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The integration of pathology and radiology in medical imaging has emerged as a critical need for 
advancing diagnostic accuracy and improving clinical workflows. Current AI-driven approaches for 
medical image analysis, despite significant progress, face several challenges, including handling 
multi-modal imaging, imbalanced datasets, and the lack of robust interpretability and uncertainty 
quantification. These limitations often hinder the deployment of AI systems in real-world clinical 
settings, where reliability and adaptability are essential. To address these issues, this study introduces 
a novel framework, the Domain-Informed Adaptive Network (DIANet), combined with an Adaptive 
Clinical Workflow Integration (ACWI) strategy. DIANet leverages multi-scale feature extraction, 
domain-specific priors, and Bayesian uncertainty modeling to enhance interpretability and robustness. 
The proposed model is tailored for multi-modal medical imaging tasks, integrating adaptive learning 
mechanisms to mitigate domain shifts and imbalanced datasets. Complementing the model, the 
ACWI strategy ensures seamless deployment through explainable AI (XAI) techniques, uncertainty-
aware decision support, and modular workflow integration compatible with clinical systems like PACS. 
Experimental results demonstrate significant improvements in diagnostic accuracy, segmentation 
precision, and reconstruction fidelity across diverse imaging modalities, validating the potential of this 
framework to bridge the gap between AI innovation and clinical utility.

Keywords  Medical Imaging, Deep Learning, Multi-Modal Integration, Explainable AI, Clinical Workflow 
Adaptation

The integration of pathology and radiology represents a transformative frontier in medical imaging, offering 
unprecedented opportunities for precision diagnostics. Pathology provides a microscopic view of cellular 
morphology, while radiology offers a macroscopic perspective of anatomical and functional imaging1. The 
synergy of these domains not only enhances diagnostic accuracy but also enables a holistic understanding 
of disease processes, particularly in oncology and chronic illnesses. However, manual correlation between 
pathology and radiology is labor-intensive and prone to interobserver variability. AI-assisted image classification 
aims to address these limitations by automating the integration of multimodal imaging data2. This integration 
not only optimizes diagnostic workflows but also holds the potential to improve patient outcomes through 
personalized treatment strategies. Therefore, developing deep learning approaches for combining radiological 
and pathological insights is not only innovative but also critical for advancing precision medicine in clinical 
practice3.

To address the challenge of multimodal integration, initial approaches relied heavily on traditional methods 
based on symbolic AI and knowledge representation. These methods aimed to encode human expertise into rule-
based systems capable of analyzing both pathology and radiology images4. Symbolic AI leveraged handcrafted 
features, such as edge detection, texture analysis, and statistical shape models, to characterize image content. 
These systems provided interpretability and domain-specific insights, offering a solid foundation for integrating 
structured radiological findings and digitized pathology. However, their reliance on predefined features limited 
scalability and generalizability to complex imaging datasets5. Moreover, these methods struggled with noisy, 
high-dimensional data common in medical imaging, making them inadequate for dynamic clinical settings. As 
such, while symbolic AI laid the groundwork for multimodal analysis, its inability to adapt to diverse imaging 
modalities and disease variability underscored the need for more robust and data-driven solutions6.
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The subsequent evolution of AI methodologies focused on data-driven and machine learning techniques, 
marking a departure from handcrafted features to automated feature extraction. Machine learning algorithms, 
particularly support vector machines (SVMs) and random forests, demonstrated promising performance in 
analyzing pathology and radiology data independently7. The introduction of feature engineering pipelines 
enabled the extraction of mid-level image representations that could bridge the gap between the two modalities. 
For example, radiological tumor margins could be correlated with cellular characteristics from histopathology 
using shared imaging descriptors. While these methods improved the accuracy and scalability of multimodal 
image analysis, they required extensive manual tuning and domain expertise for feature design8. The fragmented 
nature of pathology and radiology datasets, coupled with variations in image resolution and formats, posed 
significant integration challenges. Despite these limitations, machine learning approaches served as a stepping 
stone, paving the way for deep learning models capable of end-to-end learning9.

The advent of deep learning, particularly convolutional neural networks (CNNs) and transformer-based 
architectures, revolutionized image classification in medical imaging. Unlike traditional methods, deep learning 
models can learn hierarchical feature representations directly from raw data, enabling seamless integration of 
multimodal inputs10. In pathology and radiology, CNNs have been used to identify tumor subtypes, segment 
lesions, and predict molecular markers with high accuracy. Transformer-based models, leveraging self-attention 
mechanisms, have further enhanced the ability to fuse spatial and contextual information from diverse image 
sources11. Pretrained models, such as Vision Transformers (ViTs) and multimodal transformers, offer a unified 
framework for analyzing pathology slides and radiological scans simultaneously. These models address the 
challenges of feature heterogeneity and dataset fragmentation, achieving state-of-the-art performance in 
multimodal image classification12. However, deep learning systems remain limited by their reliance on large 
annotated datasets and computational resources, as well as interpretability concerns that hinder clinical adoption.

Based on the limitations of existing approaches, our proposed method focuses on a novel deep learning 
framework that seamlessly integrates pathology and radiology data for AI-assisted image classification. Unlike 
previous methods that treat these modalities independently, our approach incorporates a multimodal attention 
mechanism to align spatial and contextual features across imaging domains. By leveraging self-supervised 
learning and transfer learning, we overcome the challenge of limited labeled datasets while ensuring robust 
performance across diverse clinical scenarios. Moreover, our framework emphasizes interpretability through 
attention heatmaps, enabling clinicians to validate model predictions and enhance trust in AI systems. This 
novel approach not only bridges the gap between pathology and radiology but also addresses the scalability, 
generalizability, and clinical utility challenges inherent in existing methodologies.

