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Summary
Introduction: Clinical decision support science is expanding to 
include integration from broader and more varied data sources, 
diverse platforms and delivery modalities, and is responding 
to emerging regulatory guidelines and increased interest from 
industry.
Objective: Evaluate key advances and challenges of accessing, 
sharing, and managing data from multiple sources for devel-
opment and implementation of Clinical Decision Support (CDS) 
systems in 2016-2017.
Methods: Assessment of literature and scientific conference pro-
ceedings, current and pending policy development, and review of 
commercial applications nationally and internationally. 
Results: CDS research is approaching multiple landmark points 
driven by commercialization interests, emerging regulatory policy, 
and increased public awareness. However, the availability of 
patient-related “Big Data” sources from genomics and mobile 
health, expanded privacy considerations, applications of ser-
vice-based computational techniques and tools, the emergence 
of “app” ecosystems, and evolving patient-centric approaches 
reflect the distributed, complex, and uneven maturity of the CDS 
landscape. Nonetheless, the field of CDS is yet to mature. The 
lack of standards and CDS-specific policies from regulatory bodies 
that address the privacy and safety concerns of data and knowl-
edge sharing to support CDS development may continue to slow 
down the broad CDS adoption within and across institutions.
Conclusion: Partnerships with Electronic Health Record and 
commercial CDS vendors, policy makers, standards development 
agencies, clinicians, and patients are needed to see CDS deployed 
in the evolving learning health system.
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Introduction
Clinical decision support (CDS) is a well-es-
tablished and evolving field that “provides 
clinicians, staff, patients, or other individuals 
with knowledge and person-specific infor-
mation, intelligently filtered or presented 
at appropriate times, to enhance health and 
health care”[1,2]. The increasingly varied 
settings where CDS is applied range from 
solving problems that arise during day-to-day 
clinical care, to addressing patient’s health 
maintenance and preventative care, or to fo-
cus on enhancing patient/ provider education 
and training [3,4]. CDS systems (CDSS) 
have been recognized in roughly three main 
groups: (i) Relevant information retrieval 
at the point-of-care based on the clinical 
context (e.g., Infobuttons), (ii) Error checks, 
alerts, order sets, and other recommenda-
tions that are patient- and situation-specific, 
and (iii) Reducing cognitive burden and 
support problem solving/decision making by 
structuring and organizing information such 
as structured reports, graphical representa-
tions, dashboards, structured templates for 
documentation, preference lists, and order 
sets. These groups can further be considered 
to be within four implementation phases: (i) 
Standalone CDSSs, (ii) CDSSs that are built 
into the clinical systems, (iii) Standardizing 
the CDS content for sharing, and (iv) Web 
service models. 

This increasingly broad domain of CDS is 
influenced by the access to and adoption of 
more powerful and cheaper technology, cur-
rent and anticipated forces of regulation, and 
evolving commercial market enthusiasm. 
The scope of this survey is to highlight sig-
nificant CDS developments and innovations 
during 2016-2017 that build on recent IMIA 
and community reviews, with an emphasis 

on data access, data sharing, and data owner-
ship issues that cross and extend the groups 
and phases described above. 

Material and Methods
We assessed literature and guidelines 
from PubMed, Google Scholar, and Web 
of Sciences from 2016 to 2017, including 
presentations at the 2017 American Medical 
Informatics Association (AMIA) annual 
symposium, the 2017 Society for Medical 
Decision Making meeting (SMDM 2017), 
public/private groups (CDS coalition), 
and federal guidelines. Literature search 
keywords included “privacy”, “clinical de-
cision support”, “decision support”, “data 
sharing”, “policy”, “interoperability”, and 
“standards”. We manually excluded publi-
cations and sources that did not explicitly 
involve decision support systems or methods 
in human health, such as patient privacy and 
autonomy, or data access and data sharing 
technology. As this area is dynamic and 
rapidly evolving, we have included seminal 
papers and initiatives that fell slightly outside 
the search date-range for context. We used 
extensive personal communications and 
recommendations regarding international 
work as well as in industry settings.

