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Abstract

Two classification systems are now at the forefront of clinical psychiatric research: (1) Diagnostic and Statistical Manual, Fifth

Edition and (2) the National Institutes of Mental Health Research Domain Criteria. Herein, we propose that these two

classification systems are complementary rather than mutually exclusive, and when combined provide important information

for understanding aspects of the pathophysiology related to Generalized Anxiety Disorder (GAD). The neurobiological

literature for GAD and one relevant research domain criteria component, sustained threat, are reviewed from multiple units

of analysis (genetic, neuroimaging, neuroendocrine, and psychophysiological). It is hypothesized that generating a compre-

hensive, biologically based understanding of the relationship between GAD, sustained threat, and the measureable units of

analysis will provide information critical to design the most effective treatments.
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Introduction

Two—not necessarily opposing—classification systems
are now at the forefront of clinical research:
(1) Diagnostic and Statistical Manual, Fifth Edition
(DSM-51) and (2) the National Institutes of Mental
Health (NIMH) Research Domain Criteria (RDoC2–4).
RDoC provides a fresh perspective on new ways to
approach anxiety research (e.g., through the construct
of ‘‘potential threat’’), but because of its clinical utility,
the DSM-5 maintains its position as the diagnostic
system that guides clinical practice (along with ICD-11).
Yet, the biological and nosological characterization of
DSM-5 anxiety disorders, particularly generalized anx-
iety disorder (GAD), and other comorbid disorders
(e.g., major depressive disorder, MDD) are unclear and
demonstrate high correlations and unreliability.5–7 It is
hypothesized that an RDoC-based conceptualization
and investigation may be able to provide answers to
these shortcomings of the DSM-5 by developing a trans-
diagnostic, neurobiological model of anxiety that pro-
vides a more valid distinction from other psychiatric
RDoC constructs (e.g., loss). Because of the primary clin-
ical and research perspectives of the DSM-5 and RDoC

classification systems, respectively, we provide a selective
review of the neurobiological literature associated with
GAD (DSM-5) and one relevant RDoC construct,
chronic stress (‘‘sustained threat’’; RDoC). Notably,
other RDoC constructs are also likely to be relevant to
the neurobiology of GAD (e.g., potential threat, acute
threat, arousal);8 however, sustained threat is used here
to provide an illustration of how a connection between
DSM-5 and RDoC classification systems can be made.
The reader is referred to recent reviews of GAD neuro-
biology9–12 and RDoC8 for additional background infor-
mation beyond the scope of this review.
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Generalized Anxiety Disorder

GAD is one of the most common psychiatric disorders,
occurring in up to 21% of adults in their lifetime.13 As
defined in the DSM-5, GAD is characterized by excessive
anxiety and worry about a number of events or activities
(e.g., work, school performance), which an individual
finds difficult to control. The worry is impairing across
varied contexts (e.g., work, home, and social). Symptoms
which are required for diagnosis include feeling restless,
being easily fatigued, difficulty concentrating or mind
going blank, irritability, muscle tension, and sleep dis-
turbance (note: only one symptom needs to be present
in children). GAD has high rates of comorbidity, particu-
larly between GAD and MDD that ranges from 40% to
98% in treatment studies.14–18 In fact, the GAD/MDD
comorbidity may occur more often than MDD or GAD
alone.19 In addition to high comorbidity, DSM-5 field
trials have highlighted the poor diagnostic reliability of
GAD (kappa¼ 0.34).5 Other findings indicate differences
between illness predictors and symptoms of MDD and
GAD.20–23 GAD is often a precursor of MDD and if
GAD is treated effectively, it lowers the risk for develop-
ment of MDD and some individuals with MDD never
develop GAD.24 Because of these mixed findings, cross-
cutting and distinct symptoms of GAD need to be inves-
tigated in accordance with transdiagnostic and RDoC
perspectives; however, diagnostic categories (e.g., GAD
vs. MDD) should also be examined due to their clinical
relevance and adherence to the current nosological
system (DSM-5).

