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ABSTRACT Objective: Obstructive sleep apnea (OSA) is a respiratory disease associated with autonomic
nervous system dysfunction. As a novel method for analyzing OSA depending on heart rate variability,
fuzzy approximate entropy of extrema based on multiple moving averages (Emma-fApEn) can effectively
assess the sympathetic tension limits, thereby realizing a good performance in the disease severity screening.
Method: Sixty 6-h electrocardiogram recordings (20 healthy, 16 mild/moderate OSA and 34 severe OSA)
from the PhysioNet database were used in this study. The performances of minima of Emma-fApEn (fApEn-
minima), maxima of Emma-fApEn (fApEn-maxima) and classic time-frequency domain indices for each
recording were assessed by significance analysis, correlation analysis, parameter optimization and OSA
screening. Results: fApEn-minima and fApEn-maxima had significant differences between the severe OSA
group and the other two groups, while the mean value (Mean) and the ratio of low-frequency power and
high-frequency power (LH) could significantly differentiate OSA recordings from healthy recordings. The
correlation coefficient between fApEn-minima and apnea-hypopnea index was the highest (|R| = 0.705).
Machine learning methods were used to evaluate the performances of the above four indices. Random forest
(RF) achieved the highest accuracy of 96.67% in OSA screening and 91.67% in severe OSA screening, with
a good balance in both. Conclusion: Emma-fApEn may be used as a simple preliminary detection tool to
assess the severity of OSA prior to polysomnography analysis.
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INDEX TERMS Obstructive sleep apnea (OSA), autonomic nervous system (ANS), heart rate variability
(HRV), apnea-hypopnea index (AHI), fuzzy approximate entropy of extrema based on multiple moving
averages (Emma-fApEn).

I. INTRODUCTION20

Obstructive sleep apnea (OSA) is a chronic and curable upper21

respiratory tract disease, characterized by repeated blockage22

of the upper respiratory tract during sleep, which will lead23

to poor quality of sleep and thus daytime sleepiness [1].24

The occurrence mechanism of OSA includes upper airway25

abnormalities [2], significant depressions of the neuromuscu-26

lar compensatory responses [3], [4], low arousal thresholds27

[5], etc. It’s reported that OSA is closely associated with28

diabetes [6], atherosclerosis [7], stroke [8], hypertension [9]29

and a variety of cardiovascular diseases [10]. The severity30

of OSA can also be used as a predictor of mortality [11].31

At present, there are at least about 1 billion OSA patients32

in the world [12], and the prevalence of OSA is showing an 33

upward trend [13]. Moreover, many OSA patients are still 34

undiagnosed [14]. Therefore, there is an urgent need for a 35

simple and effective method of detecting OSA. 36

Polysomnography is considered as a gold standard for 37

OSA detection [15]. However, it has some disadvantages 38

including being expensive, causing patients’ discomfort, 39

requiring expert judgment and having obscure results [16]. 40

In recent years, many researchers have proposed more effi- 41

cient methods for OSA detection. OSA can affect a patient’s 42

breathing state, nerve activity, muscle activity, heart func- 43

tion and so on. Consequently, some studies developed OSA 44

detection algorithms based on oxygen saturation (SpO2) [17], 45
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[18], [19], [20], electroencephalogram (EEG) [21], [22], [23],46

