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Abstract: The purpose of this study is to experimentally design the drying, calcination, and sintering
processes of artificial lightweight aggregates through the orthogonal array, to expand the data using the
results, and to model the manufacturing process of lightweight aggregates through machine-learning
techniques. The experimental design of the process consisted of L18(3661), which means that 36

× 61

data can be obtained in 18 experiments using an orthogonal array design. After the experiment,
the data were expanded to 486 instances and trained by several machine-learning techniques such as
linear regression, random forest, and support vector regression (SVR). We evaluated the predictive
performance of machine-learning models by comparing predicted and actual values. As a result,
the SVR showed the best performance for predicting measured values. This model also worked well
for predictions of untested cases.

Keywords: orthogonal array experiment design method; lightweight aggregate; support vector
regression; machine learning; sintering process

1. Introduction

Aggregates are the second most commonly consumed raw material by humanity after water.
Therefore, the aggregate industry requires a highly strategic approach in terms of the supply of raw
materials for construction and to protect the environment. [1] According to an article in the Korea
Construction Newspaper, in 2019 the amount of aggregate used in Korea stood at approximately
200 million tons per year, half of which is mined directly [2]. This presents a major environmental
burden and leads to the depletion of natural aggregate resources. Accordingly, in recent years,
research focusing on artificial lightweight aggregates has been actively conducted from the viewpoint
of environmental protection and waste recycling. Various wastes have been studied, including coal fly
ash [3,4], polymer waste [5], sewage sludge [6,7], and waste glass [8,9]. However, these studies focus
on the waste itself rather than the manufacturing process of aggregates, and there are relatively few
studies on the manufacturing process of lightweight aggregates.

A few manufacturing methods for artificial lightweight aggregate have been considered,
with most common being firing in a rotary kiln using natural materials such as expanded clay [10,11].
Numerous studies of firing processes for artificial lightweight aggregates have been conducted.
In laboratory-scale research, methods such as rapid sintering [12,13], two-stage sintering [14],
and normal sintering are most commonly reported [15,16]. Each experimental result differs slightly
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depending on conditions, but it was commonly noted that the calcination section must be shortened
to form internal pressure. The importance of internal pressure and viscous behavior for the bloating
of artificial lightweight aggregates has recently attracted attention. According to Dondi et al. [17],
the foaming properties of an aggregate should be explained not only in terms of the chemical
components used but also in terms of the internal pressure and viscous behavior. In a study by
Moreno-Maroto et al. [18], viscous behavior was found to be very important for the bloating of
aggregates, and only a very small amount of gas is involved in bloating. Moreover, in work by
Wie et al. [19], an orthogonal array experimental design was utilized to find the optimal conditions
for the bloating activation of aggregates under a normal sintering condition. It was shown that for
the bloating of an aggregate, the calcination section should be short and the proper time should be
maintained in the calcination section for viscous behavior. This is in line with existing theory [17].
In addition, a prediction of the physical properties using an orthogonal array experiment design was
made, and the predicted value was found to be relatively suitable. However, although it was possible
to find the optimal conditions and make local predictions under certain experimental conditions using
the orthogonal array experiment design, it was difficult to predict conditions that were not tested at all
within the experimental range. Additionally, the tendency of the experimental results was not defined
uniformly. Therefore, additional techniques are needed to predict untested parts rationally and to
define trends clearly according to process changes.

Currently, modeling techniques using machine learning are used in various fields, such as
agriculture [20], biology [21], chemistry [22,23], and climate prediction [24]. Regarding construction
materials, many studies have been conducted to predict the physical properties of concrete [25–30].
However, these studies require more than 200 sizable instances of data from the literature, making it
very difficult to obtain with a typical experiment. For this reason, most studies rely on modeling via the
collection of other studies. This is an advantageous way to define an individual variable academically
and create an experimental formula. However, this method is not practical to be applied directly to
industrial sites because it is difficult to simultaneously apply various variables of industrial sites and
individual conditions of all sites cannot be considered. In order to overcome these limitations and
create a model that can be practically utilized in the industrial field, it is necessary to model using
reliable data under relatively controlled conditions with various variables. The experimental design
method using an orthogonal array table is very practical because it can expand a large amount of
data with relatively few experiments and, through this, influences on a wide variety of variables can
be simultaneously applied. In addition, data expansion by an orthogonal array table can provide a
sufficient amount of data required for modeling. In addition, since the machine-learning technique
analyzes data with a computer and presents the optimal predicted value, it is expected that the use of
the two techniques mentioned above will be very practical in the industrial field.

