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ABSTRACT Objective: Obstructive sleep apnea (OSA) is a respiratory disease associated with autonomic
nervous system dysfunction. As a novel method for analyzing OSA depending on heart rate variability,
fuzzy approximate entropy of extrema based on multiple moving averages (Emma-fApEn) can effectively
assess the sympathetic tension limits, thereby realizing a good performance in the disease severity screening.
Method: Sixty 6-h electrocardiogram recordings (20 healthy, 16 mild/moderate OSA and 34 severe OSA)
from the PhysioNet database were used in this study. The performances of minima of Emma-fApEn (fApEn-
minima), maxima of Emma-fApEn (fApEn-maxima) and classic time-frequency domain indices for each
recording were assessed by significance analysis, correlation analysis, parameter optimization and OSA
screening. Results: fApEn-minima and fApEn-maxima had significant differences between the severe OSA
group and the other two groups, while the mean value (Mean) and the ratio of low-frequency power and
high-frequency power (LH) could significantly differentiate OSA recordings from healthy recordings. The
correlation coefficient between fApEn-minima and apnea-hypopnea index was the highest (|JR| = 0.705).
Machine learning methods were used to evaluate the performances of the above four indices. Random forest
(RF) achieved the highest accuracy of 96.67% in OSA screening and 91.67% in severe OSA screening, with
a good balance in both. Conclusion: Emma-fApEn may be used as a simple preliminary detection tool to
assess the severity of OSA prior to polysomnography analysis.

INDEX TERMS  Obstructive sleep apnea (OSA), autonomic nervous system (ANS), heart rate variability
(HRV), apnea-hypopnea index (AHI), fuzzy approximate entropy of extrema based on multiple moving
averages (Emma-fApEn).

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a chronic and curable upper
respiratory tract disease, characterized by repeated blockage
of the upper respiratory tract during sleep, which will lead
to poor quality of sleep and thus daytime sleepiness [1].
The occurrence mechanism of OSA includes upper airway
abnormalities [2], significant depressions of the neuromuscu-
lar compensatory responses [3], [4], low arousal thresholds
[5], etc. It’s reported that OSA is closely associated with
diabetes [6], atherosclerosis [7], stroke [8], hypertension [9]
and a variety of cardiovascular diseases [10]. The severity
of OSA can also be used as a predictor of mortality [11].
At present, there are at least about 1 billion OSA patients

in the world [12], and the prevalence of OSA is showing an
upward trend [13]. Moreover, many OSA patients are still
undiagnosed [14]. Therefore, there is an urgent need for a
simple and effective method of detecting OSA.
Polysomnography is considered as a gold standard for
OSA detection [15]. However, it has some disadvantages
including being expensive, causing patients’ discomfort,
requiring expert judgment and having obscure results [16].
In recent years, many researchers have proposed more effi-
cient methods for OSA detection. OSA can affect a patient’s
breathing state, nerve activity, muscle activity, heart func-
tion and so on. Consequently, some studies developed OSA
detection algorithms based on oxygen saturation (SpO3) [17],
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[18], [19], [20], electroencephalogram (EEG) [21], [22], [23],
[24], electromyography (EMG) [25], [26], [27], electrocar-
diogram (ECG) [28], [29], [30], [31], etc. The results of these
studies are relatively easy to interpret and do not require
expert judgment. Since the heart rate of the patients often
changes during OSA attacks [32], heart rate variability (HRV)
analysis, which can be derived from ECG signals, is one of
the simplest and most effective methods for detecting OSA.

HRV reflects slight changes in the heartbeat cycle. It is
produced by the interaction between autonomic nervous sys-
tem (ANS) and internal nervous system of the heart [33].
Sympathetic nerve activity has been proved to be affected by
apneic events [34]. As a result, as a non-invasive tool, HRV
analysis provides an effective evaluation of ANS function
[35], and can be used to assess the integrity of ANS [36]. The
classic HRV analysis includes time and frequency domain
analysis. Roche er al. [37] reported that the time domain
HRYV indices were significantly associated with the diseased
status, which achieved a sensitivity of 90% in OSA diagnosis.
Gula et al. [38] proved the practicability of the frequency
domain HRV indices in OSA discrimination, and suggested
that the ratio of low-frequency power and high-frequency
power (LH) was the most useful index for OSA detection.
Though LH has a great performance in HRV analysis, it only
reflects the ANS fluctuation in a certain period.

