundamental, measurable 
parameter that describes evolutionary effects of IGEs. Such trait-
based models range from the original theoretical work describing 
evolutionary effects of IGEs (Moore et al. 1997; Wolf et al. 1998; 
Wolf et al. 1999), to metapopulation models (Agrawal et al. 2001), 
sexual conflict models (Moore and Pizzari 2005), sexual selection 
models (Bailey and Moore 2012), social selection models (Wolf 
et al. 1999; McGlothlin et al. 2010; Bailey and Kölliker 2019; Bailey 
et al. 2021), game theory models (McGlothlin et al. 2021), models 
of maladaptation (McGlothlin and Fisher 2021), and models exam-
ining the evolution of ψ itself (Kazancıoğlu et  al. 2012). In each 
case, evolutionary predictions about the effects of IGEs are either 
explicitly articulated using the interaction coefficient ψ (or matrix 
Ψ), or implicitly dependent on ψ. As a general principle, the mag-
nitude and sign of ψ in such cases determine the effects that IGEs 
have on evolutionary outcomes in various scenarios. This predictive 
property of the interaction coefficient arises from its integral and 
general role in modifying evolutionary responses to selection in the 
original trait-based models of Moore et al. (1997) (e.g. Eqn. (8) in 
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Box 1:  The meaning of ψ

Previous work provides comprehensive guidance for re-
searchers wishing to empirically quantify IGEs by 
measuring the interaction coefficient ψ (between two 
traits) or the matrix Ψ of pairwise interaction coeffi-

cients between n traits where Ψn,n =

Ü
ψ1,1 · · · ψ1,n
...

. . .
...

ψn,1 · · · ψn,n

ê

. 

For technical detail, we refer readers to Moore et al. (1997), 
Bleakley et  al. (2010), McGlothlin and Brodie (2009), Bijma 
(2010), Bijma (2014), and Bailey et al. (2017). Here we high-
light several important conceptual issues that researchers 
undertaking empirical assessment of IGEs using a trait-based 
approach may encounter when designing experiments and 
interpreting ψ estimates.

IGEs and the interaction coefficient describing them can 
be thought of in more than one way. The frequently published 
path diagrams in Figure 1 illustrate some of these differences. 
Figure 1A is reproduced from Wolf et al. (1998) and describes 
causal influences on trait expression in a quantitative genetic 
framework. The path diagram depicts how IGEs influence 
focal individual trait expression, zi. Arrows in the diagram rep-
resent one possible quantitative genetic partitioning of focal 
trait variation; here showing direct genetic effects ai, and all 
environmental effects, ei, influencing focal trait zi. A different 
trait, subscripted j, of an interacting partner, represented by the 
prime, can be considered part of the focal individual’s envir-
onment (arrow from z′j to ei). If some portion of variance in 
the expression of zi is attributable to the social environment 
arising from z′j, then the potential for IGEs exists but is not 
guaranteed. IGEs only arise from the interacting partner addi-
tive genetic effects a′j . In the case illustrated, it can be seen that 

the focal individual’s environment contains genes expressed 
by an interacting individual that exert an influence on focal 
trait expression. These genetic effects transmitted through so-
cial environments are IGEs and are represented by the path of 
black arrows.

Figure 1B shows how IGEs are commonly measured using 
the interaction coefficient in trait-based frameworks, and is re-
produced from the original description in Moore et al. (1997). 
This path diagram represents a population-level decomposition 
of focal trait variance, and as has been described previously, 
the interaction coefficient ψij describes the effect of trait z′j in 
interacting individuals on the value of zi that is expressed by 
focal individuals. It is a path coefficient analogous to the ma-
ternal effect coefficient m (Lande and Price 1989; Falconer and 
MacKay 1996), which is obtained from the partial regression 
coefficient of zi on z′j in a model where data are standardized 
prior to entry. Thus ψij ranges from [−1,1] and describes the 
magnitude and direction of IGEs involving the two traits.

Figure 1C illustrates an important issue about environ-
mental confounds when empirically estimating ψ. IGE ap-
proaches assume that environmental effects are randomly 
distributed with a mean of zero, which can be violated during 
the empirical measurement of ψ due to experimental condi-
tions. That is, if average environmental input into partner 
trait values, e′j, is nonzero or genetically or phenotypically 
correlated the focal trait, then the method used to estimate 
ψ will tend to inflate IGE estimates unless environmental 
effects oppose the direction of IGEs (Signor et  al. 2017a). 
This is a common problem in any quantitative genetic study, 
and for that reason early advice on the measurement of ψ 
advised researchers to manipulate genotypic variation in 
interacting partners using a panel of inbred lines or strains, 