The proposed method has several key advantages:

•	 The proposed method introduces a multimodal attention mechanism and self-supervised learning module, 
enabling end-to-end integration of pathology and radiology data.

•	 The model is designed to operate efficiently across diverse imaging modalities, offering scalability and adapt-
ability for real-world clinical applications.

•	 Extensive experiments demonstrate superior performance in multimodal image classification tasks, achieving 
significant improvements in accuracy, robustness, and interpretability compared to state-of-the-art methods.

Related work
Multi-modal data integration
Recent advancements in AI-assisted medical imaging have highlighted the importance of integrating multi-
modal data, particularly pathology and radiology, to improve diagnostic accuracy13. Radiology, which involves 
the analysis of medical imaging modalities such as X-rays, CT scans, and MRIs, provides a macroscopic 
perspective on patient health. In contrast, pathology examines tissue samples on a microscopic level, offering 
cellular and molecular insights. Combining these two modalities enables a comprehensive understanding of 
diseases, particularly in complex cases such as cancer diagnosis and progression monitoring14. Deep learning-
based approaches have demonstrated significant potential in unifying these modalities. Techniques such as 
convolutional neural networks (CNNs) and attention-based architectures (e.g., Transformers) have been used to 
extract features from both radiology images and digital pathology slides15. These methods often rely on shared 
feature spaces or domain adaptation to align the disparate nature of the data. For instance, a CNN trained 
on radiology data can be fine-tuned on pathology data, leveraging transfer learning to improve performance 
in cross-domain tasks. More recently, multi-modal neural networks, such as joint-embedding models, have 
emerged to integrate heterogeneous datasets16. These models aim to align radiology and pathology data into a 
single latent space where cross-modal comparisons can be performed effectively. The integration of pathology 
and radiology data has also benefited from self-supervised and semi-supervised learning methods17. These 
approaches are particularly useful in medical imaging, where labeled datasets are limited due to the need for 
expert annotation. By leveraging unlabeled data from one modality to guide learning in the other, researchers 
have achieved improved performance in tasks such as tumor classification and segmentation18. However, 
challenges remain, particularly in harmonizing data from different acquisition protocols, image resolutions, 
and noise characteristics. Future research is focusing on designing more robust models that can handle these 
variations and provide interpretable results that align with clinical workflows19.

Deep learning for feature extraction
Feature extraction is a critical step in integrating radiology and pathology data. In radiology, features often 
include structural patterns, such as tumor size, shape, and location, while pathology focuses on cellular-level 
characteristics, such as nuclear morphology and mitotic activity20. Deep learning has revolutionized this process 
by automating the extraction of complex and hierarchical features, which were previously identified through 
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manual annotation or basic image processing techniques. Convolutional neural networks have been at the 
forefront of feature extraction in both radiology and pathology21. In radiology, pre-trained CNN models such 
as ResNet, DenseNet, and EfficientNet have achieved state-of-the-art results in detecting abnormalities like 
lung nodules or brain tumors. These networks extract spatial features that capture the macroscopic structure 
of tissues. In pathology, models like VGG and U-Net are widely used for cell segmentation and classification 
tasks22. These architectures excel at identifying fine-grained details, such as cell boundaries and chromatin 
patterns, that are critical for pathology diagnosis. To combine radiology and pathology features, researchers 
have employed fusion strategies that aggregate multi-scale representations from both domains23. Early fusion 
techniques integrate raw data at the pixel or voxel level, enabling networks to learn joint features from the 
outset. Late fusion approaches, on the other hand, combine features extracted independently from radiology 
and pathology modalities. For example, embeddings from a CNN trained on CT images can be concatenated 
with embeddings from a CNN trained on histopathology slides to form a unified representation24. Advanced 
techniques like attention mechanisms and graph neural networks (GNNs) have further enhanced feature 
extraction by capturing interdependencies between features, such as spatial relationships in radiology and 
morphological structures in pathology25. Despite these advancements, challenges persist in ensuring that 
extracted features are clinically meaningful and interpretable. Black-box models often fail to explain how specific 
features contribute to predictions, limiting their adoption in clinical settings26. Researchers are addressing this 
issue by incorporating explainability into model design, such as by using attention heatmaps or integrating 
domain knowledge directly into the feature extraction process27.