These literature and resources were 
evaluated for innovation and evidence of 
implementation beyond the 2016 IMIA 
Yearbook’s 10 thematic areas of CDS [5]. 
Throughout, we looked for evidence of 
change or progress towards the next gener-
ation of anticipated interoperability models: 
(i) Sharing knowledge artifacts: developing 
computable standard knowledge artifacts 
that could be integrated and interpreted by 
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others, (ii) Knowledge service providers with 
standards-based patient evaluation services: 
computable standard-based knowledge (e.g., 
clinical care guidelines), written once and 
incorporated anywhere, and (iii) Sharing 
standard applications: applications are de-
veloped and shared based on standard EHR 
Application Programming Interfaces (API) 
[6]. In the following review, we outline new 
developments that either extend or rein-
force these interoperability models, reflect 
changes to practice, or provide new evidence 
that address data sharing, data access, and 
privacy issues for CDS. 

Results
Based on our reviews, there were several 
inter-related advancing themes: regulatory 
developments for CDS commercialization, 
decision support data sharing architectures, 
access to data and standards development, 
decision support application sharing, large 
data environments, patient-directed decision 
support, population health, and ethical and 
privacy issues in CDS (Table 1).

Regulatory Developments for CDS 
Commercialization
The Food and Drug Administration (FDA) 
Center for Devices and Radiological Health 
(CDRH) is responsible for the development 
and public release of guidance on CDS 
software. CDS guidelines have been under 
CDRH consideration since 2011 and CDS 
vendors as well as industry were anticipat-
ing new guidelines during 2017. However, 
CDRH has provided draft guidance for 
public comments in December 8, 2017 
[7]. The released policy draft guidance to 
Health Care Professionals for Clinical and 
Patient Decision support defines and cate-
gorizes CDS software functions that are not 
devices from CDS functions that remain 
devices. It further clarifies both of these 
definitions as being distinct from Patient 
Decision Support software. The implica-
tions are that the draft guidance provides 
formalized definitions of locations where 
CDSSs are used in healthcare settings, 

and for the development and compliance 
components of future commercial CDSSs. 
According to the new guidance, products 
that have a sole intent to transfer, store, 
convert formats, and display medical device 
data and results, including medical images, 
waveforms, signals, or other clinical infor-
mation, are not considered as devices and 
are not subject to FDA regulatory require-
ments. But, if the products also analyze 
or interpret the acquired data, help with 
diagnosis, cure, mitigation, prevention, or 
treatment of a disease or condition, or if the 
products generate, based on the acquired 
data, alarms or alerts to inform healthcare 
providers to take an immediate clinical ac-
tion, they will be under the FDA regulatory 
oversight. In parallel to this guidance, the 
FDA Software Precertification program was 
launched in September 26, 2017 with nine 
selected industry vendors including those 
with known CDS interests such as Apple, 
Roche, Johnson and Johnson, and Verily, 
with a stated intent to foster innovation 
while protecting public health through an 
accelerated approval process [8]. 

To prepare for anticipated FDA enhanced 
transparency and evaluation requirements, 
the industry and health-system-oriented 
CDS Coalition has offered voluntary 
industry guideline recommendations for 
CDS design [9]. The coalition stipulates 
that CDS software developers address two 
fundamental questions: whether healthcare 
users of the software can independently 
review the basis of the software recommen-
dations, and whether healthcare users, in 
the intended circumstances, actually need 
to rely on the software. Since the 2012 
FDA Safety and Innovation Act (FDASIA), 
the FDA along with the NIH Office of the 
National Coordinator (ONC) and the Federal 
Communications Commission (FCC) have 
been required to develop and publish in their 
websites “a report that contains a proposed 
strategy and recommendations on an ap-
propriate, risk-based, regulatory framework 
pertaining to health information technology, 
including mobile medical applications, that 
promotes innovation, protects patient safety, 
and avoids regulatory duplication“. These 
requirements and the potential for central 

Table 1   Summary of themes in multi-sourced health data on decision support science 2016-2017

Themes

Regulatory developments for CDS 
commercialization

Decision support data sharing 
architectures

Access to data and standards 
development

Decision support application sharing

Large data environments

Patient-directed decision support

Population health

Data sharing and ethics in CDS

Summary Comments

FDA draft guidance released to clarify CDS software that will and that will not remain 
under regulatory monitoring

Wider implementation and testing of Service Oriented Architectures (SOA) for data 
sharing and services in broader multi-system environments