[24], electromyography (EMG) [25], [26], [27], electrocar-47

diogram (ECG) [28], [29], [30], [31], etc. The results of these48

studies are relatively easy to interpret and do not require49

expert judgment. Since the heart rate of the patients often50

changes duringOSA attacks [32], heart rate variability (HRV)51

analysis, which can be derived from ECG signals, is one of52

the simplest and most effective methods for detecting OSA.53

HRV reflects slight changes in the heartbeat cycle. It is54

produced by the interaction between autonomic nervous sys-55

tem (ANS) and internal nervous system of the heart [33].56

Sympathetic nerve activity has been proved to be affected by57

apneic events [34]. As a result, as a non-invasive tool, HRV58

analysis provides an effective evaluation of ANS function59

[35], and can be used to assess the integrity of ANS [36]. The60

classic HRV analysis includes time and frequency domain61

analysis. Roche et al. [37] reported that the time domain62

HRV indices were significantly associated with the diseased63

status, which achieved a sensitivity of 90% in OSA diagnosis.64

Gula et al. [38] proved the practicability of the frequency65

domain HRV indices in OSA discrimination, and suggested66

that the ratio of low-frequency power and high-frequency67

power (LH) was the most useful index for OSA detection.68

Though LH has a great performance in HRV analysis, it only69

reflects the ANS fluctuation in a certain period.70

However, many linear indices of HRV are susceptible to71

the heart rate spontaneous fluctuation [39], [40]. Moreover,72

the linear indices of HRV are not enough to characterize73

the complex dynamics of heartbeat [41]. In recent years,74

many researchers began to use nonlinear analysis methods75

in OSA detection. Entropy is a common index quantifying76

nonlinear dynamics, which can be used to assess the com-77

plexity of HRV. Haitham et al. [42] measured HRV based78

on sample entropy and found that the complexity of HRV79

was significantly different between normal people and OSA80

patients. Liang et al. [43] proposed nonparametric sample81

entropy, which can evaluate and quantify the severity of OSA82

patients. Ravelo-García et al. [44] reported that permutation83

entropy could effectively detect OSA patterns in heart rate.84

Li et al. [45] used variance delay fuzzy approximate entropy85

to distinguish the OSA patients and achieved the correct86

grouping of any two groups of the normal, mild/moderate87

OSA and severe OSA. The above studies supported that the88

nonlinear method could discover the abnormality of ANS in89

OSA patients.90

The performance of OSA classification is not only affected91

by features, but also related to the quality of the classifier.92

Janbakhshi et al. [46] proposed an ECG method to identify93

OSA, and combined it with support vector machine (SVM),94

k-nearest neighbor, linear discriminant and quadratic dis-95

criminant methods to extract RR interphase features from96

ECG-derived respiration sequences, achieving 90.9% accu-97

racy. Sharma et al. [47] used a linear combination of98

low-order Hermite basis functions to simulate QRS ECG sig-99

nals, and used a least squares SVM classifier with Gaussian100

radial basis function performance as a radial basis function101

to classify apnea events. Alireza et al. [48] proposed a 102

random forest classifier to classify features after dimension- 103

ality reduction by principal component analysis and linear 104

discriminant analysis, achieving an accuracy of 95.01%. 105

In above studies, most of them were analyzed by compar- 106

ing the indices of the overall data of OSA groups and control 107

groups, and less attention was paid to the information of 108

some special points in the data. In HRV analysis, the general 109

trend of the RR interval sequences (RRs) reflects the general 110

changes in the ANS tension, and the extrema of the RRs are 111

related to the ANS tension limits. 112

Therefore, in order to analyze the changes of the ANS 113

tension limits in OSA patients through the extrema in the 114

general trend of the RRs, this study proposed the fuzzy 115

approximate entropy of extrema based on multiple moving 116

averages (Emma-fApEn). Due to the small partial fluctua- 117

tions of the RRs, the multiple moving average method was 118

introduced into the experiment, which reduces the fluctuation 119

effect of the sequence by obtaining segments’ averages of 120

the data several times. Sample entropy has the advantages 121

of anti-noise and anti-interference, but it depends on small 122

tolerances and forward matching of data length [49]. Per- 123

mutation entropy can reflect the regularity of time series, 124

but it is not sensitive to the outliers in internal series [50]. 125

Fuzzy approximate entropy (fApEn) shows better monotonic- 126

ity, consistency and robustness when describing signals of 127

different complexities [51]. So fApEn was applied to repre- 128

sent the complexity of extrema. Moreover, the Emma-fApEn 129

method was combined with random forest (RF) classifier, 130

to achieve OSA screening. Therefore, the multiple moving 131

average method combined with the standardization method 132

was used to alleviate the small partial self-fluctuation of 133

RRs. Then the extremum sequences reflecting ANS tension 134

limits were extracted. By applying fApEn, Emma-fApEn was 135

obtained from extremum sequences. To evaluate the complex- 136

ity of fluctuations of the ANS tension limits, we conducted 137

the significance analysis, the correlation analysis, the param- 138

eter optimization, and the OSA screening for Emma-fApEn. 139

II. METHOD 140

A. DATA 141

The database used in this paper was downloaded from 142

http://www.physionet.org/physiobank/database/apnea-ecg/, 143

which was applied in the Computers in Cardiology Challenge 144

2000 [52]. The database includes 70 single-channel nocturnal 145

ECG recordings from 32 OSA patients and normal subjects. 146

In this database, the sampling frequency of each recording is 147

100Hz, and the recording time is 401∼587min. Each minute 148

of each recording has a corresponding reference note, which 149

identifies whether apnea occurs in that minute. 150

The number of apnea and hypopnea events per hour during 151

sleep is defined as the apnea-hypopnea index (AHI), which 152

is an indicator of the severity of sleep apnea. Recordings 153

that contained at least 1 hour with AHI of 10 or more, and 154

at least 100 minutes labeled apnea were classified as the 155

apnea group. Recordings that contained at least 1 hour with 156
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AHI of 5 or more, and between 5 and 99 minutes labeled157

apneawere classified as the borderline group. Recordings that158

contained at least 1 hour with AHI of less than 5, and fewer159

than 5 minutes labeled apnea were classified as the control160

group. In this study, the apnea and control groups were used161

for analysis. According to AHI, the selected recordings were162

divided into the normal group (20 recordings, AHI<5), the163

mild/moderate OSA group (14 recordings, 5≤AHI<30), and164

the severe OSA group (26 recordings, AHI≥30).165

FIGURE 1. The general frame diagram of the HRV analysis method.