AI-powered diagnosis and prognosis
The application of deep learning in AI-assisted diagnosis and prognosis has shown significant promise, 
particularly in the integration of pathology and radiology for comprehensive disease assessment28. Diagnosis 
involves identifying diseases or abnormalities, while prognosis predicts disease progression and patient 
outcomes. Deep learning models have been widely adopted for both tasks, leveraging the complementary 
strengths of pathology and radiology data29. In diagnosis, classification tasks are a common focus. For instance, 
CNNs have been employed to classify lung cancer types using CT scans, while digital pathology data has been 
used for histological subtyping30. Integrating these datasets allows for more accurate classification by providing 
both macroscopic and microscopic perspectives. Multi-task learning frameworks, which perform multiple 
diagnostic tasks simultaneously, have further improved model performance by exploiting shared information 
across tasks31. For example, a multi-task model might simultaneously detect tumor presence, predict its type, 
and assess its grade, using both radiological and pathological inputs32. Prognosis, on the other hand, often 
involves predicting survival rates, recurrence risks, or treatment response. Deep learning models have leveraged 
longitudinal data from both modalities to model temporal changes in disease progression33. Recurrent neural 
networks (RNNs) and Transformer-based architectures are particularly well-suited for such tasks, as they can 
capture temporal dependencies and model sequences of imaging data over time. Survival analysis models, such 
as Cox proportional hazard models, have also been enhanced by integrating deep learning-derived features 
from pathology and radiology34. A major challenge in AI-powered diagnosis and prognosis is the variability in 
data quality and annotation. Radiology images may suffer from noise or low resolution, while pathology slides 
often require labor-intensive preprocessing35. To address these issues, researchers are focusing on robust data 
augmentation techniques and domain adaptation methods. Moreover, the integration of interpretability into 
diagnostic models is gaining traction, as clinicians require transparent models to trust AI-assisted predictions. 
Explainable AI (XAI) techniques, such as saliency maps and SHAP (Shapley Additive Explanations), are 
increasingly being adopted to elucidate how models make decisions based on integrated pathology and radiology 
data36.

Method
Overview
In recent years, artificial intelligence (AI) methods have demonstrated transformative potential in medical 
imaging, revolutionizing key tasks such as disease diagnosis, image reconstruction, and workflow optimization. 
This subsection provides a high-level overview of our method designed to address limitations in current medical 
imaging AI workflows. Our approach builds upon recent advancements in deep learning, computational 
efficiency, and explainable AI to improve model performance and usability in real-world clinical environments.

The structure of this section is as follows. In Section 3.2, we introduce the preliminary concepts and define 
the challenges inherent in medical imaging tasks, including the need for robust AI systems that generalize 
across diverse patient populations. In Section  3.3, we present our novel model architecture, which leverages 
domain-specific constraints to enhance interpretability and diagnostic accuracy. In Section  3.4, we describe 
our innovative strategy, which integrates adaptive learning and uncertainty quantification to optimize decision-
making in clinical workflows. This combination of model design and strategic implementation aims to bridge the 
gap between cutting-edge research and practical utility in healthcare systems. By systematically exploring these 
components, we aim to provide a comprehensive framework for advancing medical imaging AI, particularly 
in challenging scenarios such as multi-modal imaging and imbalanced datasets. The sections that follow will 
formalize the problem setup, introduce our contributions, and highlight the strategies employed to achieve 
reliable performance and deployment readiness.

Preliminaries
Medical imaging plays a critical role in modern healthcare, encompassing a wide array of imaging modalities 
such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and positron 
emission tomography (PET). Each modality provides unique insights into anatomical structures or physiological 
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processes, facilitating tasks such as disease diagnosis, monitoring, and treatment planning. Despite their clinical 
utility, the interpretation of medical images presents challenges due to high data complexity, inter-patient 
variability, and the potential for subjectivity in manual diagnosis.

To address these challenges, medical imaging AI has emerged as a promising field, combining advanced deep 
learning algorithms with domain-specific constraints. The task of medical image analysis can be formalized 
as follows. Let X  denote the input space of medical images, where each x ∈ X  represents a high-dimensional 
image tensor. For instance, an MRI scan may be modeled as a 3D tensor, x ∈ RH×W ×D , where H, W, and D 
are the height, width, and depth of the image, respectively. Let Y  represent the output space, such as diagnostic 
labels, segmentation masks, or reconstructed image volumes. The primary goal is to learn a mapping function 
fθ : X → Y , parameterized by θ, that minimizes a task-specific objective function.

	
L(θ) = 1

N

N∑
i=1

ℓ(fθ(xi), yi),� (1)

where ℓ(·) is a loss function that quantifies the discrepancy between the predicted output fθ(xi) and the ground 
truth yi, and N is the number of training samples.

Medical imaging problems are further complicated by factors such as imbalanced datasets, noise, and 
variability in image quality. For example, datasets may exhibit skewed class distributions, where rare diseases 
have significantly fewer labeled samples compared to common conditions. To account for such challenges, we 
consider the problem in a probabilistic framework. Given an observed image x, the true label y is modeled 
as a random variable with conditional probability distribution P(y|x). The goal of supervised learning is to 
approximate P(y|x) using the parametric model fθ(x). A probabilistic formulation enables techniques such as 
uncertainty quantification, essential for clinical decision-making.

Image segmentation, a fundamental task in medical imaging, involves delineating regions of interest 
(ROIs) such as tumors or organs. Formally, segmentation can be viewed as a pixel-wise classification problem. 
Let x ∈ RH×W  represent a 2D medical image, and let y ∈ {0, 1, . . . , C}H×W  denote the corresponding 
segmentation mask, where C is the number of classes. The objective is to optimize:

	
Lseg(θ) = − 1

HW

H∑
i=1

W∑
j=1

C∑
c=1

yi,j,c log fθ(x)i,j,c,� (2)

where fθ(x)i,j,c is the predicted probability for pixel (i, j) belonging to class c.
In medical image reconstruction, the goal is to recover a high-quality image xrecon from noisy or incomplete 

measurements xobs. For example, in accelerated MRI, the undersampled measurement xobs is related to the 
fully sampled image xrecon via a forward model F :

	 xobs = F(xrecon) + ϵ,� (3)

where F  denotes the sampling operator, and ϵ represents noise. Reconstruction methods aim to solve the inverse 
problem by finding xrecon that minimizes:

	 Lrecon(θ) = ∥xobs − F(fθ(xrecon))∥2
2.� (4)

Another crucial problem is multi-modal medical imaging, where information from multiple imaging modalities 
(e.g., MRI and CT) must be integrated for comprehensive analysis. Let x(1), x(2), . . . , x(M) represent input 
images from M modalities. The task is to learn a joint representation:

	 z = gϕ(x(1), x(2), . . . , x(M)),� (5)

where gϕ is a feature fusion function parameterized by ϕ. The joint representation z is then used for downstream 
tasks, such as classification or segmentation.

