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ABSTRACT 
 

Background: Stenotrophomonas maltophilia is an opportunistic bacterium, 
contributing to different hospital-acquired infections and can be acquired 
from different hospital setting sources. Epidemiological study of S. 
maltophilia in the hospital also demonstrates the intrahospital distribution 
of certain strains of bacteria in healthcare facilities. The aim of the current 
study was to identify the molecular epidemiology of S. maltophilia isolates 
from clinical and environmental sources within a hospital.   
Methods: A total of 400 samples (clinical and environmental) were collected 
from the different settings of hospital. Following the standard biochemical 
testing and 23S rRNA genotyping, the molecular typing of S. maltophilia 
isolates was determined using the MLST technique. Also, the frequencies of 
zot and entF virulence genes among S. maltophilia isolates were examined 
by PCR technique.   
Results: Based on the biochemical testes and PCR targeting 23S rRNA gene, 
22 S. maltophilia isolates were identified. The MLST analysis demonstrated 
that these isolates were assigned to 14 ST, and 6 out of 14 STs were 
common among clinical and environmental samples. All 22 isolates were 
identified in the PubMLST database. The PCR screening demonstrated that 
none of 22 S. maltophilia isolates had zot virulence gene, while the entF 
gene with the 59% frequency was observed in 13 out of 22 isolates. Among 
these 13 isolates, 6 STs were common in clinical and environmental isolates.  
Conclusion: Our study showed the clonal relatedness between clinical and 
environmental sources of the S. maltophilia isolates in a hospital. Further 
studies are required to understand the epidemic situation of this pathogen 
in the clinic and the environment. DOI: 10.52547/ibj.26.2.142 
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INTRODUCTION 

 

tenotrophomonas maltophilia, as an anaerobic, 

non-fermentative and Gram-negative bacteria, is 

a ubiquitous species of the gamma subdivision of 

Proteobacteria
[1,2]

. This environmental bacterium is 

found in foods, animals, plant rhizospheres, and 

aqueous environments, as well as in contaminated 

medical care fluids and water sources
[1,3]

. S. 
maltophilia, as an opportunistic pathogen, has been 

isolated from various water-based sources either inside 

or outside of the hospital environment or clinical 

S 
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settings, with a broad geographical distribution
[4,5]

 

Despite the limited pathogenicity of this emerging 

bacterium
[4,6]

, it is responsible for different 

community-acquired and hospital-related diseases, 

especially in immunocompromised individuals, with a 

mortality rate of 37.5%
[4,7]

. The prevalence of the 

bacterium among tracheal samples in Iran is estimated 

to be about 4.5%.  

S. maltophilia can infect different organs and 

tissues
[8]

 and is associated with numerous clinical 

manifestations such as bacteremia, pneumonia, 

arthritis, sepsis, meningitis, endocarditis, endo-

phthalmitis, urinary and respiratory tract infections
[9,10]

. 

Patients hospitalized at intensive care units are more 

vulnerable to the S. maltophilia infection than healthy 

people
[11-13]

. Based on a report from Iran, the high 

frequency of bacteria was found in bloodstream 

infections (88.6%). However, a lower rate (11.4%) of 

the bacteria was detected in general medicine wards
[14]

. 

Hence, S. maltophilia is not a prevalent pathogen, and 

its imputed virulence factors, including biofilm 

formation, motility, adhesion capacity, hydrophobicity, 

and synthesis of extracellular enzymes, are responsible 

for  the inflammatory response
[6,15]

. Recently, 

increment of S. maltophilia isolation from different 

hospitals has contributed to uncontrolled and even 

exploited administration of  antibiotics
[4,15]

. Since this 

bacterium has a role in the high level of antibiotic 

resistance
[10,16,17]

, there is an increasing demand for 

new treatment options
[10,18]

. 