Figure 1.  Path diagrams illustrating the components of ψ and their relationship to IGEs. Detailed explanations are provided in the Box text. (A) Causal 
path diagram of an IGE: genes in interacting individuals influence expression of interacting partners’ phenotypes, interacting partner’s phenotypes are a 
component of the environment of focal individuals; thus, indirect genetic effects influence focal trait expression (after Wolf et al. 1998). (B) The phenotypic 
association between interacting and focal partner phenotypes is commonly understood to represent ψ (after Moore et al. 1997). (C) Typical measurements 
of the interaction coefficient do not distinguish effects arising from additive genetic versus environmental components of the interacting partner trait, 
but attempt to control this by eliminating or randomly distributing environmental effects while systematically varying additive genetic effects. However, 
environmental effects may not be randomly distributed or independent from the focal phenotype, potentially biasing the estimation of ψ.
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Moore et al. 1997 and Eqn. (6) in Chenoweth and Blows 2006). An 
advantage of this theoretical interest is that many of the underlying 
assumptions that need to be satisfied to accurately measure and in-
terpret ψ have been probed in considerable depth.

Perils (and Advantages) of Relaxing 
Assumptions When Measuring ψ

A number of important technical assumptions about the measure-
ment of ψ are likely to be violated in empirical studies that attempt 
to measure it. Such risks of incorrect measurement and interpret-
ation are inherent to any empirical work that tests assumptions or 
predictions of theoretical models, as the latter are reductive by de-
sign and living study systems are complex and difficult to control. In 
recent years, however, some of the assumptions of trait-based IGE 
models have been usefully characterized and corrected on a theoret-
ical basis, which can help to better align theoretical predictions with 
empirical evidence about the evolutionary consequences of IGEs.

Assumption: Nonsocial Environments Can Be 
Ignored. (They Cannot.)
Several assumptions about measuring ψ require eliminating con-
founds that arise from the nongenetic environments in which indi-
viduals develop or interact. Nongenetic environmental contributions 
to trait expression in both focal and interacting individuals are as-
sumed to be randomly distributed with a mean of zero and uncor-
related (Box 1), yet this assumption may be frequently violated in 
empirical studies. The first formal resolution to the consequences of 
such a violation was by Bijma (2014), who proposed a simple ana-
lytical correction applicable when ψ is measured for IGEs with feed-
back arising because the IGE involves the same trait in 2 different 
individuals. An example is aggression. The aggressiveness of a focal 
individual, za, and that of an interacting partner with whom they 
are being aggressive, z′a, cannot be expressed and measured in each 
individual separately; the phenotypic value for either individual is 
an emergent property of their interaction. Thus, ψaa indicates the 
direction and magnitude of reciprocal IGEs on aggression. In multi-
variate scenarios where numerous interacting traits are measured, 
the diagonals of the matrix Ψ thus represent reciprocal IGEs with 
such feedback effects involving the same trait in 2 different individ-
uals (hereafter “on-diagonal IGEs”), and off-diagonals of the matrix 
represent IGEs involving 2 different traits in respective interact-
ants (hereafter “off-diagonal IGEs”). Note that off-diagonal IGEs 
may also involve feedback if trait i affects trait j and trait j affects 
trait i. The measurement problem arises because of environmental 

covariance between focal and interacting partners. In all cases of 
on-diagonal IGEs, but especially for IGEs of intermediate magni-
tude, this confounding environmental effect inflates the magnitude 
of IGE estimates indicated by ψ (Bijma 2014). A simple correction 
has been proposed, hereafter the “Bijma correction,” ψ(corr), for 
on-diagonal IGEs:

ψ(corr) =
1−
»
1− b2Pi,Pj
bPi,Pj

[Eqn. (12), Bijma 2014]
Here, bPi,Pj is the partial regression coefficient from a linear 

model of focal on partner traits and is assumed to be nonzero (Bijma 
2014). Of the 238 ψ estimates that we found in our literature review 
(see below), 68 estimates concerned on-diagonal IGEs. However, of 
the 55 on-diagonal ψ estimates published after Bijma (2014) iden-
tified this issue, only 6 (ca. 11%) report values with the correction. 
When comparing the value of all reported on-diagonal IGEs without 
the correction (back-calculated if the correction was applied ori-
ginally) versus with the correction (calculated if the correction had 
not been applied originally), it is clear that the Bijma correction 
yields a far more conservative overall estimate of on-diagonal IGEs: 
ψ̄(uncorr) = 0.45, whereas ψ̄(corr) = 0.28. This suggests considerable 
inflation of the magnitude of on-diagonal IGEs exists in the cur-
rently published literature. This important correction has thus been 
applied to extremely few relevant estimates of ψ, but it can sub-
stantially change interpretations about the consequences of IGEs by 
making evolutionary predictions about interacting traits with feed-
back markedly more conservative.