Given the clinical ambiguities, it is not surprising that
there is a limited biological information regarding how
similar or different GAD is from other disorders (e.g.,
MDD). At the biological level, studies that have
pursued a biological conceptualization from one unit of
analysis (e.g., brain data) have often highlighted similar
findings in depression and anxiety.6,7,25 For example,
the amygdala has demonstrated increased activity
in both anxiety and depression groups when compared
to healthy controls,6,25 and twin studies indicate high
genetic correlations between MDD and GAD
(r¼ .74–1.0).7,26,27 However, MDD and GAD can be dif-
ferentiated with respect to biology,28–30 particularly with
resting-state functional magnetic resonance imaging
(R-fMRI).31

As the current literature lacks clarity regarding the
clinical and biological differences between GAD and
other disorders, such as MDD, both DSM-5 (categorical
approaches) and RDoC (cross-cutting constructs)
approaches offer critical information for understanding
the differences and overlap between GAD and other
disorders. Thus, the present literature review examines
aspects of the neurobiological literature from both a
categorical (GAD) and dimensional (chronic stress)
perspective in order to build an initial understanding of

the diagnostic differences versus dimensional intersec-
tions (e.g., chronic stress across disorders) related
to GAD.

Chronic Stress

Chronic stress may be one cross-cutting construct or
dimension (i.e., that occur across diagnostic categories
defined by the DSM-5) related to GAD, as well as
other diagnoses (such as highly related MDD). In gen-
eral, a stress response may be adaptive in the short-term
when faced with acute challenges.32,33 Over time, if an
individual is subjected to short-term acute stressors that
are repeatedly triggered, the resulting chronic maladap-
tive stress responses (i.e., chronic stress) may develop into
interfering psychiatric difficulties or disorders.34–36 This
resulting chronic stress impacts biological systems
across multiple ‘‘units of analysis’’—neuroendocrine,
autonomic, and behavioral—when triggered by perceived
or actual threat.37 Chronic stress can significantly impact
the homeostatic biological system by increasing the allo-
static load (i.e., effect of stress on the human body).38,39

Increased cumulative effects of stress on the human body
(allostatic load) are linked to many adverse health conse-
quences, including psychiatric illnesses such as GAD.

Individuals may be able to remain resilient (e.g., do
not develop psychiatric disorders) to different amounts
of cumulative stress based on their early-life experiences
(e.g., trauma in early childhood40), hereditary factors,
and stress history.41–44 For example, childhood trauma
and life experiences increases the risk of onset and recur-
rence of depression and anxiety disorders.45 Childhood
trauma, childhood life experiences, as well as genetic
and environmental factors (e.g., stress in the family)46,47

may reduce an individual’s ‘‘tolerance’’ or resilience to
increased allostatic load caused by repeated stressors;
thus, increase the risk for the development of psychiatric
disorders, including anxiety.

Early diagnosis (and treatment) of a psychiatric dis-
order also may contribute to an individual’s resilience
and ability to cope with repeated stress. For example,
carrying a diagnosis of depression or anxiety in childhood
can increase risk of an individual being diagnosed with
GAD in adulthood.48 Further, findings from a recent
study found that more time in an episode of GAD
(as well as MDD) was associated with the highest risk
for experiencing suicidal thoughts and behaviors across
adolescence and into adulthood.49 Not only was GAD
diagnosis associated with the highest risk trajectory for
suicidal thoughts and behaviors, broader anxiety symp-
toms were as well. Combined with the shocking 24%
increase of suicide mortality in the past 15 years in the
U.S.,50 these trajectory findings stress the impact of
chronic stress and psychiatric diagnosis on future
psychopathology.
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The RDoC matrix51 breaks down cross-cutting con-
structs into five domains, including negative valence
system domain, which includes constructs related to anx-
iety (e.g., potential threat and sustained threat). In the
present review, we explore RDoC sustained threat as a
highly relevant cross-cutting construct related to GAD
and chronic stress. Although potential threat has been
considered—and is highlighted in the RDoC matrix—as
being related to anxiety, it is sustained threat (or the
experience of chronic stress), whether potential or
actual, that appears to have the most significant health
consequences related to GAD (e.g., emergence of psychi-
atric disorders34–36). RDoC defines sustained threat as
‘‘an aversive emotional state caused by prolonged (i.e.,
weeks to months) exposure to internal and/or external
condition(s), state(s), or stimuli that are adaptive to
escape or avoid. . .’’ This description includes that the
threat may be ‘‘actual or anticipated.’’ Alongside this
description are the multilevel (molecules to behavior)
neurobiological components hypothesized to be involved
in the construct of sustained threat (see Table 1).