However, many linear indices of HRV are susceptible to
the heart rate spontaneous fluctuation [39], [40]. Moreover,
the linear indices of HRV are not enough to characterize
the complex dynamics of heartbeat [41]. In recent years,
many researchers began to use nonlinear analysis methods
in OSA detection. Entropy is a common index quantifying
nonlinear dynamics, which can be used to assess the com-
plexity of HRV. Haitham et al. [42] measured HRV based
on sample entropy and found that the complexity of HRV
was significantly different between normal people and OSA
patients. Liang er al. [43] proposed nonparametric sample
entropy, which can evaluate and quantify the severity of OSA
patients. Ravelo-Garcia et al. [44] reported that permutation
entropy could effectively detect OSA patterns in heart rate.
Li et al. [45] used variance delay fuzzy approximate entropy
to distinguish the OSA patients and achieved the correct
grouping of any two groups of the normal, mild/moderate
OSA and severe OSA. The above studies supported that the
nonlinear method could discover the abnormality of ANS in
OSA patients.

The performance of OSA classification is not only affected
by features, but also related to the quality of the classifier.
Janbakhshi er al. [46] proposed an ECG method to identify
OSA, and combined it with support vector machine (SVM),
k-nearest neighbor, linear discriminant and quadratic dis-
criminant methods to extract RR interphase features from
ECG-derived respiration sequences, achieving 90.9% accu-
racy. Sharma et al. [47] used a linear combination of
low-order Hermite basis functions to simulate QRS ECG sig-
nals, and used a least squares SVM classifier with Gaussian
radial basis function performance as a radial basis function
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to classify apnea events. Alireza et al. [48] proposed a
random forest classifier to classify features after dimension-
ality reduction by principal component analysis and linear
discriminant analysis, achieving an accuracy of 95.01%.

In above studies, most of them were analyzed by compar-
ing the indices of the overall data of OSA groups and control
groups, and less attention was paid to the information of
some special points in the data. In HRV analysis, the general
trend of the RR interval sequences (RRs) reflects the general
changes in the ANS tension, and the extrema of the RRs are
related to the ANS tension limits.

Therefore, in order to analyze the changes of the ANS
tension limits in OSA patients through the extrema in the
general trend of the RRs, this study proposed the fuzzy
approximate entropy of extrema based on multiple moving
averages (Emma-fApEn). Due to the small partial fluctua-
tions of the RRs, the multiple moving average method was
introduced into the experiment, which reduces the fluctuation
effect of the sequence by obtaining segments’ averages of
the data several times. Sample entropy has the advantages
of anti-noise and anti-interference, but it depends on small
tolerances and forward matching of data length [49]. Per-
mutation entropy can reflect the regularity of time series,
but it is not sensitive to the outliers in internal series [50].
Fuzzy approximate entropy (fApEn) shows better monotonic-
ity, consistency and robustness when describing signals of
different complexities [51]. So fApEn was applied to repre-
sent the complexity of extrema. Moreover, the Emma-fApEn
method was combined with random forest (RF) classifier,
to achieve OSA screening. Therefore, the multiple moving
average method combined with the standardization method
was used to alleviate the small partial self-fluctuation of
RRs. Then the extremum sequences reflecting ANS tension
limits were extracted. By applying fApEn, Emma-fApEn was
obtained from extremum sequences. To evaluate the complex-
ity of fluctuations of the ANS tension limits, we conducted
the significance analysis, the correlation analysis, the param-
eter optimization, and the OSA screening for Emma-fApEn.

Il. METHOD

A. DATA

The database used in this paper was downloaded from
http://www.physionet.org/physiobank/database/apnea-ecg/,
which was applied in the Computers in Cardiology Challenge
2000 [52]. The database includes 70 single-channel nocturnal
ECG recordings from 32 OSA patients and normal subjects.
In this database, the sampling frequency of each recording is
100Hz, and the recording time is 401~587min. Each minute
of each recording has a corresponding reference note, which
identifies whether apnea occurs in that minute.

The number of apnea and hypopnea events per hour during
sleep is defined as the apnea-hypopnea index (AHI), which
is an indicator of the severity of sleep apnea. Recordings
that contained at least 1 hour with AHI of 10 or more, and
at least 100 minutes labeled apnea were classified as the
apnea group. Recordings that contained at least 1 hour with
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AHI of 5 or more, and between 5 and 99 minutes labeled
apnea were classified as the borderline group. Recordings that
contained at least 1 hour with AHI of less than 5, and fewer
than 5 minutes labeled apnea were classified as the control
group. In this study, the apnea and control groups were used
for analysis. According to AHI, the selected recordings were
divided into the normal group (20 recordings, AHI<S5), the
mild/moderate OSA group (14 recordings, 5<AHI<30), and
the severe OSA group (26 recordings, AHI>30).

