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Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin

lymphoma. Since the relapse rate of DLBCL to frontline chemoimmunotherapy and

salvage autologous hematopoietic cell transplant is high, CD19-directed chimeric

antigen receptor (CAR) T-cell therapy was adopted. Given the time interval needed for

CAR T cells to be manufactured (3-5 weeks) and the aggressiveness of these relapsed/

refractory lymphomas, some patients do not make it to the CAR T-cell infusion phase.

This calls for a bridging therapy to control, debulk, and sensitize the disease during this

period. Radiation therapy can serve this purpose and has shown promising results in

some studies. Proton therapy, compared to standard radiation therapy, in some

locations, can reduce the radiation dose to the organs at risk, which may lead to fewer

side effects for patients with lymphomas. Thus, we hypothesize that proton therapy may

serve as a promising bridging strategy to CAR T-cell therapy for some patients.
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Introduction

Non-Hodgkin lymphoma is the most common hematologic malignancy [1]. It accounts for

4.3% of all cancers in the United States, ranked as the seventh most common cancer

among males and the sixth among females [2]. Among all non-Hodgkin lymphoma

subtypes, diffuse large B-cell lymphoma (DLBCL) is the most common, accounting for

30% to 40% of all cases [3]. Main frontline treatment for DLBCL includes chemo-

immunotherapy with/without radiation therapy. Up to 90% of patients achieve an objective

response after frontline treatment with anthracycline-based chemoimmunotherapy

combining cyclophosphamide, vincristine, doxorubicin, and prednisone and the anti-

CD20 monoclonal antibody rituximab (R-CHOP); of these 10% to 30% will relapse [4, 5].

The standard salvage therapy includes second-line chemotherapy followed by high-dose

chemotherapy and autologous hematopoietic cell transplant (auto-HCT) [6], with relapse

rates of approximately 20% to 50% or higher in patients with complete metabolic
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response versus those attaining a partial metabolic response or less as assessed by positron emission tomography–computed

tomography to second-line chemotherapy [7].

No standard therapy exists for patients who have relapse following auto-HCT or after failure of 2 or more lines of therapies in

transplant-ineligible cases [8]. Depending on a number of factors, patients may receive third-line chemotherapy, targeted

therapy, allogeneic HCT, and most recently CD19-directed chimeric antigen receptor (CAR) T-cell therapy, which have

demonstrated objective response rate of 52% to 82%, and complete remission of 40% to 52% [9–11].

Radiation therapy has also been an effective treatment of DLBCL during the past century. Initially it was viewed as a

palliative treatment modality for DLBCL, then later as a potentially curative treatment before the widespread use of

chemotherapy. Currently it plays important roles in consolidation of first-line therapy and peritransplant treatments [4, 12, 13].

Recently, radiation has been considered as a bridging strategy to CAR T-cell therapy to debulk tumor burden, preserve

performance status, and achieve the needed lymphodepletion until the CAR T cells are manufactured and ready to be infused

[14, 15]. Multiple forms of radiation therapy are commonly used to treat lymphoma, including electrons, photons, and protons.

Of these, proton therapy has the greatest potential to reduce collateral radiation to uninvolved organs [16]. In this review, we

provide an overview of CAR T-cell therapy in relapsed DLBCL and discuss the possible role of proton therapy as a bridging

tool for CAR T-cell therapy.

Role of CAR T-Cell Therapy in the Treatment of Relapsed DLBCL
Currently, CAR T-cell therapy is indicated for large B-cell lymphoma that fails 2 or more lines of therapies. CAR T-cell therapy

is an autologous cellular immunotherapy that uses the patient’s own T lymphocytes and genetically reengineers them to

recognize and attack cancerous cells. CD19 glycoprotein is uniformly expressed in all stages of B-cell maturation and is

expressed in more than 95% of B-cell malignancies [17], which makes it an ideal target for CAR T cells to recognize. CAR T

cells have additional activation and recognition domains that allow them to expand and proliferate [18]. First-generation CAR T

cells showed limited antitumor activity owing to weak proliferation and persistence [19]. Consequently, costimulatory domains

were added to second-generation CAR T cells, which significantly improved proliferation, persistence, and signaling strength

[20]. The most commonly used costimulatory domains are CD28 and 41BB.