High genetic diversity strains have been identified 

among S. maltophilia using a variety of biomolecular 

techniques. To discover the relationship of clinical 

isolates with environmental sources, several genotypic 

profiling methods have been employed. A number of 

these methods include whole genome sequencing 

analyses, amplified fragment length polymorphism 

fingerprinting, PCR-restriction fragment length 

polymorphism, the gyrase B gene analysis, and PCR-

based fingerprinting methods, such as BOX-A1R-

based repetitive extragenic palindromic-PCR, Rep-

PCR, enterobacterial repetitive intergenic consensus 

PCR, PFGE analysis of XbaI genomic digests, and 

MLST
[4,19]

. The MLST is administered to find the 

source of infections along with the distribution patterns 

of pathogens isolated from hospitalized patients. 

Therefore, it can provide reputable data from 

epidemiological distribution of the bacteria. Moreover, 

due to the availability of MLST data in public 

databases, the obtained results can be compared with 

other laboratories
[20]

. The aim of the current study was 

to identify S. maltophilia isolated from clinical and 

environmental sources within a hospital using MLST 

technique in order to analyze the molecular and 

epidemiological characteristics of this bacterium and 

examine the clonal relatedness between clinical and 

environmental specimens of the S. maltophilia isolates 

collected from hospital. 
 

 

MATERIALS AND METHODS 
 

Sample collection  
S. maltophilia isolates were collected from different 

clinical and environmental settings in Imam Reza 

hospital (a 515-bed university-affiliated tertiary 

hospital in Kermanshah, West of Iran) over a 12-month 

duration from May 2019 to May 2020. The clinical 

specimens, including sputum, blood, and urine, were 

obtained from patients hospitalized in the hospital. 

Environmental samples were collected from 

equipment, surfaces, and solutions by rubbing sterile 

swabs on the 10-cm
2
 surface of each selected area

[21]
. 

 

Biochemical identification of S. maltophilia isolates 

Clinical isolates were subcultured on Blood and 

MacConkey agars (Merck, Germany). Environmental 

isolates were cultured on blood agar plates and then 

were incubated at 37 °C for 24 hours. The standard 

biochemical testing, such as oxidase and catalase tests, 

was employed for the laboratory identification of the 

isolates, along with deoxyribonuclease test, triple sugar 

iron agar, and Sulfide Indole Motility (Merck). S. 

maltophilia ATCC 13637 was used as the control 

strain. All the isolates were stored in a Luria Bertani 

broth containing 20% glycerol at -70 °C
[22]

.  

 

Molecular testing of S. maltophilia isolates 

DNA extraction 

The S. maltophilia isolates were cultured with 

aeration in Luria Bertani at 37 °C overnight. Next, total 

DNA extraction was performed using the high pure 

PCR Template Preparation Kit (Roche, Germany) 

according to the manufacturer’s protocol. The 

concentrations of all DNA samples were determined by 

NanoDrop ND-100 (NanoDrop Technologies, USA).  

 

PCR analysis 

The molecular identification of the S. maltophilia 

strain was confirmed by the detection of 23sr RNA 

using a common PCR method. Primers, including 

23srRNA forward: 5’CTGGATTGGTTCTAGGAAAA 
CGC3’ and 23srRNA reverse: 5’ACGCAGTCACTCCT 

TGCG3’, were applied in PCR reaction using a PCR 

kit (QIAGEN, Hilden, Germany) with the following 

thermal cycles: 94 °C (5 min) followed by 36 cycles of 

94 °C (45 s), 58 °C (45 s), 72 °C (45 s), and final 

extension step at 72 °C (5 min). The PCR products 

were separated and visualized on 1% agarose gel. 
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Thereafter, samples showing the related fragments 

were verified by sequencing (Bioneer, Korea).  
 

Molecular typing of S. maltophilia isolates by MLST 

technique  

The MLST technique was performed for the 

molecular typing of S. maltophilia isolates as described 

earlier
[23]

. 
 