Progress with many CDS-related standards: Clinical Quality Framework (CQF), FHIR 
compatible QUICK – the QUality Improvement and Clinical Knowledge model, Clinical 
Quality Language (CQL) expression language and Event-Condition-Action (ECA) rules 

Advances in HL7 FHIR standards development for generalizable data access and 
SMART (Substitutable Medical Applications & Reusable Technologies) platform to 
embed web applications into electronic health record (EHR) workflows

Movement of commercial vendors into big data analytics and steady progress with 
exchanging genetic and genomic data across laboratories, EHRs, and others

Regulatory development in mHealth CDS, and expanded focus on evaluating 
multi-stakeholder involvement in shared decision making through patient-portals

Initiatives by public health institutions such as VA and CDC addressing technical 
challenges in linking disparate public and private data sources and CDSS

Efforts by agencies such as Global Alliance for Genomics and Health, American College 
of Medical Genetics, research efforts by National Institutes of Health (NIH)’s ‘All of US’ 
program and industry (Verily‘s Project Baseline), and patient advocacy groups address-
ing ethical concerns, including personal benefit expectations of patients separate from 
the goals of the research communities
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coordination of future guidelines develop-
ment have seen recommendations to form 
a Health Information Technology Safety 
Center to collect error reports, review CDS 
and EHR knowledge resources, and provide 
models for reviewing EHR and CDS safe-
ty-related issues at participating centers and 
institutions [10, 11].

Starting in 2016, the Joint Commission 
mandated organizations to prioritize imple-
mentation of specific predictive analytics 
policies, procedures, and staff education 
about important alarms in healthcare 
settings [12]. Environments including 
Intensive Care Units (ICUs) were further 
required to address issues of CDS design 
and implementation in order to minimize 
cognitive overload and reduce alert fatigue 
in practitioner settings. Critical care settings 
are data-, information-, and knowledge-in-
tensive and real-time decision support 
based on high-volume data analytics is 
increasingly a key requirement. Work that 
involves overcoming very high volume of 
streaming data coupled with rapid decision 
support recommendations has been report-
ed both nationally and internationally in 
critical care and pediatric settings [13-16].

Decision Support Data Sharing 
Architectures 
Approaches that use Service Oriented Ar-
chitectures (SOA) to share common encoded 
structured rules and services have been 
tested in broader multi-system environments. 
CDS using SOA access requires patient data 
to be abstracted from EHRs and shared with 
the CDS services that provide knowledge 
resources from outside of EHR systems [17]. 
CDS efforts involving SOA are testing the 
standardization of interoperability between 
EHR systems, based in part on established 
meaningful use requirements such as Conti-
nuity of Care Documents (CDA)/Consolidat-
ed CDA and in some instances Virtual Medi-
cal Record (vMR) clinical entities [18]. SOA 
CDSSs seek to overcome the requirement 
that all EHRs be configured to implement 
complicated CDS knowledge encoding. Data 
access and data sharing via SOA are required 
to be secure, vendor diverse, reusable, and 
implementable as web-accessible services. 

Two international standards agencies, HL7 
and Object Management Group (OMG) 
jointly support SOA by developing service 
specification standards. Several countries 
have adopted SOA including USA and 
Canada as part of their Health Information 
Technology (HIT) strategies [19]. However, 
SOA approaches continue to require tuning 
for specific systems, and are not yet scalable 
to provide generalized CDS services to mul-
tiple applications - one overarching goal of 
standards development agencies. 

Other technical factors of the SOA ar-
chitecture are concerns, such as the delay 
in response time due to the excessive time 
required for data retrieval, or the balance 
between availability and security require-
ments for ensuring protection of potentially 
sensitive patient data. Requirements for 
hosting SOAs on commercially-owned 
cloud computing environments that allow 
for scalability and rapid deployment are 
being proposed and evaluated but may not 
yet be cost effective until they demonstrate 
substantial shared usage [19, 20]. Work 
reporting a privacy-preserving framework 
for implementing real-time monitoring 
proposed new data protocols that support 
patient health status monitoring without 
privacy leakage in simulation settings [21]. 
One example model of a SOA implemen-
tation describes a HealthCare Decision 
Support System (HCDSS) in Taiwan 
supporting both design and registration 
of CDS over a SOA architecture among 
hospital groups [22]. Another study evalu-
ated web-based CDS in a multi-emergency 
department implementation using a shared 
Enterprise Clinical Rules Service (ECRS), 
where recommendations were proposed for 
inclusion of children with minor blunt head 
trauma in clinical trials through real-time and 
near-real time recommendations [23, 24]. 