RRs extraction
RRs correction

Time-frequency Multiple moving
domain analysis average analysis

\//

Significance analysis

I

Correlation analysis

I

[ ]
( )
( Parameter optimization |
( )

I

Correlation analysis
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FIGURE 1. The general frame diagram of the HRV analysis method.

B. HRV ANALYSIS METHOD

The HRV analysis method used in this study is shown in
Fig. 1. First, the RRs were extracted and corrected. Then, the
time-frequency domain indices and multiple moving average
indices of the RRs were calculated. Finally, the effectiveness
of the above indices was verified and analyzed through the
significance analysis, the correlation analysis, the parameter
optimization and the machine learning classifications.

1) PREPROCESS

First, the segments with large errors in the beginning and end
of the recordings were cut, and then the first 6 hours of the
recordings were selected as the ECG signals for the study.
Next, the RRs from the ECG signal were extracted according
to the Pan-Tompkins algorithm [53]. Finally, an improved
local median filter was used to eliminate the unexpected data
spikes in the RRs [54].

2) TIME DOMAIN INDICES

HRV is the small difference in timing between successive
normal (sinus) cardiac cycles. We completed the time domain
analysis by the time domain measurement of HRV. The
common time domain indices for HRV analysis of OSA
include the mean value (Mean), the standard deviation of the
normal-to-normal intervals (SDNN), and the square root of
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the mean of the sum of the squares of differences between
adjacent the normal-to-normal intervals (RMSSD) of con-
secutive 5-minute RR intervals. For N points RRs consisting
of consecutive 5-minute RR intervals, they are defined as
follows:

N

1
Mean = v ZRRsi (1)
i=1
1 N 1 N
SDNN — v Z (RRs; — ¥ ZRRSi)Z 2
\ i=1 i=1
1 N-—1
RMSSD = | —— RRs;+1 — RRs;)? 3
\N_ll;( sitt — RRs)>  (3)

3) FREQUENCY DOMAIN INDICES

The frequency domain analysis is to analyze the law of heart
rate change based on the power spectral density of RRs calcu-
lated by fast Fourier transform. It is relevant to time domain
analysis, and moreover, it can reveal the more complex
changes of heart rate. Frequency domain indices com-
monly used for HRV analysis of OSA patients include low-
frequency power (LF, 0.04-0.15Hz), high-frequency power
(HF, 0.15-0.4Hz) and LF/HF (LH) for 5-minute epochs. The
formulas are as follows:

0.15x27
LF — / |Fpl?dw 4)
0.04x2m
0.4x2m
HF = / |Fpl?dw (5)
0.15x2m
LF
LH = — (6)
HF

4) INDICES OF EMMA-fApEn

The extremum sequences can reflect the tension limits of the
ANS, but it cannot be extracted directly from the RRs due to
the small partial fluctuation of the RRs. Therefore, the RRs
were filtered by the multiple moving average method first,
and then the extremum sequences were extracted from them.
Next, fApEn of the minima (fApEn-minima) and fApEn
of the maxima (fApEn-maxima) were obtained by applying
fApEn to calculate the complexity of the minimum and max-
imum sequences. The calculation method of the indices is
shown in Fig. 2. First of all, the gross errors of the RRs
were removed by the Pauta criterion [55]. And the Z-score
method was used to standardize the RRs. Secondly, in order
to extract the extremum sequences accurately, the multi-
ple moving average method was used to reduce the local
slight fluctuation of the RRs. Finally, fApEn-minima and
fApEn-maxima were calculated to measure the complexity
of extremum sequences.

The raw RRs were divided into 1-minute non-repeated
sequence subsets. First, since gross errors of the RRs can
greatly affect the performance of the extremum sequences
reflecting ANS tension limits, it is necessary to further
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FIGURE 2. Scheme of multiple moving average analysis.

Algorithm 1 (Error Reduction and Standardization)
Input: Initialize the following parameters.
1) the RRs X{X1, X2, ..., X, };
2) the point of X;{x; 1, Xi2, ..., Xim};
Output:the new sequence Y{Yy, Y2, ..., ¥,}
fori=1;i <n;i+ + do

calculate the average of X;: X;

calculate the standard deviation of X;: s;

forj=1;j <m;j+ 4+ do

if ‘xi,j — )Tl’ > 3Si then

delete x;
end if
end for
Yi = Xi —Xi)/si
end for

remove them by Pauta criterion [55]. Then, the RRs were
standardized. The details of the method are as described here:

The multiple moving average method can effectively
reduce the small partial fluctuation of the sequence, with
which the filtered sequence Oy was obtained to reflect the
general trend. Then the maximum sequence U and the min-
imum sequence V can be extracted from Oy. The details of
the method are described here:

The comparisons of the raw RRs, the filtered RRs and the
extremum sequences between the normal and OSA groups are
shown in Fig. 3. The changes of amplitudes in the minimum
and the maximum sequences of the OSA group are smaller
than those of the normal group.

fApEn can effectively and robustly measure the complexity
of the discrete sequence. The calculation details of it [56] are
described here:
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Algorithm 2 (Multiple Moving Average Extract the

Extremum Sequence)

Input: Initialize the following parameters.