For example, in Rebar et al. (2020), ψ was estimated for an im-
portant larval fitness trait, mass, in the burying beetle Nicrophorus 
vespilloides. Estimates of IGEs with feedback on larval mass using 
experimentally evolved focal larvae and sibling larvae with whom 
they shared a mouse carcass to feed upon. The focal and interacting 
larvae had evolutionary histories of parental care versus no par-
ental care. The only larval trait measured was larval mass; a recip-
rocal IGE with feedback as the mass of focal larvae on a carcass 
could be reasonably expected to be influenced by the mass of its 
interacting partners on the same carcass. The Bijma correction was 
applied. For example, when both focal larvae and their carcass-
mates had an evolutionary history lacking parental care, the inter-
action coefficient was positive: ψ = 0.553 and ψ(corr) = 0.302
. This meant that focal and interacting larvae without an evolu-
tionary history of parental care showed mutually reinforcing pat-
terns of weight gain during development. Large focal larvae were 

and phenotype focal individuals of a fixed genotype against 
these (Bleakley et al. 2010). Such a procedure allows for en-
vironmentally unbiased estimation of ψij as represented by the 
black arrow in Figure 1C.

A particularly suitable way to eliminate the possibility of 
such confounds may be available in systems where the gen-
etic basis of a specific interacting trait is already understood. 
Experimental treatments that isolate and manipulate the trait 
in question to measure phenotypic responses in focal individ-
uals can yield robust estimates of ψ. Examples include work 
that experimentally manipulated acoustic signals perceived by 
field crickets, where the presence or absence of the signal in 

nature is known to be controlled by a naturally segregating 
variant (Bailey and Zuk 2012; Pascoal et al. 2016). Technical 
innovations in other systems might facilitate such an approach 
when information about the genetic basis of traits is known 
or estimable, and include techniques such as video behavioral 
playbacks in fish such as the guppy Poecilia reticulata (Woo and 
Rieucau 2011), electromechanically-controlled sexual signaling 
behavior in robotic neotropical frogs (Crossodactylus schmidti) 
(Caldart et  al. 2020), robotic sage grouse (Centrocercus 
urophasianus) in which variation in female sexual receptivity 
can be simulated (Perry et al. 2019), or experimentally manipu-
lated body marks (Velando et al. 2013).
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associated with large partner larvae and vice versa. This pattern 
was consistent with greater levels of cooperative sibling behavior 
having evolved in the absence of parental care, enabling both focal 
and partner larvae to better exploit their food resource together 
(Rebar et al. 2020). In contrast, when focal larvae evolved without 
parental care but their interacting partners evolved with parental 
care, the sign of the relationship was reversed and ψ = −0.430 
whereas ψ(corr) = −0.226. This negative IGE meant that focal and 
sibling larvae showed antagonistic patterns of weight gain during 
development, implying a competitive interaction (Rebar et  al. 
2020). The change in predicted evolutionary response to selection 
was not insignificant. From Eqn. (16b) (or corresponding Figure 3) 
of Moore et al. (1997), there was an approximately 2-fold decrease 
in the relative change of phenotypic evolution predicted by the IGE 

in conditions where both interacting partners evolved without par-
ental care. Correcting estimates of ψ provided a more conservative, 
though still compelling, prediction about the contribution of re-
ciprocal IGEs on larval mass to evolutionary transitions between 
sibling rivalry and parental care. In general, inflated estimates of ψ 
severely impact evolutionary inference about the role of IGEs. This 
is particularly true for large absolute values of ψ, because relative 
change in phenotypic evolution does not scale linearly with change 
in the interaction coefficient. Rather, it can approach infinity as ψ 
approaches its maximum absolute magnitude (Moore et al. 1997; 
McGlothlin et al. 2010).

There is another method of estimating IGEs that circumvents 
the problem of inflated on-diagonal IGEs. McGlothlin and Brodie 
(2009) developed a multivariate, pedigree-based approach to esti-
mate Ψ using the direct additive genetic variance component GD, the 
social additive genetic variance component GS, and their covariance 
GSD which for traits of interest:

Ψ = GSDG−1
D

[Eqn. (14), McGlothlin and Brodie 2009]
The relationship linking Ψ to variance components provides a 

powerful method for converting commonly estimated quantities in 
variance-partitioning experiments to ψ estimates which can then be 
compared systematically across different contexts or studies to gain 
broader insight into the prevalence and characteristics of IGEs. In 
this case, the social additive genetic variance component GS repre-
sents the heritable component of social effects on an individual’s 
phenotype (Griffing 1967; Bijma et al. 2007; McGlothlin and Brodie 
2009). This method has the added benefit of not requiring the Bijma 
correction because feedback affects GSD and GD equally, and they 
thus cancel one another. Although the approach has not yet been 
used to calculate ψ, it has been used to estimate the analogous 
matrix of maternal effect coefficients M in the American Bellflower, 

Figure 3.  Distributions and types of 463 articles citing Moore et al. (1997), assessed in March 2021. (A) Density distribution of the three different article types per 
year illustrating relative differences in publications over time. (B) Pie chart showing the percentages of each article type. (C, D) Distributions of the approaches 
of IGEs estimations in original articles citing Moore et al. (1997) illustrating relative differences in publications over time. (C) Density distribution of the IGE 
estimation approach per year. (D) Pie chart showing the percentages of each IGEs estimation approach. The year 2021 was removed from the density distributions 
as it biases distributions towards lower values.