Therefore, in this study, in order to model the firing process of the artificial lightweight aggregates,
data were expanded by the orthogonal array table, and modeled using machine-learning techniques
by the expanded data. The applied techniques are linear regression, random forest, and support vector
regression techniques, and these are the most used techniques in analysis through machine learning.
The suitability of the models was evaluated according to each evaluation index, and the predicted
result through the model and the actual test result were compared and analyzed. By verifying the three
models and comparing them with actual results, we confirmed the effectiveness of data expansion
using an orthogonal array table experimental design, and reviewed the most suitable machine-learning
techniques for this.

2. Experiment Method

2.1. Experimental Variables and Experimental Design

In order to separate the variables according to the unit process of lightweight aggregate and to
facilitate data expansion, the experiment was designed as follows. In the experiment, the unit process
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was defined for each temperature section. The drying process is defined as the room temperature (r.t.)
~600 ◦C section. The drying section was divided into r.t. ~300 ◦C and 300~600 ◦C again, to distinguish
between the evaporation section of water and the section where the combustion of organic matter
begins. The calcination process is defined as the 600 ◦C~bloating activation temperature section, and
the bloating activation temperature soaking section is defined as the bloating start and activation
section. Table 1 shows the experimental variables. The design utilized an orthogonal array experiment
table with the indicated variables. After conducting the designed experiment, the density of the
aggregates produced was measured according to KS F 2503 [31].

Table 1. Processing variables by item.

Process Process Temp. (◦C) Variables

Drying and preheating 25 ~ 300 ◦C 20, 40, 60 min
300 ~ 600 ◦C 20, 40, 60 min

Calcination 600 ◦C ~ B.S.A. temp. 20, 40, 60 min
Bloating Start and Activation (B.S.A.) 1180, 1200, 1220 ◦C Time 0, 5, 10, 15, 20, 40 min

2.2. Data Expansion by Means of an Orthogonal Array Experiment Design

Full factor design requires a lot of experimentation because in real industry it is usually composed
of a large number of factors. The method of selecting a limited number of experiments is called a partial
factor experiment, and although this method is widely known, general guidelines for application
and analysis have not been established. The orthogonal array table approach drastically reduces the
amount of experimentation compared to the full factor experimental design, and the use of data is
relatively well known [32–36]. In this study, the number of experiments was significantly reduced
by using an orthogonal array table, and data comparable to full factor experiments can be obtained
through data expansion. Recently, a research method combining an orthogonal order table and various
analysis methods has been widely used. In many cases, it was found that the data obtained from the
orthogonal array table and the results obtained from the full factor experiment were not significantly
different [37–40].

In order to investigate the possibility that the property prediction by the orthogonal array technique
will be used in the study, the predicted value of the density based on the results of the orthogonal array
experiment was obtained. The prediction for the experiment was conducted using Minitab (Minitab1.9,
Minitab Inc., Pennsylvania, PA, USA). The prediction of the orthogonal array test is a result reflecting
the increase or decrease when the variables (Di, Dj, Dk, Dl) desired by the experimenter are compared
to the total average value (Dtot.). This proceeds as follows (Equation (1)):

Dpred. = Dtot. + (Dtot. −Di) +
(
Dtot. −D j

)
+ (Dtot. −Dk) + (Dtot. −Dl) (1)

(Dpred.: Predicted density value, Dtot.: Total average density value, Di,j,k,l: Average value for
each variable)

In this experiment, 18 experiments were expanded to 486 by designing an experiment with
an orthogonal array table L18 (3661). This is the same as the number of full factors of the designed
experiment, and the planned experiment is expanded to 34

× 61. This data expansion is possible
because the effects of individual variables can be separated in an experiment designed by an orthogonal
array table. Because of this characteristic, experiments using an orthogonal sequence table are widely
used in the industry [41–43].