1) the one-dimensional sequence Q{qi,q2,...

(X1, Ya,.... Yuls

2) the repeat counter K;

3) the interval length M;

Qutput:the maximum

sequence V

calculate the average length of Y: L
fori=1;i <K;i+ + do

forj=1j<N—-ixM+ij++do
JHM—1

Pi=wu X %
k=j
end for
forj=1j<N—-ixM+i)/L+1j++do
build the one-dimensional sequence
Pipi—1)xL+1, P(—1)xL42, - - - » Pmin{jxL,N—ixM~+i}}
calculate the standard deviation of P;: s;
calculate the average of P;: p;
Fj = (Pj—Dpj/s;
end for
build the one-dimensional sequence
OilF1, Fa, ..., Fn—ixM+iy/L+1}
end for
extract the maximum sequence U and the minimum
sequence V from Oy

qu} =

sequence Uand the minimum

Algorithm 3 (Fuzzy Approximate Entropy, fApEn)
Input: Initialize the following parameters.
1) the non-stationary time sequence X {x1, x2, ..., Xy };
2) the parameters m, n, r;
Output:the index fApEn
forc=m;c <m+ 1l;c+ +do

fori=1i<n—c+1;i++do

forj=1j <cj+ +do

c—1
YVij = Xitj—1 — % D Xitk
k=0
end for
end for
fori=1i<n—c+1;i++do
forj=1j<n—c+1j++do
c __ . — .
di’j = k:l},l?,).(.,,cﬁyl’k YJ,k|}

;= exp [~/

end for
end for
I n—c+1 | n—c+1
[CR— c
S = n—c+1 Z (nfc+l Z /’Li,j)
i=1 j=1
end for

fApEn =1nS™ — In §"+!

The self-matching was not eliminated in this study, which
means dl.; = 0(G = J) in algorithm 3. In the calculation
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of fApEn, the parameters m, n and r were selected as 2,
2, and 0.25 times of the standard deviation of the input,
respectively [56], [57], [58].

According the algorithm 1-3, we can get the indices of
Emma-fApEn.

C. CLASSIFIER

In order to improve the detection performance of the indices
and verify the complementarity of them, the random for-
est (RF) classifier was adopted for OSA and severe OSA
screening. RF is composed of tree classifiers. As shown in
Fig. 4, each tree classifier is generated by a random vector
and exists independently of the input vector. In this study,
Mean, LH, fApEn-minima and fApEn-maxima were used as
the initial input of classifier. In the output part, the trees obtain
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the classification results of input vectors by voting the most
popular category in units. RF used in this study uses randomly
selected individual features or combinations of features to
grow a tree in each node. Each decision tree is grown accord-
ing to a random parameter. The classification results of all
decision trees are integrated through the ensemble learning
method to determine the final classification result.

The design of decision tree needs proper attribute selection
measure and pruning method. Most methods choose attribute
assignment quality measures to construct decision trees. Gini
index, the most commonly used attribute selection measure in
decision tree induction, is used to measure the total variance
across two OSA classes. It is defined as:

Giniy y = py (m) X [1 — pn (m)]

+pm (m) x [1 — py (m)] @)
Giniy s = pm (m) x [1 — py (m)]
+ps (m) x [1 = ps (m)] 8)

In (7), py (m) represents the proportion of observation
of the m th node in the tree belonging to the normal and
mild/moderate OSA groups; in (8), pys (m) represents the pro-
portion of observation of the m th node in the tree belonging
to the mild/moderate OSA and severe OSA groups.

Ill. RESULTS

A. SIGNIFICANCE ANALYSIS OF DIFFERENT DISEASE
STATES

The different disease states analysis results, including the
time-frequency domain indices and the multiple moving aver-
ages indices, are listed in Table 1. In the time-frequency
domain indices, RMSSD could only distinguish the normal
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TABLE 1. Time-frequency domain and multiple moving averages of HRV indices for the different disease states during sleep.