The backbone network extracts modality-specific features from radiology or pathology images. These 
features are then projected into a domain-informed latent space using a structured transformation layer that 
aligns them across modalities. The DIANet module operates on this latent space, applying adaptive attention 
to recalibrate and fuse the cross-modal features. The ACWI module takes the fused representations and adjusts 
the output flow based on uncertainty estimation, enabling the model to select the most reliable prediction path. 
All components are implemented as lightweight modules that wrap around the backbone without modifying its 
internal architecture, allowing seamless end-to-end integration.

Domain-Informed Adaptive Network (DIANet)
In this section, we present our proposed model, referred to as the Domain-Informed Adaptive Network 
(DIANet), which is specifically designed to address the challenges of medical imaging tasks. DIANet introduces 
a unified architecture that incorporates domain knowledge, multi-scale feature extraction, and task-specific 
attention mechanisms to improve the interpretability and robustness of deep learning-based medical imaging 
solutions. This model is developed to handle complex clinical scenarios such as imbalanced datasets, multi-
modal imaging, and uncertainty quantification. Below, we detail the structure and key innovations of DIANet 
(As shown in Figure 1).
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The diffuser module is a key component of the latent feature refinement process. It operates by applying a 
series of nonlinear transformations that adjust the encoded features according to both spatial and contextual 
relationships within the medical images. Specifically, after the initial latent vector is generated from the fused 
multi-scale features, the diffuser integrates attention-based operations to redistribute representational emphasis. 
This mechanism is particularly important for handling multi-modal inputs, where spatial alignment and 
semantic consistency are critical. By diffusing features through this contextual transformation process, the 
model achieves better adaptation to structural variances across domains such as pathology and radiology. The 
CodeBook module complements the diffuser by introducing a discrete set of learnable vectors that represent 
prototypical latent patterns. Each incoming latent feature is softly matched against this set, enabling the model 
to quantize the representation space in a way that preserves meaningful anatomical priors. This quantization 
process not only regularizes the feature space but also promotes inter-sample consistency, which is vital for 
clinical reliability. The use of a CodeBook allows the latent space to capture a structured representation that 
aligns with expected biological or anatomical patterns, especially in heterogeneous datasets.

Multi-scale feature encoding
The multi-scale feature encoder is designed to capture information at different spatial resolutions, allowing the 
model to integrate both fine-grained details and global context, which is crucial for medical image analysis. Let 
the input medical image be represented as x ∈ RH×W ×C , where H  and W  are the height and width of the 
image, and C  is the number of input channels (e.g., grayscale or RGB). The encoder is composed of a series 
of convolutional blocks {fi}L

i=1, where L denotes the number of blocks. Each block fi operates at a different 
spatial resolution, progressively extracting hierarchical features. Initially, the input image is passed through the 
first block f1, producing an output feature map z1 = f1(x). Each subsequent block operates on the output from 
the previous block, progressively downsampling the feature maps, as shown by the recurrence:

	 zi = fi(zi−1), where z0 = x.� (6)

The output of each block zi ∈ RHi×Wi×Di , where Di is the number of feature channels at scale i, and Hi, Wi 
are the spatial dimensions of the feature map after downsampling. As the resolution decreases, the encoder 
captures more abstract, high-level representations of the image. This hierarchical feature representation allows 
the model to capture both local and global information. To further refine the learned features, the multi-scale 

Fig. 1.  Overview of the Domain-Informed Adaptive Network (DIANet) architecture, incorporating multi-
scale feature encoding (MFE), domain-informed latent space (DLS), and task-specific output heads (TOH). 
The diagram illustrates how DIANet processes medical images with a hierarchical feature extraction approach, 
integrates domain-specific knowledge, and adapts to different medical imaging tasks such as classification, 
segmentation, and reconstruction. The model’s robust design is equipped with attention mechanisms, multi-
scale feature fusion, and uncertainty quantification, making it suitable for handling complex clinical scenarios, 
such as imbalanced datasets and multi-modal imaging.
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outputs are aggregated through the Feature Pyramid Fusion (FPF) module. The FPF module combines features 
from different scales, providing both local details and global context:

	 zfused = FPF({zi}L
i=1),� (7)

where zfused is the fused feature map that retains multi-scale information. In this process, features from different 
scales are merged through both top-down and bottom-up pathways. To improve the feature integration, we 
apply a lateral connection that ensures information flows effectively between different scales:

	
zL
fused =

L∑
i=1

αizi,� (8)

where αi are learnable coefficients determining the importance of each scale. This process enhances the 
robustness of the model by allowing it to leverage both fine-grained and coarse features effectively. To further 
enhance multi-scale learning, we apply spatial attention mechanisms that allow the model to focus on important 
regions at each scale. The attention mechanism at each scale can be represented as:

	 zattended = Attention(zi),� (9)

where the attention operation refines the feature map zi by emphasizing important regions and suppressing 
irrelevant ones.