The CAR T-cell manufacturing process starts with leukapheresis, the harvesting of the patient’s own lymphocytes.

Subsequently, T cells are transfected with a replication-defective virus (lentivirus or retrovirus) that holds the CAR gene. CAR

T cells are then expanded in vitro and infused back to the patient approximately 3 weeks later [21, 22]. A lymphodepleting

chemotherapy regimen is commonly prescribed a few days before infusing the CAR T cells to facilitate homeostatic cell

proliferation. Fludarabine and cyclophosphamide chemotherapy is the most commonly prescribed combination therapy for

such purpose [23]; however, the JULIET study also allowed bendamustine for 2 days [10]. Regrettably, one of the main issues

with this treatment approach is the length of time to infusion of the CAR T-cell therapy, which provides time for the DLBCL to

progress; as a result, in the ZUMA-1 trial, approximately 10% of patients did not end up receiving the CAR-T product [11].

Therefore, different treatment approaches have been developed to try to control the lymphoma during the manufacturing

phase, or provide a ‘‘bridging treatment’’ until the CAR T-cell infusion.

The 2 CAR T-cell therapies that are US Food and Drug Administration approved for the treatment of relapsed and/or

refractory (R/R) large B-cell lymphoma are axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel), which have CD28

and CD41BB as costimulatory domains, respectively. Axi-cel proved effective for the treatment of R/R large B-cell lymphoma

in the ZUMA-1 trial, showing a 1-year objective response rate and complete remission of 82% and 54%, respectively, and

progression-free survival of 41% at 15 months. No bridging therapy was allowed, and lymphodepletion followed a 3-day

course of fludarabine and cyclophosphamide [9, 24]. Similarly, tisa-cel proved effective in the JULIET trial, achieving a best

overall response rate of 52% and 1-year relapse-free survival rate of 65%. Ninety percent of patients in this trial received

bridging therapy (54% received rituximab, and 40% received gemcitabine), and 93% received lymphodepleting chemotherapy

with either fludarabine and cyclophosphamide, or bendamustine [10].

CAR T-cell therapy brings a new array of toxicities, and several studies have described these side effects [25, 26]. To date,

the most concerning are cytokine release syndrome (CRS) and neurotoxicity. Depending on the prescribed product, incidence

of CRS ranges from 50% to 93% [10, 11, 27] and is purportedly due to the excessive release of cytokines as CAR T cells

expand, proliferate, and attack lymphoma cells. This might be more prominent in the presence of bulky and extensive disease

as seen with high leukemia burden [28, 29]. The incidence of neurotoxicity also varies depending on the prescribed product,

with reported incidence (any grade) of approximately 20% with tisa-cel and up to 64% with axi-cel [10, 11] and is thought to

Saifi et al (2020), Int J Particle Ther 14

PT as bridging treatment to CAR T-cell therapy



result from the ability of the CAR T cells to cross the blood-brain barrier, causing inflammation in the central nervous system.

Although CRS can be managed with tociluzumab (anti–interleukin 6 receptor) and siltuximab (anti–interleukin 6 antibody), it is

critical enough and may require admission and observation in the intensive care unit in the presence of serious compromise of

organ function. Neurotoxicity is generally treated with corticosteroids; however, high-grade neurotoxicity may require

aggressive interventions, including airway protection [30].