. P value
Indices N M S
N&M N&S M&S
Mean 0.98740.111  0.850+0.095  0.88340.090  <0.001*** 0.001** 0.326
Time domain SDNN 0.10140.061  0.0584+0.020  0.09740.048 0.014* 0.759 0.020*
RMSSD 0.10640.108  0.036+0.017  0.06740.050 0.006** 0.067 0.187
LF 0.004+0.005  0.001+0.001  0.009+0.024 0.661 0.279 0.154
Frequency domain HF 0.004£0.005 0.0014+0.001  0.008+0.027 0.653 0.455 0.255
LH 1.863+0.576  4.332+42.236  4.899+2.285  <0.001***  <0.001%*** 0.368
. . fApEn-minima  1.995+0.016  1.974+0.049  1.803+0.169 0.598 <0.001%**  <0.001%**
Multiple moving averages .
fApEn-maxima  1.993+0.019 1.941+0.069  1.83240.130 0.111 <0.001%** 0.001**

Data are expressed as mean =+ standard deviation. N: normal group; M: mild/moderate OSA group; S: severe OSA group; P value: significance of difference. *,

*x, %% represents statistically significant difference P<0.05, P<0.01, P<0.001, respectively.
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FIGURE 5. The comparison of Mean (a), LH (b), fApEn-minima (c) and fApEn-maxima (d) for the different disease states. N: normal group; M:
mild/moderate OSA group; S: severe OSA group; *, **, *** represents statistically significant difference P<0.05, P<0.01, P<0.001, respectively.
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group from the mild/moderate OSA group. There were signif-
icant differences between the normal group and the other two
groups in Mean and LH. As for the multiple moving averages
indices, fApEn-minima and fApEn-maxima had outstanding
performance. There were significant differences between the
severe OSA group and the other two groups.

The monotonicity analysis results of Mean, LH, fApEn-
minima and fApEn-maxima in the different disease states are
shown in the Fig. 5. There was a monotonically increasing
trend of LH from the normal group to the mild/moderate OSA
group to the severe OSA group, and monotonically decreas-
ing trends of fApEn-minima and fApEn-maxima from the
normal group to the mild/moderate OSA group to the severe
OSA group. The variation patterns of Mean, LH, fApEn-
minima and fApEn-maxima were statistically significant,
demonstrating their effectiveness in the analysis of OSA
severity.

B. CORRELATION ANALYSIS OF THE USEFUL INDICES
In this study, we analyzed the correlation of Mean, LH,
fApEn-minima and fApEn-maxima with AHI. As shown in
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Fig. 6, Mean, LH, fApEn-minima and fApEn-maxima had
a correlation (|R| > 0.3) with AHI. Moreover, LH, fApEn-
minima and fApEn-maxima were significantly associated
with AHI. The correlation coefficient of Mean (|R| = 0.359)
and LH (|R| = 0.633) were lower than that of fApEn-maxima
(|R| = 0.696) and fApEn-minima (|R| = 0.705). The above
results indicate that fApEn-minima and fApEn-maxima have
a higher correlation with AHI. Therefore, the relationships
between the nonlinear indices and AHI are more significant.

C. PARAMETER OPTIMIZATION
In the calculation of Emma-fApEn, the multiple moving
average method was used to reduce the interference of fine
fluctuations in the RRs to the general trend. The moving
average method reduced the interference while losing some
information contained in the RRs, so the repeat counter K and
the interval length M had an important impact on the results.
The relationships between the absolute value of the cor-
relation coefficient |R| and K about fApEn-minima and
fApEn-maxima when M=3 are shown in Fig. 7(a). It was
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FIGURE 7. (a) Analysis of relationships between |R| and K about fApEn-minima and fApEn-maxima. (b) Analysis of relationships
between |R| and M about fApEn-minima and fApEn-maxima. |R|: the absolute value of the correlation coefficient between
fApEn-minima or fApEn-maxima and AHI; K: the times of moving average method; M: the sliding interval scale.

TABLE 2. Classification performance of three classifiers (2-fold cross-validation and sequential backward selection).

N & non-N S & non-S
Classifiers
Acc(%)  Spe(%) Sen(%)  Acc(%)  Spe(%)  Sen(%)
SVM 86.67 89.90 84.96 76.67 7431 81.55
KNN 88.33 85.35 90.23 83.33 80.21 89.29
GN 90.00 86.36 92.36 80.00 94.10 61.31
RF 96.67 95.45 97.62 91.67 91.32 92.86

N: normal group; non-N: mild/moderate OSA and severe OSA groups; S: severe OSA group; non-S: normal and mild/moderate OSA groups; Acc: accuracy;
Sen: sensitivity; Spe: specificity; SVM: support vector machine; KNN: k-nearest neighbor; GN: gaussian naive-bayes; RF: random forest.

obvious that fApEn-minima and fApEn-maxima had the
highest correlation with AHI when K=15. The relationships
between |R| and M about fApEn-minima and fApEn-maxima
when K = 15 are shown in Fig. 7(b). It could be seen that the
correlations between fApEn-minima and fApEn-maxima and
AHI were the highest when M = 3. In conclusion, fApEn-
minima and fApEn-maxima performed better when we chose
K =15and M =3.