Sustained Threat, GAD, Neurobiology:
A Model

Here, we review the neurobiological literature associated
with GAD and with the RDoC domain, sustained threat.
As noted prior, this literature review is not intended to
include an exhaustive review of all RDoC domains rele-
vant to GAD (e.g., acute threat) but rather provide a
demonstration of how both DSM-5 categorical perspec-
tives and RDoC domains can be linked. Our proposed
model (see Figure 1) includes three tiers: (1) DSM-5
construct (i.e., GAD), (2) RDoC mechanism, and
(3) development. It is hypothesized that designing devel-
opmentally appropriate pharmacological and psy-
chological treatments that target neurobiological

mechanisms (e.g., bed nucleus of stria terminalis
[BNST], elevated peripheral nervous system activity,
5-HTTLPR short-allele) related to sustained threat, or
other measurable RDoC mechanisms, may generalize
and target the chronic anxiety demonstrated in individ-
uals with GAD. For example, implementing a pharma-
cogenomics or metabolomics protocol to inform
medication selection may improve pharmacotherapy
treatment outcomes. Not only can neurobiological mar-
kers provide insight for developing personalized medicine
protocols and offer biological objective markers of treat-
ment efficacy, the implementation of successful treatment
strategies may be dependent on timing. There are critical
neurobiological developmental windows in childhood
that may be most ideal to target to produce the best out-
comes when treating neuropsychiatric disorders, includ-
ing GAD (see ‘‘effective treatment’’ star placed on
developmental timeline).52

Our conceptual model (Figure 1) organizes the rela-
tions between the relevant components discussed within
the present review. GAD is intentionally placed within an
oval to illustrate that the DSM-5 diagnoses are con-
sidered to be at the latent or at the construct level.
Conversely, the RDoC mechanisms hypothesized to be
related to GAD (as well as that GAD is related to these
mechanisms; hence, bi-directional arrows between) are
measurable (i.e., indicated by square shapes) through
their specific units of analysis (i.e., genes, molecules,
cells, circuits, physiology, behavior, self-reports, and
paradigms). Our model highlights that it is the bi-direc-
tional relationship between DSM-5 constructs and RDoC
mechanisms that will influence the development of effect-
ive treatments (not only one level or tier, such as an
RDoC understanding only). Below, we review the
DSM-5 (GAD) and one relevant RDoC dimension (sus-
tained threat) to GAD in order to begin linking the levels
in our model.

Table 1. RDoC sustained threat.

Molecules Cells Circuits Physiology Behavior

ACTH

CRF

HPA-axis

hormones

Hippocampal

Microglia

Prefrontal

Attention network

Dysregulation of amygdala reactivity

Dysregulation of cingulate reactivity

Habit systems

Hypothalamic nuclei

PVT

Vigilance network

Dysregulated HPA Axis

Error-related negativity

Anhedonia/decreased

appetitive behavior

Anxious arousal

Attentional bias to threat

Avoidance

Decreased libido

Helplessness behavior

Increased conflict detection

Increased perseverative behavior

Memory retrieval deficits

Punishment sensitivity

Note. ACTH, andrenocorticotropic hormone; CRF, corticotropin releasing factor; HPA, hypothalamic-pituitary-adrenal; PVT, paraventricular thalamic

nucleus.
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GAD and Neurobiology

Genetics and Epigenetics

It is estimated that genes contribute 30% to 50%53,54 to
the development of an anxiety disorder. Conversely,
development of an anxiety disorder due to non-genetic
factors is approximately 50% to 70%. Environmental
factors (e.g., stress, trauma, etc.) likely contribute to the
development of anxiety disorders through epigenetic
mechanisms that could impact the development of anx-
iety even beginning in utero. For example, mothers diag-
nosed with an anxiety disorder who did not receive
medication for anxiety have demonstrated altered DNA
methylation of the glucocorticoid receptor gene (NR3C1)
promoter region in cord blood and the genome55,56 and
may increase risk of their child developing an anxiety
disorder.