Selection of housekeeping gene 
Seven pair primers targeting the conserved regions of 

seven housekeeping genes of S. maltophilia were 

selected from MLST website (http://pubmlst.org/ 

smaltophilia/). The genes included H (+)-transporting 

two-sector atpD, gapA, guaA, mutM, nuoD, ppsA, and 

recA. The PCR amplification of target fragments was 

performed as follows: initial denaturation at 94 °C (5 

min) followed by 36 cycles of denaturation at 94 °C 

(45 s), annealing at 58.5 °C (45 s) for atpD, 57 °C for 

gapA, 57.5 °C for mutM gene, 56 °C for mutM and 

nuoD genes, 60 °C for ppsA gene, and 59.5 °C for recA 

gene, and extension step at 72 °C (45 s), with a final 

extension step at 72 °C (5 min). The PCR products 

were analyzed on agarose gel and were then sequenced 

by Bioneer Company (South Korea). 

 

Data analysis 

The obtained sequences were submitted to PubMLST 

database (https://pubmlst.org/) to determine the allele 

number and specific ST
[24]

. All unique sequences were 

assigned with an allele number, and each unique 

combination of seven alleles in each isolate was 

assigned a ST
[25]

. 

 

Phylogenetic analysis 

The statistical analysis of allele profiles and 

sequence data was conducted using START 2.0 

software to calculate guanine-cytosine content, 

frequencies of alleles, number of variable sites, and the 

dN/dS ratio (nonsynonymous per synonymous 

substitutions)
[24]

. Phylogenetic tree was constructed by 

the neighbor-joining method in MEGA v.7 software 

(www.megasoftware.net). The dendrogram was 

constructed based on the UPGMA.  

 

Frequency of zot and entF virulence genes among S. 

maltophilia isolates 

The frequency of zot and entF genes among S. 

maltophilia isolates was examined by PCR with the 

following primer sets: zot forward: 5’GAATCGTGCTT 

TGATCTGC 3’ and zot reverse: 5’AGAATACCGAGGT 

GTACGA 3’ primers and were used for the 

amplification of zot gene with following program:  

94 °C (5 min) and 35 cycles of 94 °C (45 s), 60 °C (45 

s), 72 °C (45 s), and final extension step at 72 °C (5 

min). The primers entF forward: 5’ GATTACGCAAC 

GCTGGAAG 3’ and entF reverse: 5’ CACGATGTTC 
GATGACCACG 3’ were used for the PCR 

amplification of entF gene similar to zotexcept for the 

annealing temperature, which changed to 56 °C. 
 

 

RESULTS 
 

Bacterial isolates  

During one year of the study, 400 samples were 

collected from different sites of the hospital. Twenty-

two S. maltophilia isolates were identified based on the 

biochemical tests and confirmed by PCR targeting 23S 

rRNA gene (Fig. 1). These isolates were obtained from 

clinical specimens and environmental sites; 10 out of 

22 isolates were identified from clinical specimens 

(sputum, blood, and urine). The rest was obtained from 

dry (catheter, dialysis machine, manometer, ventilator, 

thermometer, stethoscope, suction tubes, and patient 

beds) and moist (bathtub, ice maker, tap, water 

reservoir, refrigerators, showerheads, sink drains, 

iodine, and detergents) sites. Among the clinical 

specimens, S. maltophilia isolates obtaining from 

sputum samples had the highest frequency, while the 

frequency of S. maltophilia isolated from different 

environmental samples was almost equal.  

 

MLST analysis 
Amplification of seven housekeeping genes was 

conducted by PCR, and the results were observed on 

1% agarose gel (supplementary Fig. 1). The fragments 

of these selected genes, ranged from 514 bp (nuoD) to 

800 bp (gapA), were successfully sequenced and 

analyzed by MLST for all the obtained isolates. These 

sequences were submitted to PubMLST database for 

the determination of the allele number and ST. 