D. OSA AND SEVERE OSA SCREENING
The above analysis and the results in Table 1 show that
Mean and LH have significant differences between the nor-
mal group and the OSA groups, and fApEn-minima and
fApEn-maxima can significantly distinguish the severe OSA
group from other two groups. These results indicate that
Mean and LH have better detection performance in detecting
OSA patients from normal people, and fApEn-minima and
fApEn-maxima can effectively screen severe OSA patients
from other people. Therefore, Mean, LH, fApEn-minima
and fApEn-maxima were selected in this study for multi-
indices OSA screening. Multiple machine learning classifiers
were used to perform multi-indices detection, combining the
advantages of the above four HRV indices to detect OSA and
severe OSA patients.

Compared with other classifiers, we utilized random forest
(RF) to implement the classification of the subjects based on
two-fold cross-validation. The classification performance of
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multiple machine learning classifiers is shown in Table 2.
As shown in Fig 8, the corresponding ROC curve of RF
classifier achieves the best performance, and the AUC of RF
classifier is obviously higher than others. The classification
performance of RF classifier reached 96.67% accuracy to
distinguish the normal group from the other two groups and
91.67% accuracy to distinguish the severe OSA group from
the other two groups. They provided the highest accuracy and
a good balance between sensitivity and specificity. Moreover,
RF achieved the best AUC in OSA and severe OSA detection.
The above results indicate that using RF classifier in the
detection of OSA and severe OSA is significantly better than
others. Therefore, RF classifier is chosen to achieve the OSA
screening.

IV. DISCUSSION

A. COMPARISON AND SUMMARY

The performance of the time-frequency domain indices was
also verified by previous studies. The decreases of SDNN
and RMSSD in OSA patients reported by Roche et al. [37]
were consistent with our results. Lack of monotonicity with
the degree of disease may be one of the reasons for their
significance. Gula et al. [38] presented that LH was the
most useful indicator for OSA detection, whose screening
performance has been verified in our work. Although LH
was a reliable index for screening OSA patients, there was
no significant difference in LH between the mild/moderate
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FIGURE 8. (a) The ROC curves of the machine learning methods to distinguish the normal group from the mild/moderate 0SA
and severe OSA groups. (b) The ROC curves of the machine learning methods to distinguish the severe OSA group from the

normal and mild/moderate OSA groups.
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FIGURE 9. The comparison of fApEn-minima (a) and fApEn-maxima
(b) for the different disease states. N: normal group; M: mild/moderate
OSA group; S: severe OSA group.

OSA group and the severe OSA group. Therefore, LH was
unable to distinguish different severities of OSA, which was
in line with the findings of related studies [38], [45], [59].
Using HRV with the same database, our result was better than
others. Haitham et al. presented that the sample entropy of
HRYV in OSA patients has the advantage of anti-noise, and
the accuracy in OSA screening reached 70.3% [42]. Sliding
trend fuzzy approximate entropy (S1Tr-fApEn) was based on
empirical mode decomposition method [56]. The accuracy
of OSA screening increased to 85.0%. Li et al. reported that
variance delay fuzzy approximate entropy (VD_fApEn) pro-
vides a method for ANS fluctuation analysis in OSA patients
and OSA severity analysis, which showed an improved accu-
racy (90.0%) [45]. In this study, Emma-fApEn had a higher
accuracy 96.67% in OSA screening and 91.67% in severe
OSA screening. Therefore, Emma-fApEn is considered as a
valid indicator for severity analysis in OSA screening.
Significance analysis showed that Mean and LH were
effective indices for OSA screening. The results of the sig-
nificance analysis also displayed that these time-frequency
domain indices cannot discriminate the different severities
of the disease. fApEn-minima and fApEn-maxima were sig-
nificantly different between the severe OSA group and the
other groups, which manifested their potential for differ-
entiating severe OSA patients. Through correlation anal-
ysis, fApEn-minima (R = —0.705) and fApEn-maxima
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TABLE 3. Time-frequency domain and multiple moving averages of HRV
indices for the R and P value during sleep using ucddb database.