Access to Data and Standards 
Development
Providing access and enabling the sharing 
of patient’s health data through HIT is foun-
dational to CDS. Organizations weigh cost, 
access, and security of patient information 
against CDSS implementation efforts that 
require data sharing and access from external 

sources [25]. However, in many cases, only a 
subset of patient’s data is all that is required 
for CDS (and clinical quality measures), 
based on the objective of the CDS.

A multi-institutional dedicated collabo-
ration called OpenCDS continues to work 
on open-source CDS standards-based tools 
that focus on developing and managing 
knowledge executable platforms that work 
with different clinical systems [26]. As CDS 
and Electronic Clinical Quality Measures 
(eCQM) can be considered two approaches 
to a similar challenge, the Clinical Quality 
Framework (CQF) was developed as part of 
the Clinical Quality Improvement (CQI) ef-
forts to promote standards of access to EHR 
clinical content under a common goal to 
reduce duplication of efforts. Components 
of the framework include a common meta-
data standard, the QUICK (QUality Im-
provement and Clinical Knowledge) model 
to replace vMR, and a new expression 
language, the Clinical Quality Language 
(CQL) that attempts to incorporate logic 
encoding features of GELLO (Guidelines 
Expression Language - Object Oriented), 
an Object-Oriented Query and Expression 
Language for CDS, Event-Condition-Ac-
tion (ECA) rules, and Arden Syntax. These 
new standards are designed to be able to 
use the Fast Healthcare Interoperability 
Resources (FHIR), the emerging HL7 data 
access API standard, to provide a more di-
rect access to EHR clinical data [27]. Many 
demonstration pilots have been successfully 
tested including the Center for Disease 
Control (CDC) Opioid CDS Demonstration 
Project that encodes CDC’s guidelines for 
Opioid prescription for chronic pain man-
agement [28, 29]. Archetypes, the clinical 
information models developed by the in-
ternational virtual standards development 
agency, openEHR, were found to contain 
more granular representational detail and 
structure compared to HL7’s vMR, thus 
providing better access and integration to 
patient’s data, and some potential for appli-
cations beyond CDS [30, 31]. 

Another role of enhanced standards-driv-
en patient data access is that it may be an 
important solution to help reduce alert 
fatigue by designing and configuring alerts 
so that only accurate and relevant alerts are 
triggered. Other solutions and frameworks 
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that have been recommended as to person-
alize and reduce alert fatigue include con-
figuring alerts based on context and provider 
workflows, both of which require providing 
CDSSs increased and structured access to 
patient’s data [32-34]. 

Decision Support Sharable 
Applications 
Shareable CDS healthcare applications are 
being proposed to develop access and link 
to patient data from EHRs, provide CDS, 
and add additional representational features 
that cater to the diverse needs of healthcare 
sub- and super-specialty professionals and 
patients. The HL7 FHIR standard is being 
leveraged in support of generalizable data 
access approaches in a range of areas [35]. 
FHIR specifies a library of standard clinical 
“resources”, such as allergy, adverse reac-
tion, family history, and procedures which 
can be readily mapped to existing EHR data 
models. FHIR resources roughly correspond 
to the data content of vMR templates but 
avoid the complexity of mapping through 
the HL7 V3 RIM intermediary. FHIR utilizes 
the ubiquitous hypertext transfer protocol 
HTTPS and creates a standard API to share 
the information encoded within resources 
among applications such as EHRs. This 
reflects a significant shift with regard to 
providing a remote CDS service through 
encapsulating full access to relevant patient’s 
clinical data required for the CDS logic 
- such as laboratory results, medications, 
and diagnosis data within vendor agnostic 
interfaces without requiring custom coding. 
This controlled and standardized access to 
clinical data for CDS provides new opportu-
nities of creating CDS abstraction interfaces 
that were not possible with inflexible and 
custom access to localized and limited sets 
of patient data.