B. HRV ANALYSIS METHOD166

The HRV analysis method used in this study is shown in167

Fig. 1. First, the RRs were extracted and corrected. Then, the168

time-frequency domain indices and multiple moving average169

indices of the RRs were calculated. Finally, the effectiveness170

of the above indices was verified and analyzed through the171

significance analysis, the correlation analysis, the parameter172

optimization and the machine learning classifications.173

1) PREPROCESS174

First, the segments with large errors in the beginning and end175

of the recordings were cut, and then the first 6 hours of the176

recordings were selected as the ECG signals for the study.177

Next, the RRs from the ECG signal were extracted according178

to the Pan-Tompkins algorithm [53]. Finally, an improved179

local median filter was used to eliminate the unexpected data180

spikes in the RRs [54].181

2) TIME DOMAIN INDICES182

HRV is the small difference in timing between successive183

normal (sinus) cardiac cycles. We completed the time domain184

analysis by the time domain measurement of HRV. The185

common time domain indices for HRV analysis of OSA186

include the mean value (Mean), the standard deviation of the187

normal-to-normal intervals (SDNN), and the square root of188

the mean of the sum of the squares of differences between 189

adjacent the normal-to-normal intervals (RMSSD) of con- 190

secutive 5-minute RR intervals. For N points RRs consisting 191

of consecutive 5-minute RR intervals, they are defined as 192

follows: 193

Mean =
1
N

N∑
i=1

RRsi (1) 194

SDNN =

√√√√ 1
N

N∑
i=1

(RRsi −
1
N

N∑
i=1

RRsi)2 (2) 195

RMSSD =

√√√√ 1
N − 1

N−1∑
i=1

(RRsi+1 − RRsi)2 (3) 196

3) FREQUENCY DOMAIN INDICES 197

The frequency domain analysis is to analyze the law of heart 198

rate change based on the power spectral density of RRs calcu- 199

lated by fast Fourier transform. It is relevant to time domain 200

analysis, and moreover, it can reveal the more complex 201

changes of heart rate. Frequency domain indices com- 202

monly used for HRV analysis of OSA patients include low- 203

frequency power (LF, 0.04-0.15Hz), high-frequency power 204

(HF, 0.15-0.4Hz) and LF/HF (LH) for 5-minute epochs. The 205

formulas are as follows: 206

LF =
∫ 0.15×2π

0.04×2π
|Fω|2dω (4) 207

HF =
∫ 0.4×2π

0.15×2π
|Fω|2dω (5) 208

LH =
LF
HF

(6) 209

4) INDICES OF EMMA-fApEn 210

The extremum sequences can reflect the tension limits of the 211

ANS, but it cannot be extracted directly from the RRs due to 212

the small partial fluctuation of the RRs. Therefore, the RRs 213

were filtered by the multiple moving average method first, 214

and then the extremum sequences were extracted from them. 215

Next, fApEn of the minima (fApEn-minima) and fApEn 216

of the maxima (fApEn-maxima) were obtained by applying 217

fApEn to calculate the complexity of the minimum and max- 218

imum sequences. The calculation method of the indices is 219

shown in Fig. 2. First of all, the gross errors of the RRs 220

were removed by the Pauta criterion [55]. And the Z-score 221

method was used to standardize the RRs. Secondly, in order 222

to extract the extremum sequences accurately, the multi- 223

ple moving average method was used to reduce the local 224

slight fluctuation of the RRs. Finally, fApEn-minima and 225

fApEn-maxima were calculated to measure the complexity 226

of extremum sequences. 227

The raw RRs were divided into 1-minute non-repeated 228

sequence subsets. First, since gross errors of the RRs can 229

greatly affect the performance of the extremum sequences 230

reflecting ANS tension limits, it is necessary to further 231
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FIGURE 2. Scheme of multiple moving average analysis.