2.3. Machine-Learning Analysis Using Extended Data

Figure 1 shows the flow of analysis using extended data using an orthogonal array table.
Extended data are trained on three regression models: linear regression, random forest, and supporter
vector regression (SVR), while cross-validation is performed using the leave-one-out cross-validation
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technique. After that, the model’s fit and predictive performance are determined through four
evaluation indicators to find the optimal model. Then, the predicted particle density values obtained
through the selected optimal regression model were compared with the experimental values to confirm
the effectiveness of the machine-learning technique.
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3. Machine-Learning Regression Methods

Regression analysis is a set of methods for estimating the relationship between a continuous
dependent variable and several independent variables. The functional relationship between the
dependent variable Y and the independent variables X1, X2, . . . , Xp is expressed as the following
Equation (2):

Y = f
(
X1, X2, . . . , Xp

)
+ ε (2)

where ε is called residual, the difference between the observed value of Y and the predicted value.
Regression methods try to find the functional relationship f in the data.

3.1. Linear Regression

For the given data
{
yi, xi1, xi2, · · · xip

}n

i=1
, the linear regression discovers the linear relationship as

the following Equation (3):

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi (for i = 1, · · · , n) (3)
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The regression coefficients β0, β1, · · · , βp can be estimated using the ordinary least-squares (OLS).
The least-squares estimate β̂0, β̂1, · · · , β̂p is defined as the value that minimizes the following Equation (4).

n∑
i=1

ε2
i =

n∑
i=1

{
yi −

(
β0 + β1xi1 + β2xi2 + · · ·+ βpxip

)}2
(4)

Therefore, the predicted value of the dependent variable y for the new independent variables
x1, x2, · · · , xp can be obtained through the following Equation (5).

ŷ = β̂0 + β̂1x1 + · · ·+ β̂pxp (5)

3.2. Regression Tree

The regression tree is a regression version of decision tree, which is one of the most popular
machine learning algorithms. In the process of regression tree training, the entire area of the given data{
yi, xi1, xi2, · · · , xip

}n

i=1
is divided into M areas R1, R2, · · · , RM and the constant value cm is predicted in

each area. The tree model that does this is shown below (Equation (6)):

f (x) =
M∑

m=1

cmI(x ∈ Rm). (6)

The values of cm and Rm are determined based on the impurity level, and the measurement is
the sum of the squared errors Qm(T) =

∑n
i=1 (yi − f (xi))

2. If the given split variable x j is continuous,
then if the split point is s, R1( j, s) =

{
x : x j ≤ s

}
and R2( j, s) =

{
x : x j > s

}
can be defined. Here, we find

the following optimal solution for separation criteria (Equation (7)):

min
j,s

min
c1

∑
xi∈R1( j,s)

(yi − c1)
2 + min

c2

∑
xi∈R2( j,s)

(yi − c2)
2

 (7)

The corresponding solutions having the minimum value for the given j and s values are ĉ1 and
ĉ2, which are given as the average yi value of the data belonging to R1( j, s) and R2( j, s), respectively.
After finding the optimal separation criterion ( j, s) through a proper optimization technique, the same
process is repeated for both areas. If the new data x ∈ Rm, we predict ŷ = ĉm.

3.3. Random Forest

The random forest developed by Breiman [44] takes into account the large variance of decision
trees and is a model that uses an ensemble-learning method to learn multiple decision trees randomly.
An ensemble is a method that improves prediction accuracy levels by learning multiple models from
given data and then synthesizing the prediction results of multiple models.

The random forest algorithm is shown below (Figure 2):

1. Create bootstrap sample L∗ =
{
y∗i , x∗i

}n

i=1
using n data for training data L =

{
yi, xi

}n
i=1, xi ∈ Rp.

2. At L∗, only k(� p) values of independent variables are randomly selected to generate a
decision tree.

3. Compute the final predicted value of the random forest by combining the predicted values of the
trees. In general, the average value is used.
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3.4. SVR (Support Vector Regression)

Support vector regression (SVR) is a regression version of support vector machine. The purpose of
SVR is to find the optimal hyperplane for fitting data instances well. Given the data L =

{
yI, xi

}n
i=1, xi ∈ Rm,

the function of the SVR model proceeds according to Equation (8).

f (x) = wT
·x + b, w ∈ Rm, b ∈ R (8)

This process learns by adding extra variables ξ, ξ∗ that allow errors. The objective function in
Equation (9) is optimized so that the norm function of w is minimized while the deviation between the
actual data and the predicted data is within ε.

min
w,b,ξi,ξ∗i

1
2
||w ||2 + C

n∑
i=1

(ξ+ ξ∗)

. (9)

At this time, the constraint condition is expressed by Equation (10).

yi −wxi − b ≤ ε+ ξi

b + wxi − yi ≤ ε+ ξ∗i

ξi, ξ∗i ≥ 0, i = 1, 2, · · · , n (10)

The Equation for optimizing the objective function can be solved simply via a dual problem using
the Lagrange multiplier and can be expressed as Equation (11) with the Lagrange multiplier.