According to different alleles, 22 isolates were 

assigned to 14 STs, including ST 14, ST 15, ST 

34/194, ST 84/482, ST 85/99, ST 92, ST 143, ST 186, 

ST 186/252, ST 178, ST 196, ST 300, ST 451/461, and 

ST 477. All the 22 isolates consisted of existing types 

in the PubMLST database. The details of ST and allele 

numbers are shown in Table 1. The MLST results of 22 

S. maltophilia isolates were demonstrated in 

phylogenetic tree using a neighbor-joining tree analysis 

for the concatenated data in all seven housekeeping 

genes of the 22 isolates (Fig. 2). UPGMA dendrogram 

demonstrated the similarity between these 22 isolates 

and other S. maltophilia strains obtaining from NCBI 

database (Fig. 3).  

http://pubmlst.org/%20smaltophilia/
http://pubmlst.org/%20smaltophilia/
https://pubmlst.org/
http://www.megasoftware.net/


MLST of S. Maltophilia from Clinical and Environmental Isolates Emami et al. 

 

 
Iran. Biomed. J. 26 (2): 142-152 145 

 

 
 

Fig. 1. The PCR products of 23S rRNA gene electrophoresed on 1% agarose gel. The related fragment (145 bp) was observed and 

verified by sequencing. P, positive control; lanes 1-4, experimental samples; lane 5, negative control; ladder (100 bp) 
 

 

Determination of zot and entF gene frequency in S. 

maltophilia isolates 

The PCR method was employed to determine the 

frequency of zot and entF virulence genes among 22 

isolates of S. maltophilia. None of 22 isolates were 

positive for the presence of zot gene, indicating the 

absence of zot virulence factor. However, 13 out of 22 

isolates were positive for the entF gene, representing 

the frequency of 59% for this virulence factor among 

22 S. maltophilia isolates (Fig. 4). These isolates were 

allocated to ST 15, ST 92, ST 178, ST 186, ST 196, ST 

85/99, ST 186/252, ST 84/482, ST 300, ST 451/461, 

and ST 477. It should be noted that the entF gene was 

observed only in sputum specimen. The detailed 

information on the determination of zot and entF genes 

frequency in S. maltophilia isolates is available in 

Table 2. 

 

 
     Table 1. Allele numbers and STs of S. maltophilia isolates obtained by MLST 

Sampling site 
 Allelic profile  

ST number 
 recA guaA gapA nuoD ppsA MutM atpD  

 

 

 

Clinical 

specimen 

 66 138 96 7 38 46 5  196 

 62 82 94 28 4 3 5  84/482 

 141 223 66 62 68 45 2  300 

 16 284 70 18 15 33 28  85/99 

 80 265 124 72 111 112 13  477 

 80 49 124 92 144 83 13  186/252 

 6 18 1 1 4 6 1  178 

 6 23 23 26 5 16 17  14 

 16 166 8 4 167 33 116  451/461 

 26 10 10 23 1 14 10  34/194 

           

 

 

Dry 

environment 

 5 223 66 62 68 45 2  300 

 80 265 124 72 111 112 91  477 

 1 82 1 1 1 3 1  92 

 16 166 8 4 167 33 116  451/461 

 10 21 29 32 32 21 10  15 

 6 138 104 7 80 46 3  196 

           

 

 

Moist 

environment 

 1 82 1 1 1 3 1  92 

 106 18 1 1 4 6 1  178 

 80 97 124 140 110 74 13  143 

 5 223 66 62 68 45 2  300 

 80 290 99 92 111 83 13  186 

 1 82 1 1 23 3 10  92 

       Ladder              P                  1                  2                  3                4                5 
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Fig. 2. Phylogenetic trees based on the concatenated data for all seven housekeeping genes of the 22 S. maltophilia isolates. 
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Fig. 3. Dendrogram using UPGMA method applied by the MEGA v.7 program to show similarity between 22 isolates and other S. 

maltophilia strains obtaining from NCBI database. 

 

 

 

DISCUSSION 

 

In the past decades, the prevalence of S. maltophilia 

has increased worldwide due to the misuse of 

antibiotics, especially in hospitals
[8,15,18]

. This 

nosocomial bacterium form a biofilm to be resistant 

against antibiotics, resulting in a high prevalence of 

antibiotic resistant strains
[23]

. The clinical importance 

of S. maltophilia, as a mere colonizer or infectious 

agent, often remains unresolved
[24]

. Hence, the origin 

and the transmission way of this pathogen between 

patients are necessary to be elucidated. 