Figure 2.  When a focal phenotype is influenced by interacting phenotypes 
of more than one individual, ψ(group) can be conceived as the mean of IGEs 
arising from all interactants in the group (McGlothlin and Brodie 2009).
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Campanula americana (Galloway et al. 2009), suggesting feasibility 
for a wide range of IGE studies. An additional advantage is that this 
technique is extendable to measuring group-level IGEs, that is, IGEs 
arising not only from the interaction between a focal individual zi 
and an interacting partner z′j, but also the effects of the interacting 
partner’s social interactions z′′j. To capture group IGE dynamics, it 
is possible to estimate an average, group-level interaction coefficient 
ψ(group) (Figure 2) (McGlothlin and Brodie 2009). Such an approach 
may permit a more realistic understanding of interacting partner ef-
fects on focal trait expression, for example allowing integration of 
effects across successive social encounters (Schneider et  al. 2017). 
Another method to evaluate group effects was proposed by Saltz 
(2013) and tests how the interaction between two individuals is af-
fected by the presence of a third.

A shared nongenetic environment of focal and interacting in-
dividuals could also confound measurement of ψ in cases where 
different traits in focal and partner individuals are measured. For 
example, if an experimenter sought to estimate ψ by manipulating 
the genotype of interacting partners, shared rearing or other envir-
onmental experience could inflate the apparent relationship of any 
traits measured in the two individuals (see Box 1, Figure 1C). Such 
a situation might arise if, for example, test subjects of a laboratory 
study species were paired within test tubes or 96-well plates; the 
physical environment might differ from tube to tube or well to well, 
and this shared nonsocial environment could be expected to enhance 
any apparent phenotypic association between focal and interacting 
individuals (Marie-Orleach et al. 2017; Signor et al. 2017a, 2017b).

In many systems, this problem can be overcome by maintaining 
individuals in a common lab environment until the point of social 
interaction and phenotyping, which then occurs in a standardized 
and controlled setting. Such a procedure would minimize shared ef-
fects of the nongenetic environment. In other experiments, develop-
mental IGEs might be desirable to estimate, in which case a blocked 
and randomized design is required to account for variation asso-
ciated with shared nongenetic environments. In the burying beetle 
example above, the effects of a shared focal and partner environ-
ment are perhaps conceptually easier to perceive because multiple 
focal and interacting larvae were reared on a single mouse carcass 
(N. vespilloides larvae feed on dead flesh) and their fitness pheno-
types measured (Rebar et al. 2020). Thus, in addition to correcting 
ψ for traits with feedback, there was a shared local environment of 
focal and interacting partners that required controlling through ran-
domized pairings of focal and interacting individuals across multiple 
carcass replicates (Rebar et al. 2020).

Assumption: ψ Is Fixed. (It Is Not.)
Despite ample countervailing evidence, ψ is almost always assumed 
for convenience to be a fixed, population-level parameter in trait-
based IGE models. However, one of the first and arguably most 
prominent insights from empirical research estimating the inter-
action coefficient is that it is frequently not fixed (Table 1). Such 
studies have firmly established the genetic variability of ψ, and 
thus its potential responsiveness to selection, as a general principle. 
How has this been demonstrated? In the trait-based IGE frame-
work, genotype-by-genotype IGEs (GxG IGEs, or GxG epistasis) 
occur when ψ varies by strain or genotype. GxG IGEs are also 
readily detected using variance-partitioning approaches (e.g. Rode 
et  al. 2017). GxG IGEs have been found directly, or strongly in-
ferred through the detection of population-level variation in ψ, in 
the fruit fly Drosophila melanogaster (Kent et  al. 2008), the field 

cricket Teleogryllus oceanicus (Bailey and Zuk 2012), the flatworm 
Microstomum lignano (Marie-Orleach et  al. 2017), the guppy 
Poecilia reticulata (Bleakley and Brodie 2009; Edenbrow et  al. 
2017), and the mosquitofish Gambusia holbrooki (Kraft et al. 2018; 
Culumber et  al. 2018). In addition to measuring strain-specific ψ, 
there have been estimates of sex-specific ψ (Edenbrow et al. 2017) 
and even environment-specific ψ (Signor et al. 2017a).