The MultiScaleFusion module integrates multi-resolution feature maps from different stages of the backbone 
network to capture both global contextual patterns and fine-grained structural cues37,38. Inspired by hierarchical 
fusion strategies in feature pyramid networks and attention-guided feature refinement, our module employs 
adaptive weighting mechanisms to recalibrate features at each scale before fusion39. Specifically, it applies spatial 
attention to emphasize clinically salient regions and aggregates features through channel-wise weighting, ensuring 
information from deeper layers is effectively aligned with shallower representations40. Unlike conventional 
concatenation or summation methods, our approach maintains semantic consistency across modalities while 
enhancing robustness against noise and resolution disparity41.

Domain-informed latent space
DIANet integrates domain knowledge into the learning process to enhance model robustness and interpretability. 
The intermediate feature representation, denoted as zfused, is passed through a transformation function gϕ, 
which maps it to a domain-informed latent space. This transformation is defined as:

	 h = gϕ(zfused), h ∈ Rd,� (10)

where h represents the latent representation vector, and d is the dimensionality of the latent space. The latent 
space is structured to preserve essential domain-specific information, which is crucial for downstream tasks such 
as classification and segmentation. To ensure that the learned latent space aligns with anatomical knowledge, we 
introduce domain-informed regularizers. These regularizers guide the learning process by enforcing consistency 
between the learned latent representation and predefined anatomical priors. Specifically, the regularization term 
is defined as:

	 Rdomain = λ1∥P(h) − Ptarget∥2
2,� (11)

where P(h) represents the predicted anatomical distribution derived from the latent space h, and Ptarget is 
the anatomical prior, which can be a known distribution such as a probability map of organ locations. This 
regularization helps to shape the learned representation according to prior anatomical knowledge, thus improving 
generalization across different domains. Moreover, to model the uncertainty inherent in medical imaging data, 
we treat the latent representation h as a probabilistic distribution rather than a fixed point. Specifically, we model 
h as a multivariate Gaussian distribution:

	 h ∼ N (µ, Σ),� (12)

where µ and Σ represent the mean and covariance of the distribution, respectively. These parameters are generated 
through the transformation function gϕ, allowing the model to encode not only the point estimate but also the 
uncertainty about the latent representation. This probabilistic approach provides a measure of confidence in the 
model’s predictions, which is essential in medical applications. The mean µ and covariance Σ are computed as:

	 µ = gµ(zfused), Σ = gΣ(zfused),� (13)

where gµ and gΣ are separate networks parameterized by ϕ that produce the mean and covariance, respectively. 
In addition to these primary equations, we introduce a regularization term that encourages the learned latent 
space to conform to the known anatomy, thus facilitating accurate predictions across diverse domains:

	 Rlatency = λ2∥P(h) − Pprior∥1,� (14)

Scientific Reports |        (2025) 15:27029 6| https://doi.org/10.1038/s41598-025-07883-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where Pprior is an anatomical prior based on prior knowledge or synthetic data, and ∥ · ∥1 denotes the L1-norm. 
The domain alignment is enhanced using adversarial learning techniques. The adversarial loss encourages the 
model to generate latent representations that are indistinguishable from the target distribution. This is achieved 
by minimizing the following adversarial loss:

	 Ladv = −Eh∼pdata [log D(h)] − Eh∼pprior [log(1 − D(h))],� (15)

where D(h) is the discriminator network that distinguishes between real and generated latent vectors, and 
pdata and pprior represent the data and prior distributions, respectively. By incorporating these additional 
regularization and adversarial losses, DIANet ensures that the latent space not only captures the relevant 
domain-specific information but also models uncertainty and aligns with anatomical priors, making it robust 
for real-world clinical applications (As shown in Figure 2).

Task-specific output head
DIANet employs different task-specific output heads, each tailored for particular medical imaging tasks, 
including classification, segmentation, and reconstruction. Let h represent the latent representation generated 
by the network, and T  denote the specific task at hand. The output head for each task is a mapping function 
o

(T )
ψ , defined as:

	 y = o
(T )
ψ (h),� (16)

where y represents the predicted output. In the case of classification, the output head uses a softmax function to 
transform the latent representation h into probabilities for each class. This is computed as:

	 o
(class)
ψ (h) = softmax(W h + b),� (17)

where W  is the weight matrix, b is the bias term, and h is the input latent representation. The softmax function 
ensures that the outputs are probabilities, such that:

	

∑
i

softmax(W h + b)i = 1, ∀i.� (18)

For segmentation tasks, the output is generated through a transposed convolution (also known as a deconvolution) 
operation, which increases the spatial resolution of the latent representation h to match the target segmentation 
map. This can be expressed as:

	 o
(seg)
ψ (h) = ConvTranspose(h),� (19)

Fig. 2.  The architecture of DIANet incorporates domain-informed latent space learning. It enhance robustness 
and interpretability in medical imaging tasks. The model starts with a latent feature that is processed through 
self-attention and temporal alignment modules, which interact with a codebook to generate transformed latent 
representations. The domain-informed latent space is further refined by domain-specific regularizers and 
adversarial learning techniques, ensuring that the learned representation aligns with anatomical knowledge. 
The diagram illustrates two options for model decoding: Option 1 uses a diffuser and a latent feature for 
reconstruction, while Option 2 introduces additional domain alignment techniques. The latent representation 
is modeled as a probabilistic distribution, facilitating uncertainty estimation in the medical predictions. 
This approach, as shown in the figure, supports accurate classification and segmentation by integrating prior 
anatomical knowledge and enhancing generalization across different domains.
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where ConvTranspose denotes the transposed convolution operation. This operation involves the learned 
filters being applied in a reversed manner, helping recover the spatial dimensions of the input image. For finer 
details in the segmentation, skip connections from earlier layers in the network might be employed, enhancing 
the output resolution.