L = C
n∑

i=1

(
ξi + ξ∗i

)
+

1
2
||w ||2

−

n∑
i=1

(
ηiξi + η∗iξ

∗

i

)
−

n∑
i=n

αi(ε+ ξi − yi + wxi + b) −
n∑

i=1

α∗i
(
ε+ ξ∗i + yi −wxi − b

)
. (11)

L denotes Lagrangian function and αi,α∗i , ηi, η∗i are called Lagrangian multipliers; for L, the differential
value of each parameter can be expressed as Equation (12):
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∂L
∂w

= 0 → w−
∑n

i=1

(
αi − α

∗

i

)
xi = 0

∂L
∂ξi

= 0 → c− αi − ηi = 0 (12)

Therefore, the objective function of SVM is as expressed as Equation (13).

min
αi,α∗i

 n∑
i=1

(
αi − α

∗

i

)
yi − ε

n∑
i=1

(
αi + α∗i

)
−

1
2

n∑
i=1

n∑
j=1

(
αi − α

∗

i

)(
α j − α

∗

j

)
xT

i x j

. (13)

The Lagrangian function L can be expressed as αi,α∗i , and the final prediction model can be
obtained using the differential value for w. (Equation (14))

f (x) = wT
·x + b =

n∑
i=1

(
αi − α

∗

i

)
xT

i x + b.

b = yi − ε−
n∑

i=1

(
αi − α

∗

i

)
xT

i x.

f (x) = wT
·x + b =

∑n

i=1

(
αi − α

∗

i

)
xT

i x + b (14)

SVR described above is a linear prediction technique. In order to find a non-linear function
as shown in Figure 3, it is necessary to map the given data into a high-dimensional feature space,
called kernel space. Several kernel functions are available [45], but the radial basis function (RBF)
kernel function is used in this study (Equation (15)):

k
(
xi, x j

)
= exp

(
−γ

∣∣∣∣∣∣xi − x j
∣∣∣∣∣∣2). (15)
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Therefore, the SVR prediction function, as in Equation (16), can be obtained:

f (x) =
∑n

i=1

(
αi − α

∗

i

)
k
(
xi, x j

)
+ b (16)
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4. Evaluation of the Performance

4.1. Leave-One-Out Cross Validation, (LOOCV)

In general, when evaluating the performance of a predictive model, the model is applied
to an unseen test set. In contrast, when using cross-validation, data are divided into several
non-overlapping groups, and the model is created by changing the dataset used for training and
verification. Cross-validation is widely used as a model evaluation method to compensate for the poor
predictability when introducing new data, as the model is overfit to the data used for fitting in machine
learning. Leave-one-out cross-validation is a viable means of comparing a value predicted by a model
and an actual value with respect to the remaining data after setting the model using the remaining
data, apart from one data instance out of the entire dataset. This method is suitable when the number
of instances is small.

4.2. Performance Evaluation Measures

For an evaluation of the three models used in this paper, the coefficient of determination (R2),
the mean squared error (MSE), the root mean squared error (RMSE), and the mean absolute error
(MAE) are used.

The R2 is a measure of the degree to which the estimated linear model fits the given data and
shows the explanatory power of the estimated linear model. The R2 has a value of 1 or less, and it can
be said that the closer to 1 the value is, the better the explanatory power of the model becomes. yi is
the actual target value of the i-th observation, y = 1

n
∑n

i=1 yi is the average of n target values, and ŷi is
the target value of the i-th observation predicted by the regression model. The R2 is expressed by the
following Equation (17).