The sister species D. melanogaster and D. simulans provide an 
illustrative example of the complexity such interactions can involve. 
In D.  melanogaster exposed to ethanol, ψ for locomotion varied 
across different genotypes, but in the same species under control en-
vironments without ethanol, it did not (Signor et al. 2017a). By con-
trast, ψ for locomotion was uniform in all environments experienced 
by D. simulans (Signor et al. 2017a, 2017b). Thus, the direction of 
locomotion IGEs was similar across closely related species, but there 
appears to be an evolved difference in the environmental sensitivity 
of those IGEs. Other studies provide more direct evidence that ψ 
evolves. Work on cuticular hydrocarbon composition in Drosophila 
serrata demonstrated experimental evolution of ψ (Chenoweth et al. 
2010); it was shown to reverse sign across two time points in the 
same population of the field cricket, T. oceanicus (Bailey and Zuk 
2012), and the burying beetle N. vespilloides evolved divergent signs 
and magnitudes of ψ after 22 generations of laboratory experimental 
evolution starting from an admixed population (Rebar et al. 2020).

Usefully, Kazancıoğlu et al. (2012) relaxed the assumption of ψ 
as fixed and modeled it as a genetically variable trait partitioned into 
additive genetic (aψ) and environmental (eψ) components:

ψ = aψ + eψ

[from Eqn. (3), Kazancıoğlu et al. 2012]
The authors then derived expected responses to selection of 

interacting traits in a variety of scenarios involving nonreciprocal 
and reciprocal IGEs. In general, selection on ψ which increases its 
value tends to enhance the evolutionary effects of corresponding 
IGEs (Kazancıoğlu et  al. 2012). This intuitive result means that 
average trait values that would already be predicted to evolution-
arily increase due to the effects of IGEs will increase faster when 
ψ evolves to become larger, due to compounding feedback effects. 
However, the authors make the insightful observation that selection 
on ψ can oppose the direction of trait evolution caused by IGEs, se-
verely dampening expected responses to selection (Kazancıoğlu et al. 
2012). This means that the direction in which ψ is evolving may be 
as important as its fixed value at any given point in evolutionary 
time for determining the evolutionary consequences of IGEs. Given 
the preponderance of evidence that ψ is genetically variable and thus 
responsive to selection, it must be considered that coevolution of 
interacting traits and ψ itself may be of considerable significance in 
the evolutionary process. In the future, quantitative genetic treat-
ments examining genetic variance in the interaction coefficient ψ 
are likely to contribute greater biological realism to trait-based IGE 
studies.

Assumption: There Are No Latent Variables. 
(There Are.)
Without careful experimental control, it is challenging to eliminate 
the possibility that an undetected latent variable distorts estimates 
of IGEs on specific traits. Empirical work using the Drosophila 
Genetic Reference Panel of inbred D.  melanogaster lines has at-
tempted to detect such “cryptic” IGEs using screening procedures 
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to enter numerous interacting phenotypes as explanatory variables 
into a multiple regression (Bailey and Hoskins 2014). This approach 
is constrained by the pool of traits available for phenotyping, but 
regression analysis at least permits the conditional assessment of po-
tentially correlated interacting traits (Morrissey and Ruxton 2018). 
Latent variables matter in trait-based approaches because if the 
objective is to understand evolutionary dynamics caused by IGEs 
involving particular interacting and focal traits, then it is necessary 
to minimize the possibility that an IGE involving a different, un-
detected, interacting trait does not underlie evolutionary dynamics.

The Magnitude, Sign, and Variability of 
Published ψ Estimates

Much research has been focused on the effect of the social envir-
onment on behavior, morphology, and physiology. To first gain 
a retrospective view of studies that have used an IGE framework, 
we extracted articles that cite Moore et al. (1997) using a Web of 
Science search in March 2021. We summarized the 463 scientific 
journal articles citing this original article introducing IGEs, their in-
terpretation, and their measurement using ψ, and manually classified 
these into review articles, original empirical studies, or theoretical 
models (Supplementary Table S1). Approximately 40% were review 
and theoretical modeling articles (Figure 3A and B). Among all art-
icles, 275 (59%) presented original data and most were published 
after 2010, 13  years after the first publication of the IGE frame-
work and introduction of ψ as a concept (Figure 3A and B). Less 
than a third of these original articles (89 of 275, 32%) actually es-
timated IGEs, and the overwhelming majority of the estimations 
of IGEs (74 of 89)  used a variance-partitioning approach (Figure 
3C and D). We found a total of 15 articles estimating IGEs using a 
trait-based approach. We focused on estimates of ψ only and did not 
consider maternal or paternal effects, as the latter comprise part of 
a separate literature that has had much more extensive and distinct 
development.

Although only 15 studies estimated IGEs using trait-based ap-
proach, these yielded a total of 238 ψ estimates in 9 animal species (1 
platyhelminth, 6 arthropods, and 2 ray-finned fish) (Table 1). For the 
purposes of our enquiry, in cases where authors estimated the matrix 
Ψ, we counted each entry in the matrix as a single estimate of ψ. 
Each article estimated on average 17 values of ψ (range: 1–80). The 
wide majority of focal traits in these articles were behavioral (203 
traits), 29 were morphological and 6 were chemical (cuticular hydro-
carbon profiles of T.  oceanicus in Pascoal et  al. 2016). Similarly, 
most of the interacting partner traits were behavioral (205 traits), 
31 were morphological, and 2 were survival. The social context in 
which ψ was estimated ranged from courtship and mating, aggres-
sion, cannibalism, to cooperation. The variation of ψ reported by 
these articles should be interpreted cautiously, as there was almost 
complete nonuniformity in the design of experiments to estimate it. 
All the studies implemented a multiple-regression-type approach, 
with model variations to account for features of the experimental 
design such as blocked or crossed factors. What varied, however, was 
the nature of the predictor variable(s). The interaction coefficient, 
for example, was estimated through the measurement of focal trait 
variation assessed against interacting partners from different genetic 
lines, species, populations and generations (ancestral vs. current) and 
in response to different experimental conditions such as predation 
regimes or presence of exogenous agents such as ethanol (Table 1).