A similar significant shift is the expansion 
of implementation of CDS on the SMART 
(Substitutable Medical Applications & Re-
usable Technologies) platform, a standard 
specification to embed web applications 
into EHR workflows. The FHIR-based apps 
discussed above when combined with the 
SMART platform provide embeddable apps 

with graphical interfaces, paving the way for 
“SMART on FHIR” app stores. An increas-
ing number of EHR vendors have announced 
capabilities of supporting SMART apps. 
Though still relatively modest, the SMART 
on FHIR application market appears to be 
a developing ecosystem with a range of 
EHR vendors and academic stakeholders. 
This encapsulation of standards-driven data 
access as well as presentation frameworks 
that can be linked to providers workflows at 
the point of care show progress towards using 
sharable and custom external CDS to address 
complex clinical scenarios [6, 35-37]. 

Large Data Environments and 
Decision Support
Many products of the emerging big data an-
alytics innovations in healthcare meet broad 
criteria to the extent that they can be consid-
ered as CDSSs. Big data analytic capabilities 
based on previously described healthcare 
implementation examples have been cate-
gorized into four major capabilities: patterns 
of care analytics, unstructured data analytics, 
predictive analytics, and traceability. The 
objective of the “traceability” capability is 
to track the output data from all service units 
of organizations IT system components to 
check the data for consistency, visibility, and 
easy accessibility for analysis [38].

In the commercial world of big data ana-
lytics, IBM Watson Health‘s Cognitive Com-
puting platform has gained significant media 
attention though it has limited independent 
academic evaluation of utility. Adoption 
of IBM’s proprietary DeepQA system to 
healthcare has been advertised as able to 
consume structured and unstructured pa-
tient’s clinical data, medical knowledge de-
rived from medical textbooks, dictionaries, 
clinical guidelines, research literature, and 
publicly available information on the web, 
and to hypothesize an ordered list of possible 
evidence-based answers to a given patient’s 
clinical condition [39, 40]. Using patient’s 
longitudinal clinical data from EHRs, it is 
purported to be able to generate and summa-
rize evidence about differential diagnoses, 
problem lists, most appropriate treatments, 
and to search for specific clinician’s free text 
questions about the patient. The CDS appli-

cations of Watson have been predominantly 
within oncology with variable results of the 
system in choosing the appropriate treatment 
protocols for cancer patients as compared to 
tumor board cancer specialists [41, 42]. The 
reduced accuracy of this otherwise relatively 
opaque system has been attributed to local 
variations of cancer management given the 
available resources [43].

Expectations of integrating genomics 
and clinical data to provide Genomics CDS 
(GCDS) face four challenges related to 
interoperability: CDS data sharing architec-
tures, patient data access and standards, ap-
plication sharing, and CDS with large data 
environments [44-46]. Despite the broad 
and evolving availability of commercial 
and institutional genetic testing services, 
most current clinical genetic test results 
are predominantly self-contained reports 
and are not computationally interpretable. 
Actionable result data from genetic testing 
laboratories are often free text, lack consis-
tent structure, indexing, or mapping to stan-
dard clinical vocabularies rendering them 
of limited traceable or interoperable value. 
This adds to the complexity of data sharing 
and the integration of genetic results with 
other EHR data structures, including their 
incorporation into CDS modules. Recent 
works report on the requirements for de-
sign, delivery, and presentation methods 
for delivering summarized multi-gene 
sequencing panel results to clinicians [47], 
the evaluation of the information structure 
and delivery context of variant reports to 
clinical stakeholders at the point of care 
[48], and approaches to providing “In-
fobuttons” for retrieving specific genetic 
information [49].

The active pharmacogenomics (PGx) 
application area of GCDS is identifying 
barriers and opportunities in workflow inte-
gration, standards alignment, and models to 
evaluate tailored genomic-based drug therapy 
[50-52]. A pediatrics pilot implementation 
of an automated physician-oriented view 
of pharmacogenomics variants, potentially 
actionable at the point of care for medication 
prescribing, reported positive results for scal-
ability of the system, as well as the need to 
focus on clinician’s alert response behaviors 
[50]. A review of user-design components of 
pharmacogenomics systems to date identified 
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that evaluations of user-interface at the point 
of care were limited, with the majority work 
being dominated by prototype designs [51]. 