Role of Radiation Therapy in the Treatment of DLBCL
Radiation therapy is an effective treatment for DLBCL as consolidation treatment following chemotherapy in early stage [31]

and for patients with bulky disease [32, 33]. Moreover, radiation plays a role in achieving local control in some cases with

relapsed DLBCL that become refractory to chemotherapy and stem cell transplant [4, 12, 34, 35]. On the other hand, radiation

therapy for lymphoma can have acute and long-term toxicities. While acute toxicities are generally mild and can include

hematologic suppression, dermatitis, mucositis, esophagitis, nausea, diarrhea, fatigue, and/or constipation, the late effects can

be more significant and include cardiac toxicity, pulmonary fibrosis, and second malignancies. New strategies have been

developed to reduce radiation toxicity, including decreasing the radiation dose and field size, using modern radiation therapy

techniques, such as intensity-modulated radiation therapy (IMRT), and using proton therapy. International Lymphoma

Radiation Oncology Group (ILROG) developed standard involved site radiation therapy guidelines for nodal and extranodal

lymphomas, which are generally smaller than the previously used involved-field radiation therapy guidelines [36, 37]. Proton

therapy is highly conformal, allowing it to target the disease site while sparing nearby healthy tissues. While the data are

limited for the use of protons in the treatment of DLBCL, some studies have shown promising outcomes with minimal toxicity.

Sachsman et al [38] reported a 91% 2-year local control rate and no grade 3 or 4 radiation toxicities for patients with DLBCL

treated with proton therapy, during the 38-month follow-up period. Plastaras et al [39] reported on 24 patients with primary

mediastinal B-cell lymphoma treated with proton therapy and demonstrated only 1 local relapse.

Radiation Therapy as a Bridging Tool for CAR T-Cell Therapy
CAR T-cell therapy and radiation therapy can benefit patients with relapsed DLBCL; combining the two might yield promising

results [15]. In fact, radiation therapy could serve as a successful bridging strategy for CAR T-cell therapy by several means:

(1) Aggressive relapsed lymphomas are usually refractory to systemic therapy and may progress during CAR T-cell

manufacturing (2-6 weeks), weakening the patient and reducing the response to CAR T-cell therapy as seen in the ZUMA-1

trial where approximately 10% of the patients did not receive the CAR-T product owing to disease progression among other

reasons [11]. However, even chemoresistant lymphomas can demonstrate sensitivity to radiation [40], which can be used to

control the disease during manufacturing. (2) Radiation can serve solely or in combination with chemotherapy as a

lymphodepleting agent giving CAR T cells the needed space to work. (3) Radiation has been proven to sensitize solid tumors

to immunotherapy [41, 42] and more recently, to provoke an abscopal-like effect to CAR T-cell therapy [43], suggesting its

ability to enhance CAR T-cell activity. (4) Radiation can decrease the lymphoma tumor burden, which in turn may potentially

decrease the cytokines released after the infusion of CAR T cells. This could, parenthetically, reduce the severity of CRS [28,

29, 44] and hence reduce the need for higher doses of steroids, which have lympholytic properties. (5) Some CAR T-cell

candidates may have indications for radiation therapy. These include those that have symptomatically involved sites that need

palliation, bulky disease, and limited area of relapsed lymphoma that can be encompassed in radiation fields. Radiation in

these patients can serve a dual purpose.

Arscott et al [45] were the first to report the use of radiation as a bridge to CAR T-cell therapy. Five patients were bridged

with radiation before tisa-cel infusion. They reported no grade 3 or higher CRS in those patients. Moreover, the 1-year

progression-free survival among the patients who received radiation was better (78%) than among those who did not receive

radiation (44%). Sim et al [46] bridged 12 patients with radiation before axi-cel infusion. They reported that 80% of the patients

responded to radiation, and none had significant toxicities during bridging. Moreover, none had disease progression before

CAR T-cell infusion [46]. Imber et al [47] reported as well excellent pre CAR local control and initial post CAR objective

response rate (100%) after bridging 11 DLBCL patients with radiation. LaRiviere et al [44] prescribed bridging radiation therapy

to 5 patients before CAR T-cell infusion. None of these patients developed grade 3 or higher CRS compared to 5 of 19 who did

not receive prior radiation. There were no reported deaths (0 of 5) after 139 days of follow-up. Disease progression was seen

in 2 of 5 patients who received radiation induction as compared to 10 of 19 who did not receive induction [44] (Table).
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Since one of the main adverse events radiation can cause in these patients is blood dyscrasia [48], it is advised to perform

apheresis before radiation to avoid lymphopenia. Data suggest lower success rates of CAR T-cell manufacturing with lower

absolute lymphocyte count (generally defined as fewer than 100/lL) [49]. On the other hand, hematologic toxicity from

radiation can be leveraged to help in lymphodepletion following the apheresis.