R2 = 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − yi)

2 . i = 1, · · · , n (17)

The MSE can rank the performances of several models. The average error value is within the
range of [0,∞], and the smaller this value is, the better the model performance becomes. Equation (18)
for the MSE is as follows:

mean squared error =
∑n

i=1 (yi − ŷi)
2

n
. (18)

The MSE can effectively rank models, but the difference between the actual and predicted values of
the dependent variable is unknown. The RMSE can be used to make a more meaningful interpretation
of the model’s prediction error. (Equation (19))

root mean squared error =

√∑n
i=1 (yi − ŷi)

2

n
. (19)

Given that the RMSE contains a square term, it tends to overestimate the error because large errors
become emphasized. The MAE can be used as an alternative to this situation (Equation (20)).

mean absolute error =

∑n
i=1

∣∣∣yi − ŷi
∣∣∣

n
. (20)

5. Results and Discussion

5.1. Property Prediction and Data Expansion by the Orthogonal Array Experiment Design

Table 2 shows the orthogonal array experiment design table and single particle density
measurement results. The experiment was designed and tested with an orthogonal array table
L18(3661). The three important variables in the experiment were sintering temperature, sintering time,
and calcination time. Drying conditions did not significantly affect the properties of the final aggregates.
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Figure 4 shows the effect of each variable. It can be seen that the higher the sintering temperature,
the lower the density of the aggregate. Moreover, the longer the holding time, the lower the density
gradually, but after 20 min, the density no longer decreased. In addition, when the calcination time
was 20 min, a lower density level could be obtained.

Table 2. Orthogonal array experimental design and the measured density.

No.
Firing Condition Single Particle

Density
(g/cm3) (mean)Sintering Time B. S. A.

Temp. (◦C)
600 ~ B.S.A. Temp.
Process Time (min)

300~600 ◦C Process
Time (min)

r.t. ~ 300 ◦C Process
Time (min)

1 0 1180 20 20 20 2.09
2 0 1200 40 40 40 2.03
3 0 1220 60 60 60 1.76
4 5 1180 20 40 40 1.72
5 5 1200 40 60 60 1.49
6 5 1220 60 20 20 1.27
7 10 1180 40 20 60 1.84
8 10 1200 60 40 20 1.5
9 10 1220 20 60 40 0.98
10 15 1180 60 60 40 1.73
11 15 1200 20 20 60 1.13
12 15 1220 40 40 20 1
13 20 1180 40 60 20 1.57
14 20 1200 60 20 40 1.1
15 20 1220 20 40 60 0.88
16 40 1180 60 40 60 1.46
17 40 1200 20 60 20 0.94
18 40 1220 40 20 40 0.95
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According to Kõse et al. [46], the generation and development of pores can be divided into
three stages.

(1) Gas is generated inside the aggregates.
(2) The generated gas creates pressure, the pore walls are destroyed by the pressure, and the

pores merge.
(3) The pores grow due to the pressure difference between small pores and large pores.

At this time, in the initial stage, the processes of (1) and (2) take place, afterwards, it has been
found that the process of (3) becomes dominant.

The basic assumption of this theory is that in order to ensure bloating, the aggregate must show
viscous behavior. As part of this viscous behavior, the pressure inside changes the pore structure
inside. For acidic clay, it was confirmed that the formation of internal pressure is mainly caused
by dehydration of crystalline water [19]. When the calcination time is short, because the aggregate
reaches the foaming activation temperature before the dehydration of the crystalline water reaction is
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completed, the generated gas contributes to foaming by forming pressure inside. It was also found
that the higher the bloating activation temperature, the lower the particle density. This occurs because
as the sintering temperature increases, the amount of the liquid phase in the aggregate increases;
accordingly, the viscous behavior of the aggregate increases. If the time is kept too short at the expansion
activation temperature, it is not possible to provide the viscous behavior conditions for the agglomerate
expansion, so an adequate holding time is required. It was found that the change in density was
saturated at the holding time of 20 min or more.

This result was expanded to 486 data instances, and the modeling of process variables was
performed using this data. Figure 5 shows the results of data expansion through the orthogonal array
experiment design.
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5.2. Evaluation of the Model

The results of the three machine-learning models are summarized in Table 3. As shown in Table 3,
for R2, SVR is the best model because this model is the largest and MSE, RMSE and MAE are the
smallest. These values tend to improve with the number of data increases, given more data, this value
will be improved. This means that a better model can be obtained by creating a model by expanding
the experimental data than the modeling result using 18 data elements, which is the actual data. In fact,
existing studies have reported that the creation of virtual data improves the R2 and MSE values of the
model [47–49].