Understanding the genetic and epigenetic mechanisms
of GAD is important for building more comprehensive
neurobiological conceptualizations to develop the most
effective preventative and treatment strategies. Despite
the potential impact of understanding these mechanisms,
few human studies of anxiety disorders, including GAD,
exist relative to animal studies.12 One genome-wide asso-
ciation study of GAD symptoms found genome-wide
significant association between a single-nucleotide poly-
morphism (rs78602344) intronic to thrombospondin 2
(THBS2) and GAD symptoms in a population-based
sample of Hispanic/Latino adults (N¼ 12,282; aged
18–74).57 Although not specific to GAD, a study of anx-
ious versus non-anxious adults (N¼ 47; M age¼ 32.89)
found that DNA methylation indicated that global
methylation levels were higher in anxious adults relative
to non-anxious adults58 (anxiety determined by Hospital

Anxiety and Depression Scale-Anxiety scores). Hospital
Anxiety and Depression Scale-Anxiety scores in the anx-
ious group were also significantly correlated with the
expression of the DNA methyltransferases DNMT1/3A,
such that greater anxiety severity was associated with
more DNA expression. Notably, the generalizability of
the findings of this DNA methylation study is limited
due to the small sample size.

Neuroimaging

The disrupted coordination of brain activity has been
proposed as one of the core neurobiological features of
GAD,59–61 particularly reduced resting-state functional
connectivity (RSFC) between the amygdala and pre-
frontal cortex (PFC) in both adults and adolescents
with GAD.62–64 Yet, differences between GAD and
healthy control groups, both in structural and functional
neuroimaging, not only exists in frontolimbic areas but
also in a downstream projection from the amygdala: the
anterior cingulate cortex.61 Findings suggest that across
adolescence and adulthood, decreased connectivity
between the amygdala and PFC is associated with the
diagnosis of GAD.62–64 The PFC is critical for the effect-
ive regulation of emotion, particularly ventromedial
regions that appear to control negative emotion,65 such
as anxiety. Fittingly, the ventrolateral PFC activity has
been shown to increase (perhaps increasing regulation
over limbic structures) following all pharmacological
and psychological intervention in individuals with
GAD.66

Frontolimbic structures not only impact anxiety-
related responses in GAD but also have been demon-
strated to differentially regulate autonomic mechanisms

Figure 1. RDoC sustained threat and GAD conceptual model.
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in individuals with GAD.59 Specifically, a recent neuroi-
maging study investigated the relationship between both
central nervous system (PFC, amygdala) connectivity and
autonomic (heart rate variability; HRV) in individuals
with GAD pre- and post-perseverative cognition task.59

At baseline, individuals with GAD demonstrated less
connectivity between the PFC and amygdala; however,
after the perseverative cognition task, this PFC-amygdala
connectivity increased in the GAD group whereas healthy
controls decreased in this area (at a trend level). After the
perseverative cognition task, HRV reduction (increase in
autonomic activation) was predicted by decreased RSFC
between the left amygdala-subgenual cingulate cortex and
between the right amygdala-caudate nucleus. These find-
ings provide initial evidence regarding specific neural
modulation of differential psychophysiological responses
between GAD and healthy control groups.

Psychophysiology

In general, the psychophysiological literature demon-
strates that individuals with GAD are in a more physio-
logically dysregulated state (e.g., low HRV, high heart
rate, higher skin conductance levels) at baseline relative
to controls67,68 and individuals with other anxiety dis-
orders.69 Yet, this hyperarousal psychophysiological pat-
tern in GAD is not universally observed.70 It is possible
that psychophysiological differences between GAD and
controls are context specific. For example, increased sym-
pathetic nervous system activity and reduced HRV
was observed in high trait worry individuals.71,72

Additionally, worrying prior to fearful imagery exposure
appears to diminish any associated cardiovascular
reactivity, rather than relaxation or neutral stimuli prior
to fearful exposure that exposes heightened cardiovascu-
lar reactivity during a fearful exposure in GAD partici-
pants.73,74 Thus, it appears that relative to controls, GAD
participants demonstrate heightened physiological arou-
sal at baseline (e.g., higher heart rate), and these individ-
uals are likely to demonstrate the greatest cardiovascular
reactivity to an anxiety-provoking stimulus when asked
to relax or view neutral stimuli. This may suggest that
individuals with GAD demonstrate chronic physiological
arousal at baseline and demonstrate an exaggerated
physiological reactivity to fearful stimuli. Similarly,
when compared to other anxiety disorders (i.e., social
anxiety and GAD with panic attacks), GAD is character-
ized by elevated baseline startle, suggesting the presence
of anxious thoughts in the absence of threat.69 Overall, it
appears that relative to healthy controls and individuals
with other anxiety disorders, individuals with GAD may
exhibit a unique psychophysiological signature that is
characterized by hypervigilant physiological response at
baseline, as well as greater reactivity to threat.