Algorithm 1 (Error Reduction and Standardization)
Input: Initialize the following parameters.
1) the RRs X{X1,X2, . . . ,Xn};
2) the point of Xi{xi,1, xi,2, . . . , xi,m};
Output:the new sequence Y {Y1,Y2, . . . ,Yn}
for i = 1;i ≤ n;i++ do

calculate the average of Xi: xi
calculate the standard deviation of Xi: si
for j = 1;j ≤ m;j++ do
if
∣∣xi,j − xi∣∣ > 3si then
delete xi,j

end if
end for
Yi = (Xi − xi)/si

end for

remove them by Pauta criterion [55]. Then, the RRs were232

standardized. The details of the method are as described here:233

The multiple moving average method can effectively234

reduce the small partial fluctuation of the sequence, with235

which the filtered sequence Ok was obtained to reflect the236

general trend. Then the maximum sequence U and the min-237

imum sequence V can be extracted from Ok . The details of238

the method are described here:239

The comparisons of the raw RRs, the filtered RRs and the240

extremum sequences between the normal andOSAgroups are241

shown in Fig. 3. The changes of amplitudes in the minimum242

and the maximum sequences of the OSA group are smaller243

than those of the normal group.244

fApEn can effectively and robustlymeasure the complexity245

of the discrete sequence. The calculation details of it [56] are246

described here:247

Algorithm 2 (Multiple Moving Average Extract the
Extremum Sequence)
Input: Initialize the following parameters.
1) the one-dimensional sequence Q{q1, q2, . . . , qN } =
{Y1,Y2, . . . ,Yn};
2) the repeat counter K ;
3) the interval length M ;
Output:the maximum sequence Uand the minimum
sequence V
calculate the average length of Y : L

for i = 1;i ≤ K ;i++ do
for j = 1;j ≤ N − i×M + i;j++ do

pj = 1
M

j+M−1∑
k=j

qk

end for
for j = 1;j ≤ (N − i×M + i)/L + 1;j++ do
build the one-dimensional sequence
Pj{p(j−1)×L+1, p(j−1)×L+2, . . . , pmin{j×L,N−i×M+i}}

calculate the standard deviation of Pj: sj
calculate the average of Pj: pj
Fj = (Pj − pj)/sj
end for
build the one-dimensional sequence
Qi{F1,F2, . . . ,F(N−i×M+i)/L+1}

end for
extract the maximum sequence U and the minimum
sequence V from Ok

Algorithm 3 (Fuzzy Approximate Entropy, fApEn)
Input: Initialize the following parameters.
1) the non-stationary time sequence X{x1, x2, . . . , xn};
2) the parameters m, n, r ;
Output:the index fApEn
for c = m;c ≤ m+ 1;c++ do

for i = 1;i ≤ n− c+ 1;i++ do
for j = 1;j ≤ c;j++ do

yi,j = xi+j−1 − 1
c

c−1∑
k=0

xi+k

end for
end for
for i = 1;i ≤ n− c+ 1;i++ do
for j = 1;j ≤ n− c+ 1;j++ do
dci,j = max

k=1,2,...,c
{
∣∣yi,k − yj,k ∣∣}

µci,j = exp
[
−(dci,j/r)

n
]

end for
end for

Sc = 1
n−c+1

n−c+1∑
i=1

( 1
n−c+1

n−c+1∑
j=1

µci,j)

end for
fApEn = ln Sm − ln Sm+1

The self-matching was not eliminated in this study, which 248

means dcij = 0(i = j) in algorithm 3. In the calculation 249
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FIGURE 3. The comparison of the procedure diagrams of extremum sequences between the normal and OSA groups.

FIGURE 4. The structure of random forest.