Healthcare-associated infections with S. maltophilia 

have been originated from different hospital setting 

sources, such as hemodialysis water and dialysis 

machine
[26]

, endoscopes
[27]

, contact lens solutions
[28]

, 

and contaminated disinfectants
[29]

, as well as 

handwashing soap
[30]

, sinkholes
[31]

, sink drains, and 

showers
[32]

. The transmission of pathogen could be 

performed by direct contact with these infected clinical 

settings and/or by the healthcare personnel’s hands
[21]

. 

The  study  on  the  epidemiology  of  S.  maltophilia in  

 
 

Fig. 4. The PCR products of entF gene. The related fragment 

(403 bp) observed on 1% electrophoresed agarose gel. Lane 1, 

negative control; lane 10, positive control; lanes 2-9, 

experimental samples; lanes 4, 5, 7, 8, 9, experimental samples 

containing entF gene; ladder (100 bp) 

   Ladder   1       2      3       4       5       6      7       8      9     10 
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                            Table 2. Distribution of zot and entF virulence genes among STs of S. maltophilia 

Source 
 Virulence genes  

ST number 
 zot entF  

Clinical specimen 
 

- + 
 ST 196, ST 84/482, ST 300, ST 85/99, ST 

186/252, ST 178, ST 451/461 
      

Dry environment  - +  ST 477, ST 451/461, ST 15, ST 196 
      

Moist environment  - +  ST 92, ST 186 

 

 

hospital can demonstrate the intrahospital 

dissemination of distinct isolates of this pathogen in 

the clinic and environment. This study is helpful to 

control the increasing frequency of pathogen among 

hospitalized patients.  

Genotyping methods have been used successfully in 

the molecular epidemiology of S. maltophilia and have 

revealed the high genodiversity of this species
[25]

. 

Since MLST is considered as one of the best methods 

to study molecular epidemiology and population 

structure of bacteria
[25,33]

, it can be used to investigate 

the epidemiology of S. maltophilia in healthcare unites 

such as hospitals. In a study conducted by 

Bostanghadiri et al.
[4]

, the genotypic characterization of 

164 S. maltophilia isolates, collected from hospitalized 

patients in various regions of Iran, were determined by 

MLST and Rep-PCR methods. For the evaluation of 

genetic diversity, all 164 S. maltophilia isolates were 

divided into 16 common types and 114 single types, 

using Rep-PCR fingerprinting. For the first time in 

Iran, they showed that five TMP-SMX-resistant S. 

maltophilia isolates belonged to two different STs, 

including ST139 and ST259, using MLST analysis. 

ST259 with allelic profile
 
(26,14,140,103,3,8,11) has 

not previously been reported. Their study also 

demonstrated the diversity among the isolates, 

suggesting the increment of antibiotic resistance and 

alternation of biofilm genes in clinical S. maltophilia 
isolates in Iran. However, TMP-SMX is still an 

effective antibiotic against S. maltophilia
[4]

.  

In the current study, we used MLST with seven 

housekeeping genes on 22 S. maltophilia isolates 

obtained from patients and clinical settings of a tertiary 

hospital in the west of Iran (Kermanshah), to analyze 

the molecular epidemiology as well as clonal 

relatedness between clinic and environment sources of 

the S. maltophilia isolates. Among 22 isolates, 10 were 

identified from sputum, blood, and urine as clinical 

specimens, and the rest was obtained from dry and 

moist sites of the hospital. Among clinical specimens, 

80% of S. maltophilia isolates were obtained from 

sputum samples. Moreover, the frequency of S. 

maltophilia isolates collected from dry and moist sites 

was almost equal. Using MLST analysis, we showed 

that these 22 isolates were assigned to 14 STs, which 

all types existed in the PubMLST database. As shown 

in Table 2, the ST300 was observed in clinical 

specimens and also in samples obtaining from dry and 

moist sites of the hospital. The ST196, ST477, and 

ST451/461 were obtained from both clinical specimens 

and dry sites, while ST178 was obtained from clinical 

specimens and moist sites. In addition, ST92 observed 

in both dry and moist sites. We also found that 6 out of 

14 STs were common among clinical specimens and 

samples obtained from dry sites and moist sites of the 

hospital. It can be concluded that there is a clonal 

relatedness between the clinic and environment sources 

of the S. maltophilia isolates obtained from the 

hospital.   