Summary: How findings fit into RDoC

Findings across genetics, neuroimaging, and psycho-
physiology indicate neurobiological signatures related to
the diagnosis of GAD. When examined in more detail,
findings appear more closely related to elevated baseline
neurobiological states that are likely correlated with
increased thoughts of worry/fear without the presence
of an immediate threat. The durability of physiological
and cognitive changes—whether related to actual or per-
ceived threat—potentially contributes to the neurobio-
logical differences highlighted above. This sustained
threat (also the RDoC construct reviewed below) is one
particularly relevant component in GAD. Please see
Table 1 for the neurobiological and behavioral compo-
nents hypothesized to be related to the RDoC construct
of sustained threat.

Sustained Threat and Neurobiology

Genetics and Epigenetics

Prior findings suggest that serotonin (5-HT) regulation is
related to emotional stability.75 Serotoninergic function-
ing and variability appear related to individual differences
in responding to threat, particularly the variation of the
serotonin transporter gene (5-HTTLPR), which is related
to neural patterns associated with anxiety, including
GAD. When shown fearful and angry faces, 5-
HTTLPR short-allele carriers show bilateral amygdala
hyperactivation compared to 5-HTTLPR long-allele
homozygotes.76–78 Additionally, decreased connectivity
between the amygdala and pregenual cingulate, as well
as decreased gray matter volume in both brain structures,
has been observed in 5-HTTLPR short-allele carriers.79

Though studies have demonstrated the relationship
between amygdala hyperactivity in 5-HTTLPR short-
allele carries (note: in healthy individuals with ‘‘norma-
tive’’ anxiety levels),76,77 some studies do not find the
5-HTTLPR � stress interaction to be significant.80,81

5-HTTLPR short-allele carriers appear to be sensitive
to environmental cues, which may contribute to anx-
ious thinking when stressors/threats are present.75

This highlights a propensity of these individuals to be
sensitive to acute threat cues in the environment, which
may contribute to a hypervigilance or sustained threat
over time. In support of this notion, 5-HTTLPR
short-allele carriers have been shown to have a positive
correlation between life stress and resting activity of the
amygdala and hippocampus,82 such that more lifetime
stress is associated with more resting activity between
the amygdala and hippocampus suggesting a sustained
threat response.

Patriquin and Mathew 5



Neuroendocrinology and Neuroimaging/Neural Circuits

As highlighted in Table 1, there are important molecular-
level components hypothesized to be related to sustained
threat (e.g., corticotropin-releasing factor (CRF); adreno-
corticotropic hormone; paraventricular nucleus; hypotha-
lamic-pituitary-adrenal axis). These sustained threat
molecular components are also key parts of the neuroen-
docrine system, which regulates the stress response. It is
hypothesized that dysregulation of the neuroendocrine
system contributes to anxiety. In particular, when in a
state of threat (or anxiety), CRF is released from the
paraventricular nucleus of the hypothalamus into the pri-
mary capillary plexus of the hypothalamo-hypophyseal
portal system to stimulate the anterior pituitary to
synthesize proopiomelancortin into the blood.
Adrenocorticotropic hormone in the blood activates the
synthesis and release of cortisol in humans from the
adrenal glands of the kidneys. The hypothalamic-
pituitary-adrenal axis is then ‘‘shut down’’ by this release
of cortisol, or corticosterone, through the influence of the
hypothalamus, pituitary, and hippocampus.

Changes in the neuroendocrine system related to sus-
tained threat (i.e., chronic activation of the system
described above) have been demonstrated in both
animal and human studies. For example, in one preclin-
ical study, rats received intraventricular infusions of CRF
and were placed in a sustained threat (sustained exposure
to bright light) or acute threat condition. Results demon-
strated that longer duration (sustained threat) threat
responses were related to the BNST and could be differ-
entiated from acute threat response (via central nucleus
of the amygdala) by their sensitivity to CRF-RI receptor
antagonists.83 Similarly, in humans, the BNST has been
associated with sustained threat/anxiety.84 An fMRI
study examined neural response to negative and neutral
pictures at predictable and unpredictable intervals. The
amygdala demonstrated reactivity to negative pictures
that was not dependent on predictability, whereas the
BNST showed a linear increase of activation across con-
ditions as a function of anxiety;84 thus, identifying the
BNST as related to sustained threat/anxiety versus
acute stress (amygdala).