of fApEn, the parameters m, n and r were selected as 2,250

2, and 0.25 times of the standard deviation of the input,251

respectively [56], [57], [58].252

According the algorithm 1-3, we can get the indices of253

Emma-fApEn.254

C. CLASSIFIER255

In order to improve the detection performance of the indices256

and verify the complementarity of them, the random for-257

est (RF) classifier was adopted for OSA and severe OSA258

screening. RF is composed of tree classifiers. As shown in259

Fig. 4, each tree classifier is generated by a random vector260

and exists independently of the input vector. In this study,261

Mean, LH, fApEn-minima and fApEn-maxima were used as262

the initial input of classifier. In the output part, the trees obtain263

the classification results of input vectors by voting the most 264

popular category in units. RF used in this study uses randomly 265

selected individual features or combinations of features to 266

grow a tree in each node. Each decision tree is grown accord- 267

ing to a random parameter. The classification results of all 268

decision trees are integrated through the ensemble learning 269

method to determine the final classification result. 270

The design of decision tree needs proper attribute selection 271

measure and pruning method. Most methods choose attribute 272

assignment quality measures to construct decision trees. Gini 273

index, the most commonly used attribute selection measure in 274

decision tree induction, is used to measure the total variance 275

across two OSA classes. It is defined as: 276

GiniN ,M = pN (m)× [1− pN (m)] 277

+ pM (m)× [1− pM (m)] (7) 278

GiniM ,S = pM (m)× [1− pM (m)] 279

+ pS (m)× [1− pS (m)] (8) 280

In (7), pN (m) represents the proportion of observation 281

of the m th node in the tree belonging to the normal and 282

mild/moderate OSAgroups; in (8), pM (m) represents the pro- 283

portion of observation of the m th node in the tree belonging 284

to the mild/moderate OSA and severe OSA groups. 285

III. RESULTS 286

A. SIGNIFICANCE ANALYSIS OF DIFFERENT DISEASE 287

STATES 288

The different disease states analysis results, including the 289

time-frequency domain indices and themultiplemoving aver- 290

ages indices, are listed in Table 1. In the time-frequency 291

domain indices, RMSSD could only distinguish the normal 292
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TABLE 1. Time-frequency domain and multiple moving averages of HRV indices for the different disease states during sleep.

FIGURE 5. The comparison of Mean (a), LH (b), fApEn-minima (c) and fApEn-maxima (d) for the different disease states. N: normal group; M:
mild/moderate OSA group; S: severe OSA group; ∗, ∗∗, ∗∗∗ represents statistically significant difference P<0.05, P<0.01, P<0.001, respectively.

FIGURE 6. The correlative analysis of Mean (a), LH (b) fApEn-minima (c) and fApEn-maxima (d).

group from themild/moderate OSA group. There were signif-293

icant differences between the normal group and the other two294

groups in Mean and LH. As for the multiple moving averages295

indices, fApEn-minima and fApEn-maxima had outstanding296

performance. There were significant differences between the297

severe OSA group and the other two groups.298

The monotonicity analysis results of Mean, LH, fApEn-299

minima and fApEn-maxima in the different disease states are300

shown in the Fig. 5. There was a monotonically increasing301

trend of LH from the normal group to the mild/moderate OSA302

group to the severe OSA group, and monotonically decreas-303

ing trends of fApEn-minima and fApEn-maxima from the304

normal group to the mild/moderate OSA group to the severe305

OSA group. The variation patterns of Mean, LH, fApEn-306

minima and fApEn-maxima were statistically significant,307

demonstrating their effectiveness in the analysis of OSA308

severity.309

B. CORRELATION ANALYSIS OF THE USEFUL INDICES310

In this study, we analyzed the correlation of Mean, LH,311

fApEn-minima and fApEn-maxima with AHI. As shown in312

Fig. 6, Mean, LH, fApEn-minima and fApEn-maxima had 313

a correlation (|R| ≥ 0.3) with AHI. Moreover, LH, fApEn- 314

minima and fApEn-maxima were significantly associated 315

with AHI. The correlation coefficient of Mean (|R| = 0.359) 316

and LH (|R| = 0.633) were lower than that of fApEn-maxima 317

(|R| = 0.696) and fApEn-minima (|R| = 0.705). The above 318

results indicate that fApEn-minima and fApEn-maxima have 319

a higher correlation with AHI. Therefore, the relationships 320

between the nonlinear indices and AHI are more significant. 321

C. PARAMETER OPTIMIZATION 322

In the calculation of Emma-fApEn, the multiple moving 323

average method was used to reduce the interference of fine 324

fluctuations in the RRs to the general trend. The moving 325

average method reduced the interference while losing some 326

information contained in the RRs, so the repeat counterK and 327

the interval lengthM had an important impact on the results. 328

The relationships between the absolute value of the cor- 329

relation coefficient |R| and K about fApEn-minima and 330

fApEn-maxima when M=3 are shown in Fig. 7(a). It was 331
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FIGURE 7. (a) Analysis of relationships between
∣∣R∣∣ and K about fApEn-minima and fApEn-maxima. (b) Analysis of relationships

between
∣∣R∣∣ and M about fApEn-minima and fApEn-maxima.

∣∣R∣∣: the absolute value of the correlation coefficient between
fApEn-minima or fApEn-maxima and AHI; K : the times of moving average method; M: the sliding interval scale.