The Pharmacogenomic Resource for 
Enhanced Decisions in Care and Treatment 
(PREDICT) personalized medicine program 
implements and evaluates public health ap-
proaches to identify cohorts of patients with 
specific genotypes for precise medication 
prescriptions targeted to improve treatment 
effectiveness, patient outcomes, and reduce 
healthcare costs [52]. Recent PREDICT-as-
sociated studies reported on multidisci-
plinary implementation model approaches at 
the point of care [53], outcomes of clinician 
drug prescription patterns at the point of care 
based on preemptive pharmacogenomic risk 
[54], and attitudes of clinicians regarding 
notification timeliness and decision-making 
responsibility following implementation into 
standard practice environments [55]. 

The electronic Medical Records and 
Genomics (eMERGE) network, estab-
lished in 2007 and now in phase three, 
focuses on developing and validating 
electronic phenotyping algorithms for large-
scale, high-throughput genomics research. 
eMERGE enrolls over 25,000 participants 
across 10 national centers to identify best 
practices for identifying rare variants and 
assessing phenotype variant implications 
and impacts on patient and care processes. 
In 2015, the eMERGE consortia published 
a review of the practical considerations for 
adoption, based on the successful imple-
mentation of at least one PGx CDS rule in 
the clinical setting across 10 eMERGE sites. 
The majority of eMERGE sites opted for the 
creation of an Omic Ancillary System (OAS) 
to separately manage genetic and genom-
ic data [56]. Recent eMERGE publications 
focused on CDSS specific implementation 
outcomes performed within the network, 
including GCDS for drug-based precision 
medicine [57, 58]. 

Patient-Directed Decision Support
The rapidly expanding mobile health ecosys-
tem remains primarily driven by consumer 
demand for personal health tools, with the 
definition of where these technologies could 
be considered as CDSSs linked to clinically 

actionable health outcomes still unclear. 
Recent published works within clinically 
oriented personalized health that involve 
mobile or e-health technologies were pre-
dominantly research-oriented framework 
proposals. With the FDA Software precer-
tification program enrolling major device 
and technology vendors with interests in 
consumer-oriented software and devices 
and embedded CDS, the landscape and ex-
pectations of personal CDS software tools 
and devices may change soon [8]. Other 
recent works showed a focus on design 
and evaluation methods, with proposals 
of models for evaluating the provisioning 
of evidence-based practices with patient 
involvement [59-60], evaluation of patient 
education in chronic care management [61, 
62], and requirements for capturing specific 
patient-provided mobile data in forms that 
link to physician-oriented decision support 
environments [18]. 

Patient portals that are integrated into 
EHR systems may be key environments for 
developing shared decision-making, through 
linking patient-provided data in context 
(including data acquired through mHealth 
as well as direct to consumer laboratory 
tests) with clinically acquired EHR data. 
Works focused on evaluating where patient 
portals contributed to communications and 
shared decision-making in intensive care 
settings [63], and consequences on clinical 
organizational behavior through augmented 
communications through patient portals 
[64]. Patient portals that provided results 
based on clinically acquired data reported 
on approaches for evaluating risks to patients 
through the presentation of summarized 
clinical lab results [65], and evaluation of 
impact of sharing genomic results through 
a clinically-oriented patient portal (vs. study 
specific genomic interfaces) [66]. 

In a separate reflection of the challeng-
es of evaluating patient-directed decision 
support dependencies on location and 
stakeholders, the Center for Medicare and 
Medicaid Services (CMMS) cancelled the 
proposed testing of the Shared Decision 
Making (SDM) model evaluation due to 
the lack of participation of Accountable 
Care Organizations. CMMS will continue 
to evaluate the Direct Decision Support 
(DDS) model that explores how to enhance 

practitioner-patient relationships and support 
preference-sensitive patient decision-making 
through a focus on six conditions, including 
heart disease, osteoarthritis, and localized 
prostate cancer [67, 68].

Population Health 
Expansion of CDS beyond clinical settings 
to include population health environments 
was considered from the perspectives of 
chronic care management and diagnostic 
support. A coordinated Chronic Care Model 
(CCM) implementation that linked multiple 
EHRs replaced manual patient characteri-
zation, and disconnected programs reported 
favorable health management outcomes 
over a four-year evaluation [69]. A study of 
interoperability requirements across clinical 
domains within the Veterans Administration 
(VA) characterized technical challenges in 
linking national VA infrastructures to local 
CDSSs, as well as data idiosyncrasies such 
as standardized medications [70]. The Pub-
lic Health Activities and Services Tracking 
(PHAST) group, representing a multi-
state consortia of researchers and practice 
partners engaged in public health service 
delivery, proposed approaches that spec-
ified linking local and public health data 
sources [71]. A review of the requirements 
to link exposome-acquired data from public 
health sources to health outcomes that can 
support discovery suggests that it is early 
days for effective implementation of such 
data sources into CDSSs [72].