Estimates of ψ ranged between −1.14 and 2.00 (Table 1). It 
is worth noting that, as formally defined, the absolute value of ψ 
cannot exceed 1, so empirical measures that exceed this obviously 

require some explanation. As detailed in Box 1, ψ is estimated 
using partial regression coefficients from a linear model examining 
the effects of partner trait values on focal trait expression; data are 
standardized  prior to entry in the model. As has been noted pre-
viously (Bailey and Hoskins 2014), there can be considerable vari-
ation around these model estimates, and when such variability is 
combined with high absolute values of ψ, it is advisable to report 
exact values obtained but cautiously consider them censored at −1 
or 1 for purposes of onward experimentation or biological interpret-
ation. Another potential cause of absolute values of ψ that exceed 1 
is if trait values have not been standardized to the same scale prior 
to regression analysis, although this does not appear to be the case 
in the empirical work that has reported |ψ| > 1 (Bleakley and Brodie 
2009; Bailey and Hoskins 2014; Edenbrow et al. 2017).

Empirically estimated values of ψ were mostly positive, with 148 
positive estimates against 70 negative estimates and 20 that were 
indistinguishable from zero (Figure 4; Table S2). Interestingly, there 
were significantly more positive values for reciprocal IGEs with feed-
back, that is, diagonal entries in the matrix Ψ involving the same 
focal and interacting trait which mutually affect one another in 
interacting partners (generalized linear mixed model with sign of 
ψ—positive or negative—as the response, including study identity as 
a random effect (variance explained: 0.216): χ 2 = 27.6, P < 0.001). 
Thus, off-diagonal IGEs, which represent potential IGEs involving 2 
different traits, are less likely to be mutually reinforcing in the sense 
that evolutionary responses attributable to these IGEs would tend to 
accelerate trait elaboration.

The values of IGEs also varied. We used the Bijma correction on 
all on-diagonal IGEs reported in the literature (unless it had already 
been applied) to obtain reliable estimates, and tested the difference 
in value between on-diagonal and off-diagonal IGEs. For this test, 
we removed absolute values of ψ exceeding 1 because the Bijma cor-
rection cannot be applied as it would result in an imaginary number. 
This necessitated removing 13 values of ψ (6 on-diagonal and 7 off-
diagonal). There were too few studies reporting estimates of ψ, and 

Figure 4.  Violin plots showing magnitude of ψ estimates for on-diagonals 
(reciprocal IGEs involving the same trait) versus off-diagonals (IGEs acting on 
different traits). Points show the 225 estimates of ψ analyzed, with significance 
in the original study indicated with red circles (significant), green triangles 
(nonsignificant), or blue squares (not reported). The black points and bars 
show the fitted values and standard error obtained with a linear mixed model 
including ψ as the response variable, IGE type (on-diagonal or not) as a fixed 
effect and study identity as random factor. Note that all values where |ψ| > 1 
were removed for this analysis, as it is impossible to estimate ψ(corr) for these. 
If these values (n = 13) are included in the analysis uncorrected, the outcome 
is qualitatively the same: the magnitude of reciprocal IGEs with feedback is 
significantly greater. See the main text for statistical details.
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even fewer reported with their associated error, to warrant a meta-
analytical approach, and we examined raw reported values to avoid 
over- or under-inflating estimates of absolute magnitude (Nakagawa 
and Lagisz 2016). The resulting analysis was thus unbiased, and re-
vealed that values of ψ were significantly higher for on-diagonal IGEs 
than off-diagonal IGEs (Figure 4) (linear mixed model including study 
identity as a random factor (variance explained: 0.009): χ 2 = 43.31, 
p-value < 0.001). Estimates for on-diagonal versus off-diagonal 
IGEs were 0.292 and −0.023, respectively. In aggregate, these pat-
terns suggest a general tendency for IGEs with feedback to be more 
prone to strong, mutually augmenting evolutionary responses, but it 
is impossible to exclude the possibility that the pattern arises from 
biases in the types of traits studied by researchers. Nevertheless, it 
is a striking pattern that merits further systematic consideration—
are reciprocal IGEs with feedback generally positive and of greater 
magnitude, and if so, why should that be the case? An intriguing 
possibility is that there is a general, directional constraint on the re-
sponsiveness of trait expression during social interactions, such that 
it is more likely that an organism flexibly increases expression of a 
given trait after or during social interaction, than decreasing its ex-
pression. Although counterexamples exist, such as can be observed 
in winner-loser effects during contests, future work would benefit 
from considering whether escalation, rather than de-escalation, is a 
more likely outcome across a range of interaction types.