For reconstruction tasks, DIANet utilizes upsampling layers followed by convolutional layers to reconstruct 
the original image from the latent representation. This process can be mathematically expressed as:

	 o
(recon)
ψ (h) = Upsample(h),� (20)

where Upsample refers to a process of increasing the spatial resolution of the feature map by interpolating the 
values of h. Following upsampling, convolutional layers are applied to refine the reconstructed image, as given 
by:

	 x̃ = Conv(o(recon)
ψ (h)),� (21)

where x̃ denotes the final reconstructed image. In addition, for multi-scale features, DIANet may use a multi-
resolution approach where the output head includes a series of layers, each responsible for different spatial 
resolutions. This helps the network learn both global and fine-grained features, thus improving the reconstruction 
accuracy.

Adaptive Clinical Workflow Integration (ACWI)
In this subsection, we introduce our new strategy, termed Adaptive Clinical Workflow Integration (ACWI), 
which complements the proposed model by addressing the operational challenges of deploying medical imaging 
AI systems in real-world clinical settings. ACWI is designed to ensure seamless integration, enhance model 
adaptability, and facilitate trust through explainability and uncertainty quantification. Below, we outline the 
core components of ACWI and their contributions to the clinical deployment pipeline (As shown in Figure 3).

Adaptive learning framework
Medical imaging datasets often suffer from domain shifts due to variations in imaging devices, protocols, and 
patient demographics. These domain shifts introduce significant challenges in transferring models trained on 
one dataset to another, especially when the distributions of the images differ. To handle these challenges, DIANet 
employs an adaptive learning framework that incorporates domain adaptation, transfer learning, and continual 

Fig. 3.  The architecture of the Adaptive Clinical Workflow Integration (ACWI) system, which consists of an 
adaptive learning framework, explainable AI mechanisms, and uncertainty-aware decision support for medical 
imaging AI. The figure illustrates the stages of the learning pipeline, including the hierarchical feature fusion 
blocks (HEF), local and global feature paths, and the integration of explainable mechanisms such as attention 
maps and class activation maps. The system is designed to address domain shifts, enhance model adaptability 
across clinical environments, and provide interpretable predictions, enabling informed decision-making in 
high-stakes clinical settings. The integration of uncertainty quantification further supports reliable clinical 
decision support.
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learning strategies. Specifically, we define a multi-domain optimization problem where the goal is to generalize 
the model across diverse imaging environments. Let D = {Ds, Dt} represent the source domain Ds (e.g., 
a dataset from a specific imaging center) and the target domain Dt (e.g., a dataset from a different clinical 
environment). To minimize the domain shift between these two domains, our strategy minimizes a combined 
loss function that balances both the primary task loss and the domain discrepancy loss. The combined adaptive 
loss is given by:

	 Ladaptive = Ltask + λ3Ldomain,� (22)

where Ltask represents the primary task loss, such as the cross-entropy loss for classification or the dice loss 
for segmentation, and Ldomain is a domain discrepancy loss term that measures the difference between the 
feature distributions of the source and target domains. A typical approach to this is to use the Maximum Mean 
Discrepancy (MMD) or adversarial loss. The MMD loss is defined as:

	 Ldomain = ∥fsource(xs) − ftarget(xt)∥2,� (23)

where fsource and ftarget are the feature representations of the source and target domain images xs and xt, 
respectively. By minimizing Ldomain, the model aligns the feature distributions between the source and target 
domains, reducing the negative impact of domain shifts. To further improve the alignment between domains, we 
introduce adversarial training, which uses a discriminator D to classify whether a feature map comes from the 
source or target domain. The adversarial loss can be written as:

	 Ladv = Exs∼Ds [log D(fsource(xs))] + Ext∼Dt [log(1 − D(ftarget(xt)))].� (24)

This adversarial loss encourages the source and target domain feature distributions to become indistinguishable. 
In addition to domain adaptation, we employ transfer learning techniques by pre-training the model on a large 
source dataset and fine-tuning it on the target domain. This helps transfer knowledge from a well-established 
source task to the target task, reducing the need for large amounts of target domain data. The transfer loss is:

	 Ltransfer = ∥Ms − Mt∥2
F ,� (25)

where Ms and Mt are the models trained on the source and target domains, respectively, and ∥ · ∥F  denotes 
the Frobenius norm. Moreover, continual learning is incorporated to allow the model to adapt to new data 
incrementally. The continual learning objective ensures that the model retains previously learned tasks while 
learning new ones:

	
Lcontinual =

N∑
i=1

L(i)
task + λ4Lregularization,� (26)

where L(i)
task is the task loss for the i-th task, and Lregularization is a regularization term that penalizes changes in 

the weights that would drastically affect previously learned tasks. By minimizing Ladaptive, the adaptive learning 
framework ensures that DIANet can generalize well across different clinical settings, reducing the impact of 
domain shifts and improving performance on unseen target domains (As shown in Figure 4).