TABLE 2. Classification performance of three classifiers (2-fold cross-validation and sequential backward selection).

obvious that fApEn-minima and fApEn-maxima had the332

highest correlation with AHI when K=15. The relationships333

between |R| andM about fApEn-minima and fApEn-maxima334

when K = 15 are shown in Fig. 7(b). It could be seen that the335

correlations between fApEn-minima and fApEn-maxima and336

AHI were the highest when M = 3. In conclusion, fApEn-337

minima and fApEn-maxima performed better when we chose338

K = 15 and M = 3.339

D. OSA AND SEVERE OSA SCREENING340

The above analysis and the results in Table 1 show that341

Mean and LH have significant differences between the nor-342

mal group and the OSA groups, and fApEn-minima and343

fApEn-maxima can significantly distinguish the severe OSA344

group from other two groups. These results indicate that345

Mean and LH have better detection performance in detecting346

OSA patients from normal people, and fApEn-minima and347

fApEn-maxima can effectively screen severe OSA patients348

from other people. Therefore, Mean, LH, fApEn-minima349

and fApEn-maxima were selected in this study for multi-350

indices OSA screening. Multiple machine learning classifiers351

were used to perform multi-indices detection, combining the352

advantages of the above four HRV indices to detect OSA and353

severe OSA patients.354

Compared with other classifiers, we utilized random forest355

(RF) to implement the classification of the subjects based on356

two-fold cross-validation. The classification performance of357

multiple machine learning classifiers is shown in Table 2. 358

As shown in Fig 8, the corresponding ROC curve of RF 359

classifier achieves the best performance, and the AUC of RF 360

classifier is obviously higher than others. The classification 361

performance of RF classifier reached 96.67% accuracy to 362

distinguish the normal group from the other two groups and 363

91.67% accuracy to distinguish the severe OSA group from 364

the other two groups. They provided the highest accuracy and 365

a good balance between sensitivity and specificity. Moreover, 366

RF achieved the best AUC in OSA and severe OSA detection. 367

The above results indicate that using RF classifier in the 368

detection of OSA and severe OSA is significantly better than 369

others. Therefore, RF classifier is chosen to achieve the OSA 370

screening. 371

IV. DISCUSSION 372

A. COMPARISON AND SUMMARY 373

The performance of the time-frequency domain indices was 374

also verified by previous studies. The decreases of SDNN 375

and RMSSD in OSA patients reported by Roche et al. [37] 376

were consistent with our results. Lack of monotonicity with 377

the degree of disease may be one of the reasons for their 378

significance. Gula et al. [38] presented that LH was the 379

most useful indicator for OSA detection, whose screening 380

performance has been verified in our work. Although LH 381

was a reliable index for screening OSA patients, there was 382

no significant difference in LH between the mild/moderate 383
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FIGURE 8. (a) The ROC curves of the machine learning methods to distinguish the normal group from the mild/moderate OSA
and severe OSA groups. (b) The ROC curves of the machine learning methods to distinguish the severe OSA group from the
normal and mild/moderate OSA groups.

FIGURE 9. The comparison of fApEn-minima (a) and fApEn-maxima
(b) for the different disease states. N: normal group; M: mild/moderate
OSA group; S: severe OSA group.

OSA group and the severe OSA group. Therefore, LH was384

unable to distinguish different severities of OSA, which was385

in line with the findings of related studies [38], [45], [59].386

Using HRVwith the same database, our result was better than387

others. Haitham et al. presented that the sample entropy of388

HRV in OSA patients has the advantage of anti-noise, and389

the accuracy in OSA screening reached 70.3% [42]. Sliding390

trend fuzzy approximate entropy (SlTr-fApEn) was based on391

empirical mode decomposition method [56]. The accuracy392

of OSA screening increased to 85.0%. Li et al. reported that393

variance delay fuzzy approximate entropy (VD_fApEn) pro-394

vides a method for ANS fluctuation analysis in OSA patients395

and OSA severity analysis, which showed an improved accu-396

racy (90.0%) [45]. In this study, Emma-fApEn had a higher397

accuracy 96.67% in OSA screening and 91.67% in severe398

OSA screening. Therefore, Emma-fApEn is considered as a399

valid indicator for severity analysis in OSA screening.400

Significance analysis showed that Mean and LH were401

effective indices for OSA screening. The results of the sig-402

nificance analysis also displayed that these time-frequency403

domain indices cannot discriminate the different severities404

of the disease. fApEn-minima and fApEn-maxima were sig-405

nificantly different between the severe OSA group and the406

other groups, which manifested their potential for differ-407

entiating severe OSA patients. Through correlation anal-408

ysis, fApEn-minima (R = −0.705) and fApEn-maxima409

TABLE 3. Time-frequency domain and multiple moving averages of HRV
indices for the R and P value during sleep using ucddb database.