Both across and within studies, ψ values were highly variable 
with a global standard deviation of 0.45 and standard deviations 
ranging from 0.093 to 0.550 (median = 0.335) within studies. We 
were able to assess reported statistical significance for 209 values of 
the interaction coefficient, and almost half of these (99 of 209) were 
significant at α = 0.05 (Figure 4). The statistical significance of these 
estimates may need to be considered carefully as many articles report 
several values of ψ without controlling for multiple testing. The ap-
plication of corrections for false discovery rate in evolutionary and 
behavioral ecology (among other life sciences fields) is not without 
controversy, and care must be taken to balance a suitably conserva-
tive interpretation against the aims of the study (e.g., Moran, 2003). 
The risk of spurious significance is likely to be heightened in studies 
that report numerous IGE estimates across multiple conditions, lines, 
or other contexts. However, where the aim of a study is primarily 
descriptive or a hypothesis-generating exercise, and the purpose of 
characterizing IGEs using ψ is not to infer evolutionary dynamics 
that have happened but is instead to discover potential IGEs for later 
experimental follow-up, it is advisable to consider effect sizes, statis-
tical power, and independently replicate key findings rather than rely 
on statistical significance as the sole criterion for confidence.

Making Better Use of ψ in Evolutionary, 
Behavioral, and Ecological Research

The mismatch between theoretical emphasis on the interaction co-
efficient ψ and its empirical measurement in IGE studies is perhaps 
not surprising given the availability of an alternative approach to 
measuring IGEs—variance partitioning—which is based on estab-
lished and widely practiced techniques in statistical quantitative gen-
etics. In this approach, which is explained in further detail in Moore 
et al. (1997), Bijma (2010, 2014), Bleakley et al. (2010), McGlothlin 
and Brodie (2009), and Bailey et al. (2017), variance of a particular 
phenotype is partitioned among DGE, IGE, and other nonheritable 
effects using standard modeling approaches applied to data from 
a quantitative genetic experimental design. Evolutionary potential 
depends on DGEs and IGEs, and critically, their covariance. The 

fraction of phenotypic variance caused by genes in interacting part-
ners can be estimated irrespective of the traits present in those part-
ners through which IGEs are mediated. Though not a trait-based 
approach, variance partitioning is by no means “trait free.” This 
and allied approaches for studying contributions of social environ-
ments to expressions of heritability and response to selection such 
as family-level selection and linear animal models have been devel-
oped to elicit targeted improvements in traits of agricultural interest 
(Ellen et al. 2007; Ellen et al. 2010). Thus, IGEs may simply be more 
challenging to measure using the interaction coefficient ψ; to quote 
the authors of the original description of the interaction effect co-
efficient, “It is of interest to evaluate ψ for a number of characters. 
Unfortunately, this is logistically difficult.” (Moore et al. 1997).

The logistical difficulty of estimating ψ is one potential cause 
of the taxonomic bias in our survey of empirical estimates to date, 
which favor invertebrate laboratory systems in which the necessary 
manipulation of genetic strains, or plausible substitute approaches, 
can be achieved. The overrepresentation of such systems may also re-
flect stochastic bias caused by the relatively small number of studies 
our survey recovered. Despite such practical challenges, ψ captures 
the interest and imagination of researchers studying the effects of 
genes in the social environment, with arguably as many versions of 
its now classical path diagrams published as there have been em-
pirical studies of it. More estimates would be helpful to researchers 
interested in understanding the general importance and magnitude 
of IGEs in the evolutionary process. However, we propose that it 
would also be useful to use estimates of the interaction coefficient in 
a different manner than has been to date: instead of treating ψ solely 
as an output of experimental work which describes IGEs present 
in extant populations, strains or species, greater insights may lie in 
viewing it as an input into evolutionary predictions about the future 
of traits and processes of interest to researchers in behavior, ecology 
and evolution.

As a descriptor of IGEs, ψ is theoretically well-grounded and in-
tuitive, but as a predictor of evolutionary consequences, its role has 
been neglected. Experimental work that can manipulate the starting 
conditions of populations to include varied IGEs would be extremely 
valuable for testing the significance of IGEs for the evolutionary pro-
cess, and ψ provides an intuitive measure for characterizing those 
starting conditions and setting out falsifiable predictions. Such an 
approach is most easily tailored in laboratory experimental evolu-
tion systems. Several of the studies we surveyed take advantage of 
such systems, for example by demonstrating the evolution of IGEs 
by showing evolved change in ψ in Drosophila serrata (Chenoweth 
et al. 2010), or by experimentally manipulating social environments 
in the burying beetle Nicrophorus vespilloides and testing whether 
ψ differed among treatments at the end-point of that process (Rebar 
et al. 2020). The additional step of characterizing ψ initially to set up 
treatments in which ψ varies (Signor et al. 2017b), and then running 
artificial evolution forward to measure the predicted evolutionary 
responses for traits of interest, has yet to be taken.