Role for Proton Therapy

To date no studies have reported the use of proton therapy as a bridging strategy to CAR T-cell therapy. As previously

described, standard radiation therapy using photons may help to decrease CAR T-cell therapy–related toxicities and, thus far,

has been associated with low rates of radiation-related toxicity. However, in some situations, based on disease distribution (eg,

mediastinal involvement) and radiation dose, patients could be at risk of radiation-related toxicities such as pneumonitis [50],

colitis, esophagitis, mucositis, and xerostomia that might cause the patient or physician to decline such treatment. In fact, the

ILROG report on proton therapy for mediastinal lymphomas recommends consideration of proton therapy for ‘‘heavily

pretreated patients who are at higher risk for radiation-related toxicity to the bone marrow, heart, and lungs [51].’’

Unfortunately, it is not clear why so few patients receive radiation therapy as bridging treatment to CAR T-cell therapy and we

can only hypothesize that fear of radiation therapy toxicity may contribute. In that scenario, proton therapy can be used to

reduce the radiation dose to the organs at risk for patients with lymphomas, yielding similar disease outcomes, though

potentially with fewer side effects than photon-based radiation therapy [38, 52]. This may be more critical for those with

disease located in the mediastinal region, where pneumonitis could be a significant factor.

Additionally, lymphopenia can occur following radiation therapy, and lymphopenia has been shown to be a prognostic factor

for successful collection and manufacturing of CAR T cells. Avoiding radiation therapy before leukapheresis of T cells is

strongly encouraged. If radiation is needed urgently before leukapheresis, proton therapy may reduce the impact on absolute

lymphocyte count. Among patients with esophageal cancer and lung cancer receiving radiation therapy, lymphopenia occurs

less often with proton therapy than with IMRT [53, 54]. Since protons have similar control rates with the potential for reduced

side effects, compared to other forms of radiation therapy, the use of protons as a bridging strategy for CAR T-cell therapy may

reduce side effects, augment response, or both. Future trials and studies are needed to validate this hypothesis.

While proton therapy may offer some hypothetical benefit for patients, it may also be inferior in some ways. As previously

mentioned, IMRT may contribute more to lymphopenia, which may actually be helpful during manufacturing in an effort to

make room for eventual CAR T-cell infusion. Additionally, proton therapy could contribute to the rising cost of treatment, which

is already quite substantial with CAR T-cell treatment [55]. Therefore, careful exploration for using proton therapy in CAR T-cell

treatment is needed, such as on a clinical trial or registry [56].

Conclusion

CAR T-cell therapy represents one of the most innovative and revolutionary treatments for R/R large B-cell lymphoma. Using

radiation therapy as a bridging technique could reduce CAR T-cell therapy–related toxicity and increase the number of patients

that will reach the infusion phase of treatment. This is due to the ability of radiation to lymphodeplete, cytoreduce, debulk,

stabilize, and sensitize the tumor. Proton therapy can serve as an alternative to the standard radiation therapy to further

minimize radiation-related toxicities, making it a promising bridging strategy for CAR T-cell therapy in DLBCL for some

patients.

Table. Results of the studies that investigated the role of RT as a bridging strategy to CAR T-cell therapy.

Study Arscott et al45 Sim et al46 Imber et al47 LaRiviere et al44

RT sample size 5 12 11 5

ORR, % 100 (1 y) 81.8 (median follow-up 3.3 mo) 100 (30 d) N/A

PFS, % 78 (1 y) N/A N/A N/A (2/5 progressed)

CRS incidence, % 0 27 45 40 (all grade 2)

CR, % N/A 45 83 (5/6 at 30 d), 60 (3/5 at 90 d) N/A

Abbreviations: RT, radiation therapy; CAR, chimeric antigen receptor; ORR, objective response rate; N/A, data not available; PFS, progression-free survival; CRS, cytokine release

syndrome; CR, complete remission.
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