Indices R P value
Mean -0.089 0.673
Time domain SDNN <0.001 0.998
RMSSD -0.009 0.967
LF -0.080 0.706
Frequency domain HF -0.112 0.594
LH 0.138 0.511
. . fApEn-minima  -0.538 0.005

Multiple moving averages .

fApEn-maxima  -0.229 0.271

R: correlation coefficient; P value: significance of difference.

(R = —0.696) were negatively correlated with AHI, while
LH (R = —0.633) was positively correlated. As shown in
Fig. 5, these three indices all showed great monotonicity with
the OSA severity, while Mean not.

Machine learning methods were used to screen OSA and
severe OSA, and the results showed that the accuracy of
multi-indices OSA screening reached 96.67% by RF clas-
sifier, and the accuracy of severe OSA screening reached
91.67%. Compared with other classifiers, RF can better pro-
cess high-dimensional data in the face of multi-indices pro-
cessing and does not need feature screening.

Validation was implemented on St. Vincent’s University
Hospital / University College Dublin Sleep Apnea Database
downloaded from https://archive.physionet.org/pn3/ucddb/,
which contains ECG recordings from 25 subjects. We
extracted and corrected RRs from the database, and calcu-
lated the time-frequency domain indices and multiple moving
average indices of the RRs. As shown in Table 3, fApEn-
maxima and fApEn-minima have a higher correlation (|R| >
0.2) than other indices, whose violin plots are shown in Fig. 9.
fApEn-minima was statistically significant (R = —0.538),
demonstrating the relationship between the nonlinear indices
and AHI is more significant.
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B. METHOD MOTIVATION ANALYSIS

Moving average method is a simple low-pass filtering
method, which can reduce the fluctuation of data and make
data evener. Multiple moving average method can effectively
obtain the general trend of the sequence by taking the moving
average of it for many times. The general trend of the RRs is
related to the general changes of ANS tension. The variation
of the extrema of the RRs reflects fluctuations of ANS ten-
sion limits. Moreover, the multiple moving average method
can prevent the selection of inappropriate extrema due to
the small partial fluctuation of the RRs. Therefore, multiple
moving average method was used to filter the RRs to obtain
the general trend of them in this study. Since moving average
method can change the mean and standard deviation of the
sequence, it is necessary to normalize the RRs after each use
of moving average method, which improves the robustness of
the model.

Compared with approximate entropy and sample entropy,
fApEn is less affected by calculated parameters. fApEn has a
good robustness to noise, which can evaluate the complex-
ity of biomedical signals more accurately [60]. The influ-
ence of self-matching on entropy is highly related to the
length of sequence [61]. The lengths of extremum sequences
are affected by the RRs fluctuations, and the fluctuations for
normal controls are larger than for OSA patients in most
cases. As a result, the extremum sequences of normal people
obtained by multiple moving average method is longer than
those of OSA patients. By comparison, it was found that
the entropy obtained by self-matching was more correlated
with AHI. Therefore, self-matching was not eliminated in the
calculation of fApEn.

The repeat counter K and the interval length M of the
moving average method have an essential impact on the cal-
culation of Emma-fApEn. They directly affect the evaluation
performance of extremum sequence complexity on ANS ten-
sion limits. The correlations between fApEn-minima, fApEn-
maxima and AHI were the highest when we chose K =
15 and M = 3. Therefore, Emma-fApEn is able to better
evaluate ANS tension limits under K = 15 and M = 3.

Machine learning methods were used to combine the
advantages of multiple effective indices. The performance
of different classifiers was compared. Screening results
(Table 2) and ROC diagram (Fig. 8) show that RF classi-
fier had the best performance in OSA screening and severe
OSA detection. The accuracy of RF was higher than that of
SVM, KNN and GN, while the sensitivity and specificity also
reached a good balance. RF method combines all decision
trees together, which not only improves the accuracy of clas-
sification and regression [62], but also is suitable for nonlin-
ear analysis. Previous studies also indicated that RF classifier
showed better detection performance to distinguish different
severities of OSA [46], [47], [48]. Wrong predictions are
made only if more than half of the base classifiers are wrong.
RF is relatively stable. Even if a new data point appears in
the database, which will only affect one decision tree. It’s
difficult to affect all decision trees [62], [64]. Furthermore,
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each decision tree is built by random attribute selections and
random samples from the original training set [63]. Outliers
caused by noise in the samples will reduce the accuracy of the
corresponding decision tree. The introduction of two types
of randomnesses allows outliers to affect some decision trees
instead of all the decision trees in a random forest. The forest
is a vote of all decision trees, which is less affected by the
decision trees with low accuracy. So RF does not overfit and
has strong anti-noise performance. Unbiased estimation of
generalization error can be realized while balancing errors,
which enables the method to obtain the strong generalization
ability [64].