At the national level, in order to ensure 
that patients receive “the right immuniza-
tion at the right time“, the CDC has devel-
oped Clinical Decision Support for Immu-
nization (CDSi) logic specification that 
incorporates vaccine decision guidelines in 
an unambiguous way to enable automatic 
evaluation and forecasting of recommend-
ed immunizations for a given patient. Any 
Immunization Information System (IIS) 
and clinical systems could develop and 
implement the CDS engine and run the 
CDSi logic [73]. A recently announced 
collaborative, expansive in its stakeholder 
invitations (involving CDC programs, EHR 
vendors, developers, and public health part-
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ners, among others), is the CDC‘s Office of 
Public Health Scientific Services (OPHSS) 
initiative for “Adapting Clinical Guidelines 
for the Digital Age” [74].

Data Sharing and Ethics in CDS
In a review of the current ethical and legal 
issues surrounding computerized decision 
support, Goodman addresses the complex 
relationship that exists between protecting 
patient safety and opportunities at improv-
ing care [75]. As described, accountability, 
responsibility, and liability are at stake, as 
well as the role of government regulations, 
and more importantly the lack of empirical 
evidence to help address ethical concerns. 
Potential applications of CDS in medical 
genomics face perhaps the broadest ar-
ray of data sharing, privacy, and ethical 
challenges, and they reflect the expansive 
data ownership and expected utility issues 
of multi-source data linkage that crosses 
individual, institutional, national, and 
international boundaries. The discussion 
of the potential benefits of sharing and 
integrating genetic and genomic data with 
clinical data as part of CDS systems for 
personalized medicine is a prominent focus 
with cancer and rare diseases communities, 
but unevenly implemented within individ-
ual national or state borders. International 
organizations such as the Global Alliance 
for Genomics and Health (GA4GH) or the 
US national American College of Medical 
Genetics (ACMG) have proposed recom-
mendations for evaluation and adoption 
of fine-grained guidelines, policies, and 
procedures that encode patient preferences 
and that can maintain abilities to evaluate 
disease community health benefits through 
expanding trust relationships across borders 
[76-78]. Ongoing efforts to identify public 
needs and awareness about large scale 
genomic, epidemiological, clinical, and 
research data reflect the base challenges of 
engaging patient and stakeholder commu-
nities over the long-term as CDS systems 
and the economic market for CDS evolve 
[79-81]. The growing public awareness of 
the US national precision medicine program 
“All of Us” [82], the VA Million Veterans 

Program [83], as well as industry research 
efforts such as Verily’s Project Baseline [84] 
that are collecting large amounts of data for 
predictive and diagnostic decision support 
may spur a more expansive discussion of 
personal benefit expectations separate of 
the research goals that are being promoted.

Discussion
The breadth and overlaps of the activity in 
CDS did not allow us to exhaustively identify 
or describe every important or significant 
study or initiative. Throughout our review, 
we sought to identify the expansion or 
change across the thematic foci described 
in the previous IMIA review [5], and to 
highlight policies and innovative efforts that 
cross boundaries of data sharing, technology, 
and application domains. 

The opportunities for CDSSs to help 
deliver high quality, safe, and cost-effective 
healthcare remain immense, yet their imple-
mentation as reflected in the literature is still 
limited, uneven, and lacks consistency and 
uniformity across institutions or industry 
partners. The potential domains of influ-
ence for successful CDSS development and 
adoption include technical, organizational, 
financial, political, policy/regulatory, and 
sociocultural dimensions, but they are not yet 
clearly represented as strategic investment 
priorities within or across health systems. It 
is important to acknowledge that the imple-
mentation of commercial EHR systems now 
dominates clinical health systems nationally 
and internationally - within the US, Canada, 
Australia and Western Europe. EHR system 
implementation has been a relatively stable 
market in 2017, with over 50% of the market 
represented by systems from Cerner or Epic 
[85, 86]. These dominant market forces make 
the potential impact of CDS systems and 
approaches we describe difficult to separate 
from the dependencies on the ecosystems of 
those vendors and their many individual and 
unique implementations. 