Recently, a study conducted in Iran
[34]

 demonstrated 

the clonal relatedness between environmental and 

clinical S. maltophilia isolates using PFGE method, 

indicating a wide range of genetic diversity of S. 

maltophilia strains among the clinical and 

environmental sources. In that study, a total of 150 S. 

maltophilia isolates from patients and 1108 

environmental samples were collected from three 

hospitals in Tehran (capital of Iran). At first, 150 

clinical and 18 environmental isolates were confirmed 

using phenotypic tests, then the species were 

confirmed by PCR of the 23S rRNA gene. PFGE 

analysis displayed 24 common pulsotypes and 32 

single pulsotypes. Only a small cluster was common 

among the clinic and environment within a hospital, 

indicating the existence of a common source for S. 

maltophilia to disseminate between different wards. 

Therefore, that study demonstrated the intra-hospital 

dissemination of certain isolates of S. maltophilia 

among the clinic and environment
[34]

.  

Despite the growing significance of S. maltophilia 

infections, little is known about its pathogenicity and 

virulence factors
[35-37]

. Studies have indicated that S. 
maltophilia strains possess traits that link them to 

virulence in other bacteria
[8,38,39]

. The genomes of 

clinical and environmental S. maltophilia isolates 

encode three homologues proteins, EntA, EntC, and 

EntF
[38]

. These proteins are involved in the 

biosynthesis of enterobactin as a catecholate 
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siderophore that is made by enteric bacteria (e.g.  

E. coli) and Streptomyces sp.
[38,40,41]

. The pathogenic 

role of siderophores has been shown in many 

bacteria
[38,42-45]

. Moreover, there is evidence that the S. 
maltophilia siderophore is likely important in 

pathogenesis
[22,38,46-50]

. Toxin-related factor has been 

studied in S. maltophilia strains as a virulence factor, 

and a phage-encoded zonula occludens-like toxin has 

been considered in this pathogen
[[35-37]

. In cholera toxin 

defective strains of V. cholera, a second enterotoxin, 

zot (zonula occludens toxin), causes diarrhea in 

affected patients
[51]

. Interestingly, the occurrence of a 

zot-like gene has been reported in S. maltophilia strains 

of clinical origin by Hagemann et al.
[36]

 in 2006. In the 

current study, we performed PCR screenings to check 

the distribution of the zot and entF genes as virulence 

factors among 22 S. maltophilia isolates. The results 

demonstrated none of 22 S. maltophilia isolates have 

zot virulence gene, encoding zonula occludens-like 

enterotoxin. However, the entF gene with 59% 

frequency was observed in 13 out of 22 isolates. 

Significantly all six common STs, including ST300, 

ST196, ST477, ST451/461, ST178, and ST92, among 

clinical and environmental isolates from hospital 

represented the entF gene (Fig. 4 and Table 1). 

In summary, this study investigated the molecular 

epidemiology of S. maltophilia isolates from 

environmental and clinical sources within a hospital 

using the MLST technique. PCR screenings was also 

employed to check the distribution of the zot and entF 

genes, as virulence factors, among S. maltophilia 

isolates. Our findings revealed a clonal relatedness 

between environmental and clinical specimens of the S. 
maltophilia isolates from hospital, which may be 

helpful in providing necessary groundwork for the 

prevention and treatment of S. maltophilia infections. 
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 Supplementary Fig. 1. The PCR products of seven housekeeping genes amplification electrophoresed on 1% agarose gel. The 

related fragments of atpD (854 bp), gapA (800), guaA (700 bp), mutM (614 bp), nuoD (514), ppsA (612 bp), and recA (738 bp) were 

verified by sequencing. C+, positive control; C-, negative control; lanes 1-4: experimental samples; ladder (100 bp)  
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