C. PHYSICAL INTERPRETATION

Sudden fluctuations happen in ANS when sleep apnea occurs.
The imbalance between the sympathetic and vagus nerve
system can lead to ANS dysfunction [36]. HRV is proved
to be an effective indicator to evaluate ANS function, and
its reduction is one of the features of OSA occurrence [34].
As verified in this study, multiple classical time domain
indices can be used to represent HRV changes [37]. Low
frequency power reflects sympathetic tension, and high fre-
quency power reflects parasympathetic tension. As their ratio,
LH can reflect the balance between parasympathetic tone and
sympathetic tone.

However, time-frequency domain analysis is linear and
more suitable for stationary signal, while the process of
regulating heart rate through ANS is nonlinear and non-
stationary. In contrast, non-linear indices of HRV are bet-
ter to analyze the complex dynamics of the heartbeat [41].
Therefore, nonlinear methods are usually used to analyze
HRV [40]. In this study, multiple moving average method
was used to weaken the small partial fluctuations of the RRs
to obtain the general trend. The general trend of the RRs
reflected the changes of physiological sympathetic tension
during sleep. The extremum sequences in the general trend
can reflect the changes of the relative tension limits of the
sympathetic nerve. As shown in Fig. 3, the periodicity of the
general trend of the RRs in OSA patients was obvious, and
the fluctuation ranges of maximum and minimum sequences
were significantly slighter than that of normal subjects. These
results indicate that sympathetic tension in OSA patients
enters a nearly periodic change when sleep apnea occurs. The
spectrum of HRV is narrowed and the high frequency com-
ponent decreases, which reduces the variation in the maxima
and minima. Moreover, it reduces the ability of OSA patients
to adapt to external changes [65]. These may be related to
decreased tension and activity of ANS in OSA patients.

The sympathetic nervous system is enhanced and the
parasympathetic nervous system is weakened when OSA
occurs. Therefore, the low frequency component of HRV
increases and the high frequency component decreases,
resulting in the periodic fluctuation of HRV. The periodic
fluctuations are manifested as the uniform fluctuation of
HRYV, which lead to the decrease of amplitude variation of the
extremum sequences of HRV [66]. The periodic fluctuations
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of HRV basically do not occur in normal people, and the
mild/moderate OS A patients have slight periodic fluctuations
of HRV. In contrast, the increased periodic fluctuations and
the reduced complexity of extremum sequences of HRV
are more significant in the severe OSA patients. Moreover,
traditional methods were to analyze the entire sequence of
HRV. But we tended more to use the extremum sequences
analysis of HRV. As the severity of OSA increased, the
extremum sequences changed greatly, which leads to signifi-
cant decreases in the complexity of fluctuations in ANS. The
decreased tension and activity of ANS are more significant
in severe OSA group. Therefore, non-linear indices of HRV
we used in the study are more effective to screen severe OSA
group than traditional metrics.

There are some limitations in this study. First, extremum
sequences are greatly affected by the noise in the signal.
Denoising method is important when obtaining extremum
sequences. The data must conform to independent identically
normal distribution [67], but the actual conditions do not gen-
erally meet this requirement. Therefore, the algorithm used in
this study may not remove gross errors well. Second, there are
differences in age and BMI among different groups in the data
set we used. Individual differences are not taken into account
in the method, which may affect the experimental results.
Finally, potential cardiovascular diseases are not mentioned
in this study, which may have influenced the HRV analysis.
In the future studies, we will adopt more effective methods to
improve the experimental method and verify the reliability of
indices in more experimental data.

V. CONCLUSION

In this study, Emma-fApEn was proposed as a HRV nonlin-
ear analysis method for OSA research. Mean, LH, fApEn-
minima and fApEn-maxima were used to analyze the fea-
tures of HRV. The results showed that Mean and LH could
significantly distinguish OSA patients from normal people.
fApEn-minima and fApEn-maxima could significantly dis-
tinguish severe OSA patients from other people. Combined
with the above four indices, RF was selected as the best
classifier and achieved OSA screening with 96.67% accuracy
as well as severe OSA screening with 91.67% accuracy.
Therefore, the combination of Mean, LH, fApEn-minima and
fApEn-maxima screening has an advantage over traditional
single-indicator screening in analyzing HRV features and
differentiating OSA severities. Moreover, this method also
provides a new clinical reference for the diagnosis of OSA.
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