Current limitations for exchangeable 
CDSS development and adoption are attrib-
utable to the lack of formal specifications for 
CDSS components, the lack of alignment 
of policy and regulatory guidance, and the 

slow universal adoption of vocabulary and 
interoperable standards or uniform work-
flows. These factors contribute to quality 
concerns of the collected multi-source data, 
not just in support of the implementation 
and evaluation of CDSSs, but also to the 
overall usefulness of the data for other 
informatics-related applications such as 
registry development, data submission to 
insurers, regulatory and professional insti-
tutions, or quality and outcomes research 
efforts. To date, major vendors continue to 
develop their own proprietary vocabularies 
to represent clinical content while gradually 
incorporating standards-based vocabularies 
provided by third parties such as ICD codes, 
medication lists, and laboratory orders. The 
most relevant issue for CDS beyond variety 
in common terminologies is the widely 
heterogeneous implementation of clinician 
workflows across institutions, even within 
the same vendor of EHR systems, which im-
pacts the capabilities to consistently encode 
clinical care guidelines. A recent taxonomy 
evaluation of CDS malfunctions identified 
that uneven code set updates, software 
updates, data migration between systems, 
and the difficulty of implementing CDS 
within local environments were consistent 
across distinct and separate evaluated 
environments [87]. Of the interoperability 
models discussed in the introduction, the 
challenge of heterogeneous implementa-
tions of workflow will continue to pose 
significant barriers to artifact sharing for 
CDS, and will influence the expansion of 
CDS applications that require standard 
EHR API’s.

One promising new initiative for interop-
erable CDS development is the recently 
announced American Medical Association 
(AMA) Integrated Health Model Initiative 
(IHMI) partnership with major HIT vendors 
including Epic, Cerner, and IBM, as well as 
the standards organization SNOMED and the 
American Medical Informatics Association 
(AMIA). IHMI seeks to incorporate best 
practices to manage interoperability and 
care models to support continuous learning 
health environment [88]. This sponsorship 
by AMA is a significant recognition of the 
need to develop new models of partnership 
between vendors, researchers, and clinical 
professions.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



22

IMIA Yearbook of Medical Informatics 2018

Shankar et al

In 2007, the National Academy of Med-
icine (formerly Institute of Medicine) pro-
posed the Learning Health System (LHS), 
where learning from current state and itera-
tive health improvements are a routine and 
continuous process [89]. CDS and HIT are at 
the heart of LHS where CDS guides practice, 
practice outcomes, and performance-derived 
new knowledge, which are further incor-
porated into CDS, iteratively learning and 
improving healthcare, and reducing costs. 
The LHS has gained momentum in many 
areas including CDS, yet it remains difficult 
to observe or demonstrate in practice. The 
architecture cycle of the current version of 
the LHS includes Data to Knowledge (D2K), 
where data is converted into knowledge, 
Knowledge to Performance (K2P), where 
knowledge influences performance, and 
Performance to Data (P2D), where changes 
in performance generate new data which 
triggers the next iterative cycle. The K2P 
is touted to provide recommendations to all 
stakeholders in the healthcare ecosystem 
and drive implementable changes from the 
individual level up to the system level, thus 
transcending the current CDS paradigm 
[90, 91]. The themes, policies, HIT infra-
structures, and required competences (data 
science and implementation research) shared 
by LHS and precision medicine initiatives 
overlap, and suggestions are to synergize 
both initiatives [92]. 

Conclusions
Many biomedical informatics concerns in-
volving access to data, security and privacy 
technologies, standards for interoperability, 
evaluation models, as well as data ownership 
and governance remain challenging and ac-
tive research/implementation problems for 
CDS. In the review period, these challenges 
were not uniquely different between national 
or international research, though different 
motivators such as evolving federal regula-
tory guidance and commercialization may 
differentiate the activity in the US versus 
in other countries in the near future. Across 
these areas of innovation, we noted concerted 
but not well-connected efforts on how to 
define and engage patients and communities 

in the development of trusted and reciprocal 
data sharing that will be fundamental to CDS 
development. The field and the expanding 
stakeholders reflect the central importance 
of CDS system development to digital health 
and will be increasingly dependent on bio-
medical informatics collaborations to design 
and evaluate clinical effectiveness in these 
broad settings.
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