Table 3. Modeling performance.

Linear Regression Random Forest SVR

R2 0.799 0.783 0.933
MSE 0.029 0.031 0.009

RMSE 0.171 0.178 0.098
MAE 0.146 0.143 0.071
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5.3. Experimental Evaluation of the Model Accuracy

Additional experiments were conducted to compare the actual experimental results and modeling
results. This is shown in Table 4. The main parameters, sintering temperature and sintering time,
were considered, and calcination time and drying time were fixed. In order to compare the actual
experimental results with the predicted trends for each model, contour lines were based on the
measured density values with the sintering temperature and time used as variables (Figure 6). As a
result of this analysis, the tendency for the density to decrease as the sintering temperature increases
and with longer sintering times is clearly visible. The predicted value of the single particle density
differed according to the modeling method. For the value predicted through the orthogonal array
experiment design, the maximum value tended to be rather large and the minimum value rather small.
This likely occurs because not all interactions are reflected when predicting values using the orthogonal
array experiment design. For this reason, while orthogonal array experimental design techniques
are used in many fields [50–52], their experimental predictions are not well utilized. In a study by
Chen [53], an optimal process was designed using an orthogonal array table, but a loss function value
was used instead of an experimental value. In this prediction result, as described above, the result was
somewhat overestimated in terms of the maximum and minimum values. The results predicted by
the random forest method were suitably reflected in the trends of the sintering temperature and time
but were predicted to be more biased toward the average than the actual values. On the other hand,
the result predicted by SVR was somewhat inaccurate in terms of the maximum value part compared to
the actual experiment, but the properties were predicted to be closest to the most commonly measured
result among the three models. For a better comparison of the actual experiments with the prediction
results, the results of measuring the particle density of aggregates sintered at temperatures of 1180,
1200, and 1220 ◦C are compared with the predicted values of each model, as shown in Figure 7.
The results predicted by the orthogonal array experiment design are in good agreement with the actual
measurement results. However, the single particle density was predicted to be much lower than the
measured values at 20 min and 40 min at a temperature of 1220 ◦C. For the random forest method,
the coincidence of the trend was confirmed, but the single particle density was predicted to be relatively
high at 20 and 40 min, representing the time points at which the single particle density change is
nearly saturated. In the SVR case, the single particle density value at 0 min was predicted to be lower,
but it was confirmed that the remainder was predicted to be closer to the actual experimental value.
In particular, under the conditions of 20 min and 40 min at 1220 ◦C, the closest accurate predicted value
was obtained. In general, in statistics, various methods are tried and verified when analyzing data
because it is impossible to know which method is better before analysis. In this study, SVR appeared
as the most suitable modeling method, and the reason is thought to be due to the characteristics
of individual methods. Linear regression requires strong assumptions: linear relationship between
dependent variables and the target variable, normally distributed errors, homoscedasticity of errors
and independence of the points. In general, it is very hard to satisfy the above assumptions in real
world data. Decision tree ensembles including random forest tend to be overly complicated in the
process of learning non-linear relationships with a small number of points. As a result, it is likely to be
unstable in the phase of prediction of new data. In this study, we use the kernel SVR with a radial basis
function. Unlike the above two models, it is known that the kernel SVR is good at learning complex
and non-linear relationships between variables [54].

Table 4. Additional experimental conditions for model verification.

Process Process Temp. (◦C) Variables

Drying and preheating 25~300 ◦C 60 min Fixed
300~600 ◦C 60 min Fixed

Calcination 600 ◦C ~ B.S.A. temp. 20 min Fixed

Bloating Start and Activation (B.S.A.) 1180, 1190, 1200,
1210, 1220 ◦C Time 0, 5, 10, 15, 20, 40 min



Materials 2020, 13, 5570 12 of 17
Materials 2020, 13, x FOR PEER REVIEW 13 of 18 

 

  

(a) (b) 

  
(c) (d) 

Figure 6. Particle density change of the aggregate with the soaking temperature and time as 
variables: (a) actual measurement, (b) orthogonal array-designed prediction, (c) SVR prediction, and 
(d) random forest prediction. 