A “running-evolution-forward” approach would be amenable 
in contexts where interacting phenotypes are of particular interest 
to experimenters, and ψ either has been estimated already or can 
easily be estimated. The case of sexual selection’s role in repro-
ductive isolation and speciation is illustrative. It is well-known 
from a variety of taxa that female mate choice, including female 
preferences for male trait values, can respond to the social en-
vironment (Rodríguez et  al. 2013; Rebar and Rodríguez 2015; 
Fowler-Finn et al. 2017; Desjonquères et al. 2021), and it is also 
theoretically predicted that such flexibility, when underpinned by 
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IGEs, can enhance the opportunity for runaway trait-preference 
coevolution (Bailey and Moore 2012). It therefore stands to reason 
that the presence of IGEs could alter the opportunity for speci-
ation to occur as well as its speed. It seems plausible that IGEs 
could cause a diversity of outcomes, depending on the nature of the 
selected traits involved (behavioral interactions, communication 
signals, morphological ornaments, or multimodal displays) and the 
manner in which receivers detect and respond to them (sensory 
mode(s), whether flexible preferences are active or passive), and 
the degree to which ψ does or does not vary across allopatric or 
parapatric populations. Prior work on the role of learning during 
reinforcement has suggested an impact of learned changes in con-
specific versus heterospecific mate discrimination (Servedio et  al. 
2009; Servedio and Dukas 2013), but IGE theory allows for add-
itional evolutionary and developmental feedbacks driven by the 
social environment acting as both a cause and target of selection. 
The coefficient ψ provides a framework with which to predict evo-
lutionary consequences depending on unidirectional vs. reciprocal 
trait interactions and those with vs. without feedback.

Experimental work addressing such issues would be subject to 
several caveats that are generally applicable to the estimation of 
ψ as described above, such as confounds arising from shared en-
vironmental effects. In this case, if different populations or strains 
were used in experimental work, care would be required to ensure 
that population-specific estimates of ψ reflect genetic, as opposed 
to environmental, variation (unless environmental effects on IGEs 
were specifically in question). For these reasons, we envision 2 
main “running-evolution-forward” approaches for IGE work. The 
first is artificial evolution in laboratory conditions, where experi-
mental confounds are more readily controlled or accounted for in 
experimental design. Microbial and invertebrate systems would 
appear more suited to such an approach for practical reasons, but 
we note that IGE studies in the lab increasingly take advantage of 
genetic resources in vertebrate systems such as inbred mouse lines 
(Mus musculus) and guppies (Poecilia reticulata) (Bleakley and 
Brodie 2009; Baud et  al. 2017, 2020). The second approach is to 
use long-term field study systems. Instead of estimating IGEs and 
inferring past process, it would be informative to estimate IGEs and 
predict future outcome. Responses to selection can be predicted 
using known information about populations with different initial 
values of ψ. There may be relatively few natural systems in which 
the infrastructure for such long-term data collection is in place, but 
we expect this situation to improve as the utility of such systems 
for IGE studies becomes more widely appreciated. Examples include 
red deer (Cervus elaphus) which have been extensively studied in 
Scotland (Wilson et al. 2011), field crickets (Teleogryllus oceanicus 
and Gryllus campestris) which have been monitored in Hawaii 
and Spain, respectively (Zuk et  al. 2018; Rodríguez-Muñoz et  al. 
2019), and Trinidadian guppies (Poecilia reticulata) which have been 
studied over time in replicate river systems in nature (Ghalambor 
et  al. 2015). As with all consideration of laboratory-based versus 
field-based research, experimental control and biological realism will 
trade off to some extent. However, these and other long-term field 
systems may, when complemented with laboratory work, provide 
particularly valuable opportunities for testing the evolutionary im-
pacts of IGEs.

The interaction coefficient ψ can play a powerful role in setting 
up clear, falsifiable predictions about traits of interest in experi-
mental approaches. Research estimating the interaction coefficient 
ψ has provided satisfying insights on the evolutionary dynamics of 

interacting phenotypes at particular, fixed moments. However, evo-
lution is dynamic, and that of social interactions is expected to be 
particularly dynamic as IGEs can introduce an element of volatility 
(Moore et  al. 1997; McGlothlin et  al. 2010; Bailey and Kölliker 
2019). Future studies that can track the influence of IGEs as they 
do, or do not, exert effects on processes such as adaptation, social 
evolution, and diversification will contribute significantly to our 
understanding of the origins and maintenance of complex social 
phenotypes, and by extension, the evolutionary process itself.
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