Psychophysiology

Psychophysiological responses related to sustained threat
have been hypothesized to be measured by error-related
negativity,85 which measures the fronto-centrally max-
imal negative deflection in the event-related potential,
as individuals reporting high levels of worry have demon-
strated enhanced error-related negativity during a stres-
sor task (Stroop task).86 Further, peripheral nervous
system literature highlights a heightened sensitivity to
unpredictable threat in individuals with lower respiratory T
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sinus arrhythmia (a measure of high frequency heart rate
variability),87 which is consistent with the literature
reviewed above that demonstrate that individuals with
impairing levels of anxiety, as indicated by a diagnosis
of GAD, demonstrate more sympathetic activity (e.g.,
higher heart rate, lower heart rate variability) at baseline
and greater cardiovascular reactivity to unpredictable
threat. Contrary to these cardiac findings, however, skin
conductance responses to unpredictability appear to
induce a physiological inhibition (e.g., possibly congruent
with a ‘‘freezing’’ anxiety response) indicated by weaker
skin conductance responses to cue (stimuli presented) and
temporal (time intervals) unpredictability.88 In general, it
appears that the unpredictability may maintain a sus-
tained threat response that is correlated with a heightened
baseline physiological state as well as elicit greater
reactivity when a threat is presented.

Conclusions

Across GAD (DSM-5) and sustained threat (RDoC-
based) studies, findings provide initial evidence of the
biological system overlap (see Table 2 for summary of
findings). Results indicate that there is the potential
for 5-HTTLPR short allele carriers to be at-risk for
development of GAD (likely over the course of repeated
stress) and when anxiety/sustained threat responses reach
a level of impairment, global methylation levels are
increased (e.g., expression of DNMT1/3A). These genetic
profiles or changes appear to influence RSFC, particu-
larly involving amygdala. The chronicity of sustained
threat—to the point of the development of
GAD—appears to also affect baseline psychophysio-
logical functioning (perhaps due to neural changes that
result from genetic/epigenetic influences) and place an
individual in a hypervigilant physiological state (high
HR, lower HRV, higher SCR).

Despite the compatibility of results across biological
systems, many studies that we reviewed investigated one
biological system (e.g., genetics, genome-wide association
study57); however, two studies did investigate the link
between genetics/epigenetics and neuroimaging82 as well
as neuroimaging and psychophysiology.59 The investiga-
tion of both GAD and sustained threat primarily from
one biological system highlights a significant gap in the
literature. In fact, novel computational methods have
recently been designed to examine the link between gen-
etics, neuroimaging, and clinical data89 and could be
expanded to include psychophysiology (e.g., measuring
psychophysiological response during R-fMRI protocols).
In line with RDoC goals, study of the integration of the
biological systems, and their integration with clinical
data, will provide an important understanding of the
biological processes that relate not only to psychiatric
disorders but also to the cross-cutting constructs, such

as sustained threat, that are hypothesized to provide crit-
ical evidence for the development of new, targeted
treatments.3

Future Directions

Going forward, it will be important to continue to seek a
comprehensive, biologically based understanding of
GAD, particularly in the context relevant RDoC anxiety
constructs (e.g., sustained threat, acute threat). Further,
treatments will need to be developed from a comprehen-
sive (e.g., genes, brain, psychophysiology, behavior)
neurobiological framework, and timing of treatment
implementation will have to be empirically tested to
understand the most impactful timing to produce the
optimal treatment trajectory. This is particularly
important for anxiety disorders, as they often emerge in
school-age children when other key processes in neurode-
velopment are occurring (e.g., synaptogenesis, mye-
lination, and synaptic pruning).52 Other important
considerations include the fluctuating nature of symp-
toms in clinical populations and inadequate power of
many neuroimaging studies. These limitations stress the
importance of study replication, which currently does not
often occur across all of science.90 Data sharing (e.g., in
line with priorities at NIMH), such as making study data
sets publically available, can greatly aid investigators in
their pursuit of study replication. Future directions in
personalized medicine will not only need to take into
account treatment targets and optimal timing (e.g., the
developmental window from which to produce the quick-
est, most long-lasting, positive outcomes) but also care-
fully consider the limitations of this research that argue
for replication and improved systems that encourage data
sharing.
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