(R = −0.696) were negatively correlated with AHI, while 410

LH (R = −0.633) was positively correlated. As shown in 411

Fig. 5, these three indices all showed great monotonicity with 412

the OSA severity, while Mean not. 413

Machine learning methods were used to screen OSA and 414

severe OSA, and the results showed that the accuracy of 415

multi-indices OSA screening reached 96.67% by RF clas- 416

sifier, and the accuracy of severe OSA screening reached 417

91.67%. Compared with other classifiers, RF can better pro- 418

cess high-dimensional data in the face of multi-indices pro- 419

cessing and does not need feature screening. 420

Validation was implemented on St. Vincent’s University 421

Hospital / University College Dublin Sleep Apnea Database 422

downloaded from https://archive.physionet.org/pn3/ucddb/, 423

which contains ECG recordings from 25 subjects. We 424

extracted and corrected RRs from the database, and calcu- 425

lated the time-frequency domain indices andmultiple moving 426

average indices of the RRs. As shown in Table 3, fApEn- 427

maxima and fApEn-minima have a higher correlation (|R| ≥ 428

0.2) than other indices, whose violin plots are shown in Fig. 9. 429

fApEn-minima was statistically significant (R = −0.538), 430

demonstrating the relationship between the nonlinear indices 431

and AHI is more significant. 432
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B. METHOD MOTIVATION ANALYSIS433