 

 
(a) 

 
(b) 

Figure 6. Particle density change of the aggregate with the soaking temperature and time as variables:
(a) actual measurement, (b) orthogonal array-designed prediction, (c) SVR prediction, and (d) random
forest prediction.

Materials 2020, 13, x FOR PEER REVIEW 13 of 18 

 

  

(a) (b) 

  
(c) (d) 

Figure 6. Particle density change of the aggregate with the soaking temperature and time as 
variables: (a) actual measurement, (b) orthogonal array-designed prediction, (c) SVR prediction, and 
(d) random forest prediction. 

 

 
(a) 

 
(b) 

Figure 7. Cont.



Materials 2020, 13, 5570 13 of 17Materials 2020, 13, x FOR PEER REVIEW 14 of 18 

 

 
(c) 

Figure 7. Prediction of the single particle density according to each analysis method: (a) 1180 °C, (b) 
1200 °C, and (c) 1220 °C. 

 
(a) 

 
(b) 

Figure 8. Prediction of the single particle density according to the SVR method: (a) 1190 °C, (b) 1210 
°C. 

6. Conclusions 

In this study, the experimental design of the change of particle density according to drying, 
calcination, and sintering conditions of artificial lightweight aggregate were performed using an 
orthogonal array table, and data were expanded. Modeling using machine-learning techniques 
were performed using the expanded data, and the following conclusions were drawn about the 
effectiveness of data expansion by an orthogonal array table and the appropriate modeling method:  

1. The experimental design using the orthogonal array table and the expanded data gained 
through this method did not show a significant difference from the measured values.  
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3. Modeling by the random forest method predicts the trend of the process well. However, the 
result was predicted to be closer to the mean value than the actual value, and it could not be 
predicted for an untested part.  

Figure 7. Prediction of the single particle density according to each analysis method: (a) 1180 ◦C,
(b) 1200 ◦C, and (c) 1220 ◦C.

In order to find out the predictive performance of the model for the unexperimented values,
the physical properties were measured by firing the aggregate under conditions of 1190 ◦C and 1210 ◦C,
and compared with the predicted values, and this is shown in Figure 8. At this time, the experimental
conditions were fixed at r.t. ~300 ◦C and 300~600 ◦C for 60 min, and the condition at 600~bloating
activation temperature was 20min. Most of the total predicted values were predicted close to the
measured values. Experimental results with a sintering time of 0 to 15 min were quite consistent,
and there was some error in the 20 to 40 min range, but the tendency to maintain the density was
consistent. This means that modeling results using SVR can be predicted even in unexperimented
areas, and the results are also suitable. In the expansion of data by an orthogonal sequence table,
the results of the tested variables can be known, but the untested variables could not be defined.
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6. Conclusions

In this study, the experimental design of the change of particle density according to drying,
calcination, and sintering conditions of artificial lightweight aggregate were performed using an
orthogonal array table, and data were expanded. Modeling using machine-learning techniques were
performed using the expanded data, and the following conclusions were drawn about the effectiveness
of data expansion by an orthogonal array table and the appropriate modeling method:
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1. The experimental design using the orthogonal array table and the expanded data gained through
this method did not show a significant difference from the measured values.

2. The SVR model showed the best prediction accuracy among the reviewed models and generally
showed good results even with untested variables.

3. Modeling by the random forest method predicts the trend of the process well. However, the result
was predicted to be closer to the mean value than the actual value, and it could not be predicted
for an untested part.

4. Through the experimental design and the expansion of the data by the orthogonal array table
and modeling with the machine-learning technique, a model capable of efficiently predicting
physical properties was realized.

In this experiment, only 18 data elements were actually tested for modeling, but these can be
expanded to 486 through an orthogonal array table. This is a small amount of data in the field of data
science but sufficient in the modeling field of scientific experiments. This means that the expansion of
data through an orthogonal array table is useful for actual modeling. If there is a more considerable
amount of data, the accuracy of the model can be improved. Hence, it is important to attempt this with
more data. Orthogonal array experimental designs can be used to expand the number of variables,
and in upcoming studies we will design experiments involving more process variables to evaluate the
adequacy of the model. Also, studies on the correction of extended data and improvement of model
reliability will be conducted.
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