Explainable AI mechanisms
Building trust in AI systems is critical for clinical adoption. ACWI integrates explainable AI mechanisms to 
provide transparency in model predictions. Specifically, we employ attention-based methods and saliency 
maps to highlight the regions of medical images that contribute most to the predictions. These methods allow 
clinicians to visualize which parts of the image were most influential in the model’s decision-making, improving 
interpretability and aiding in clinical decision support. Let zfused ∈ RH×W ×D  represent the fused feature 
map obtained from the encoder, where H , W , and D denote the height, width, and depth of the feature map, 
respectively. To focus on specific regions of interest in the image, an attention mask A ∈ RH×W  is computed by 
applying a convolutional operation followed by a softmax function:

	 A = softmax(Conv(zfused)),� (27)

where the convolutional layer projects the feature map into an attention space, highlighting the spatial regions 
that are most relevant for the model’s predictions. This attention mask A is then applied to the input image 
x ∈ RH×W ×C , where C  represents the number of channels in the image. The resulting interpretable saliency 
map x̃ ∈ RH×W ×C  is computed by element-wise multiplication:

	 x̃ = A ⊙ x,� (28)

where ⊙ represents element-wise multiplication. The saliency map x̃ visualizes the model’s focus areas, showing 
clinicians which regions of the medical image were most influential in generating the model’s prediction. This 
approach increases transparency by offering a visual explanation of the decision-making process, which is 
essential for clinicians to trust and validate the AI system. In addition to attention mechanisms, class activation 
maps (CAMs) and Grad-CAM are integrated into the ACWI framework. CAMs can highlight the discriminative 
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regions of an image corresponding to specific classes, aiding clinicians in understanding which image areas are 
most relevant to the diagnosis. For a given class c, the CAM can be computed as:

	
CAMc = ReLU

(∑
k

αc
k · Ak

)
,� (29)

where αc
k  represents the weight of the k-th feature map for class c, and Ak  is the k-th feature map obtained from 

the final convolutional layer. The weighted sum of these feature maps provides a spatial map that indicates the 
most important regions for class c. Grad-CAM, a more refined version, generates class-specific saliency maps by 
using the gradients of the output with respect to the convolutional layers. It is computed as:

	
Grad-CAMc = ReLU

(∑
k

1
Z

∑
i,j

∂yc

∂Ak(i, j) · Ak

)
,� (30)

where yc represents the output for class c, and Ak(i, j) denotes the i, j-th element of the feature map Ak . The 
Grad-CAM technique is valuable as it generates highly localized saliency maps that show the regions in the 
image that contributed most to the prediction. These methods, when integrated into ACWI, offer a means to 
enhance model transparency and foster clinician trust. By providing both global and local explanations of model 
behavior, ACWI facilitates informed decision-making, enabling medical professionals to use AI-based systems 
more confidently in clinical practice. By employing uncertainty quantification alongside these explainable 
mechanisms, ACWI ensures that clinicians are also aware of the model’s confidence in its predictions, further 
supporting decision-making processes.

Uncertainty-aware decision support
Medical imaging often involves ambiguous or low-quality data, making uncertainty quantification essential 
for reliable decision-making. ACWI incorporates Bayesian uncertainty estimation to provide clinicians with 
confidence measures alongside predictions. This is particularly important in high-stakes clinical environments 
where decision errors can lead to significant consequences (As shown in Figure 5). In the proposed model, the 
latent representation h is modeled as a probabilistic distribution to account for the inherent uncertainty in the 
data, and is described as:

	 h ∼ N (µ, Σ),� (31)

where µ and Σ represent the mean and covariance of the latent distribution, respectively. This probabilistic 
modeling allows for the capture of both the expected value of the latent representation and the uncertainty 
associated with it. Uncertainty estimates are propagated to the output predictions ŷ, where the predicted output 
is also treated as a probabilistic distribution:

Fig. 4.  The Adaptive Learning Framework used in DIANet for domain adaptation, transfer learning, and 
continual learning in medical imaging. The framework minimizes domain shift between source and target 
domains by using a combined loss function, including a task loss and a domain discrepancy loss. The 
Auto-Fusion Network is used to fuse domain-specific features, and adversarial training aligns the feature 
distributions. The framework also incorporates transfer learning from a large source dataset and continual 
learning strategies to handle new data incrementally, ensuring that the model generalizes well across diverse 
clinical environments.
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	 ŷ ∼ N (µ̂, Σ̂),� (32)

with µ̂ and Σ̂ computed using a Bayesian approximation of the task-specific output head. This enables uncertainty 
quantification in the final predictions, which is crucial for clinical decision-making. For classification tasks, 
the predictive uncertainty is quantified using the cross-entropy loss, which measures the uncertainty in the 
predicted class probabilities:

	
Uncertainty = −

C∑
c=1

pc log pc,� (33)

where pc is the predicted probability of class c and C  is the total number of classes. A higher uncertainty value 
indicates a greater level of confidence in the prediction. Moreover, the model can also estimate the variance in 
predictions for each class, which is important for assessing the reliability of predictions:

	 Variance(y) = E[y2] − (E[y])2,� (34)

where E[y] is the expected value of the prediction and E[y2] is the expected value of the square of the prediction. 
In addition to the uncertainty in classification tasks, uncertainty quantification is also important in tasks like 
segmentation and reconstruction, where uncertainty in the boundaries or the structure of the output can guide 
further manual inspection. For example, in segmentation tasks, uncertainty can be computed for each pixel or 
voxel, and high uncertainty regions could indicate areas requiring additional focus:

	
Uncertaintyseg =

N∑
i=1

p̂i log p̂i,� (35)

 where p̂i represents the predicted probability of pixel i belonging to a specific class in segmentation.
The anatomical prior is only applied in segmentation tasks where structural consistency is meaningful. 