Moving average method is a simple low-pass filtering434

method, which can reduce the fluctuation of data and make435

data evener. Multiple moving average method can effectively436

obtain the general trend of the sequence by taking the moving437

average of it for many times. The general trend of the RRs is438

related to the general changes of ANS tension. The variation439

of the extrema of the RRs reflects fluctuations of ANS ten-440

sion limits. Moreover, the multiple moving average method441

can prevent the selection of inappropriate extrema due to442

the small partial fluctuation of the RRs. Therefore, multiple443

moving average method was used to filter the RRs to obtain444

the general trend of them in this study. Since moving average445

method can change the mean and standard deviation of the446

sequence, it is necessary to normalize the RRs after each use447

of moving average method, which improves the robustness of448

the model.449

Compared with approximate entropy and sample entropy,450

fApEn is less affected by calculated parameters. fApEn has a451

good robustness to noise, which can evaluate the complex-452

ity of biomedical signals more accurately [60]. The influ-453

ence of self-matching on entropy is highly related to the454

length of sequence [61]. The lengths of extremum sequences455

are affected by the RRs fluctuations, and the fluctuations for456

normal controls are larger than for OSA patients in most457

cases. As a result, the extremum sequences of normal people458

obtained by multiple moving average method is longer than459

those of OSA patients. By comparison, it was found that460

the entropy obtained by self-matching was more correlated461

with AHI. Therefore, self-matching was not eliminated in the462

calculation of fApEn.463

The repeat counter K and the interval length M of the464

moving average method have an essential impact on the cal-465

culation of Emma-fApEn. They directly affect the evaluation466

performance of extremum sequence complexity on ANS ten-467

sion limits. The correlations between fApEn-minima, fApEn-468

maxima and AHI were the highest when we chose K =469

15 and M = 3. Therefore, Emma-fApEn is able to better470

evaluate ANS tension limits under K = 15 and M = 3.471

Machine learning methods were used to combine the472

advantages of multiple effective indices. The performance473

of different classifiers was compared. Screening results474

(Table 2) and ROC diagram (Fig. 8) show that RF classi-475

fier had the best performance in OSA screening and severe476

OSA detection. The accuracy of RF was higher than that of477

SVM, KNN and GN, while the sensitivity and specificity also478

reached a good balance. RF method combines all decision479

trees together, which not only improves the accuracy of clas-480

sification and regression [62], but also is suitable for nonlin-481

ear analysis. Previous studies also indicated that RF classifier482

showed better detection performance to distinguish different483

severities of OSA [46], [47], [48]. Wrong predictions are484

made only if more than half of the base classifiers are wrong.485

RF is relatively stable. Even if a new data point appears in486

the database, which will only affect one decision tree. It’s487

difficult to affect all decision trees [62], [64]. Furthermore,488

each decision tree is built by random attribute selections and 489

random samples from the original training set [63]. Outliers 490

caused by noise in the samples will reduce the accuracy of the 491

corresponding decision tree. The introduction of two types 492

of randomnesses allows outliers to affect some decision trees 493

instead of all the decision trees in a random forest. The forest 494

is a vote of all decision trees, which is less affected by the 495

decision trees with low accuracy. So RF does not overfit and 496

has strong anti-noise performance. Unbiased estimation of 497

generalization error can be realized while balancing errors, 498

which enables the method to obtain the strong generalization 499

ability [64]. 500

C. PHYSICAL INTERPRETATION 501

Sudden fluctuations happen in ANSwhen sleep apnea occurs. 502

The imbalance between the sympathetic and vagus nerve 503

system can lead to ANS dysfunction [36]. HRV is proved 504

to be an effective indicator to evaluate ANS function, and 505

its reduction is one of the features of OSA occurrence [34]. 506

As verified in this study, multiple classical time domain 507

indices can be used to represent HRV changes [37]. Low 508

frequency power reflects sympathetic tension, and high fre- 509

quency power reflects parasympathetic tension. As their ratio, 510

LH can reflect the balance between parasympathetic tone and 511

sympathetic tone. 512

However, time-frequency domain analysis is linear and 513

more suitable for stationary signal, while the process of 514

regulating heart rate through ANS is nonlinear and non- 515

stationary. In contrast, non-linear indices of HRV are bet- 516

ter to analyze the complex dynamics of the heartbeat [41]. 517

Therefore, nonlinear methods are usually used to analyze 518

HRV [40]. In this study, multiple moving average method 519

was used to weaken the small partial fluctuations of the RRs 520

to obtain the general trend. The general trend of the RRs 521

reflected the changes of physiological sympathetic tension 522

during sleep. The extremum sequences in the general trend 523

can reflect the changes of the relative tension limits of the 524

sympathetic nerve. As shown in Fig. 3, the periodicity of the 525

general trend of the RRs in OSA patients was obvious, and 526

the fluctuation ranges of maximum and minimum sequences 527

were significantly slighter than that of normal subjects. These 528

results indicate that sympathetic tension in OSA patients 529

enters a nearly periodic change when sleep apnea occurs. The 530

spectrum of HRV is narrowed and the high frequency com- 531

ponent decreases, which reduces the variation in the maxima 532

and minima. Moreover, it reduces the ability of OSA patients 533

to adapt to external changes [65]. These may be related to 534

decreased tension and activity of ANS in OSA patients. 535

The sympathetic nervous system is enhanced and the 536

parasympathetic nervous system is weakened when OSA 537

occurs. Therefore, the low frequency component of HRV 538

increases and the high frequency component decreases, 539

resulting in the periodic fluctuation of HRV. The periodic 540

fluctuations are manifested as the uniform fluctuation of 541

HRV, which lead to the decrease of amplitude variation of the 542

extremum sequences of HRV [66]. The periodic fluctuations 543
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of HRV basically do not occur in normal people, and the544

mild/moderate OSA patients have slight periodic fluctuations545

of HRV. In contrast, the increased periodic fluctuations and546

the reduced complexity of extremum sequences of HRV547

are more significant in the severe OSA patients. Moreover,548

traditional methods were to analyze the entire sequence of549

HRV. But we tended more to use the extremum sequences550

analysis of HRV. As the severity of OSA increased, the551

extremum sequences changed greatly, which leads to signifi-552

cant decreases in the complexity of fluctuations in ANS. The553

decreased tension and activity of ANS are more significant554

in severe OSA group. Therefore, non-linear indices of HRV555

we used in the study are more effective to screen severe OSA556

group than traditional metrics.557

There are some limitations in this study. First, extremum558

sequences are greatly affected by the noise in the signal.559

Denoising method is important when obtaining extremum560

sequences. The data must conform to independent identically561

normal distribution [67], but the actual conditions do not gen-562

erally meet this requirement. Therefore, the algorithm used in563

this studymay not remove gross errors well. Second, there are564

differences in age and BMI among different groups in the data565

set we used. Individual differences are not taken into account566

in the method, which may affect the experimental results.567

Finally, potential cardiovascular diseases are not mentioned568

in this study, which may have influenced the HRV analysis.569

In the future studies, we will adopt more effective methods to570

improve the experimental method and verify the reliability of571

indices in more experimental data.572

V. CONCLUSION573

In this study, Emma-fApEn was proposed as a HRV nonlin-574

ear analysis method for OSA research. Mean, LH, fApEn-575

minima and fApEn-maxima were used to analyze the fea-576

tures of HRV. The results showed that Mean and LH could577

significantly distinguish OSA patients from normal people.578

fApEn-minima and fApEn-maxima could significantly dis-579

tinguish severe OSA patients from other people. Combined580

with the above four indices, RF was selected as the best581

classifier and achieved OSA screening with 96.67% accuracy582

as well as severe OSA screening with 91.67% accuracy.583

Therefore, the combination ofMean, LH, fApEn-minima and584

fApEn-maxima screening has an advantage over traditional585

single-indicator screening in analyzing HRV features and586

differentiating OSA severities. Moreover, this method also587

provides a new clinical reference for the diagnosis of OSA.588
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