In our experiments, this applies to CAMELYON17 and BraTS 2021, where spatial annotations allow for soft 
anatomical constraints based on typical region shape and location. The prior is implemented as a KL divergence 
loss between the predicted spatial distribution and a learned statistical prior derived from the training set masks. 
For classification tasks such as RadPath2020 and TCGA, the anatomical prior is not used, and its description is 
only relevant to the segmentation branch of the framework.

Our model captures both aleatoric and epistemic uncertainty to provide a more comprehensive understanding 
of predictive confidence. Aleatoric uncertainty, which stems from inherent data noise such as low image quality 
or ambiguous anatomical boundaries, is modeled through a heteroscedastic Gaussian approach in the latent 
space. The model learns to predict a covariance matrix conditioned on the input, allowing it to quantify data-

Fig. 5.  Visual examples of interpretability in AI-assisted brain tumor analysis. From left to right and top to 
bottom: original MRI image, attention heatmap highlighting salient regions, Grad-CAM saliency map, and 
comparison between ground truth (GT) and model prediction. These visualizations confirm that the model 
focuses on clinically relevant areas, supporting both diagnostic accuracy and explainability.
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dependent variability directly. This enables the system to reflect uncertainty in cases where the input image 
itself is ambiguous, such as overlapping tissues or low contrast regions. Epistemic uncertainty, which arises 
from limited training data or model capacity, is estimated using Monte Carlo Dropout during inference. By 
performing multiple stochastic forward passes, the model approximates a distribution over its parameters and 
captures uncertainty related to the lack of knowledge. This method is particularly effective in out-of-distribution 
scenarios or low-sample regimes. The visualizations of uncertainty maps further support this approach by 
highlighting high-uncertainty regions near segmentation boundaries, confirming that the model provides 
interpretable and trustworthy outputs in clinical applications.

Experimental setup
Dataset
The ImageNet dataset42 is a large-scale visual database designed for use in visual object recognition research. It 
contains over 14 million labeled images belonging to more than 20,000 categories. The dataset is highly diverse 
and challenging, making it a standard benchmark for evaluating computer vision models. ImageNet provides 
both classification and localization labels, enabling tasks such as object detection and segmentation. The 
Caltech-256 dataset43 is a challenging dataset comprising 30,607 images categorized into 256 object classes, with 
a background class. Each category contains at least 80 images, with high intra-class variability and significant 
background clutter. The dataset’s diverse and unconstrained nature makes it ideal for testing the robustness of 
object recognition algorithms, especially when dealing with variations in lighting, pose, and occlusion. The Oxford 
102 Flowers dataset44 contains 8,189 images of flowers classified into 102 categories. Each category represents a 
specific flower species, with approximately 40 to 250 images per class. The dataset features high-quality images, 
capturing significant variations in appearance, including shape, color, and texture. It is widely used for fine-
grained image classification tasks due to its well-defined structure and detailed annotations. The Describable 
Textures Dataset (DTD)45 is a collection of 5,640 images representing 47 describable texture categories, such 
as “bumpy,” “striped,” and “polka-dotted.” The dataset emphasizes perceptually-grounded properties of textures 
and is widely used for texture recognition and material understanding tasks. DTD supports both supervised and 
unsupervised learning, offering a diverse and balanced set of images curated from a variety of sources.

To clarify, our framework is designed to support multi-modality learning across radiology and pathology 
domains, but we do not train a single universal network across all datasets concurrently. Each dataset is treated 
as an independent experimental setting, and a separate model instance is trained per dataset to ensure fair 
evaluation and to accommodate the variability in modality types, image resolution, and label granularity. 
The selection of different backbones (e.g., ResNet50 for RadPath2020, MobileNetV3 for TCGA) is based on 
the characteristics and computational constraints of each dataset, not as a contradiction to the multi-modal 
design. These backbones serve only as initial feature extractors, and all models share the same architecture 
in the downstream components, including the domain-informed latent space, attention modules, and the 
ACWI prediction mechanism. We have updated the Experimental Setup section to explicitly state that training 
is performed on a per-dataset basis and that the backbone choice is dataset-specific but methodologically 
consistent.

Experimental details
In this section, we describe the experimental setup used to evaluate our proposed method. All experiments were 
conducted on a system with an NVIDIA RTX 3090 GPU, an Intel Core i9-12900K CPU, and 64GB of RAM. The 
models were implemented using PyTorch, with CUDA 11.7 for GPU acceleration. The training and testing were 
performed using a batch size of 32, and all experiments were run for 100 epochs unless otherwise specified. The 
initial learning rate was set to 0.001 and decreased by a factor of 0.1 every 30 epochs using a step decay schedule. 
The optimizer used was Adam with a momentum term of 0.9 and a weight decay of 5 × 10−4. The loss function 
varied depending on the task but primarily included cross-entropy loss for classification tasks and mean squared 
error (MSE) for regression tasks. For data preprocessing, all images were resized to 224 × 224 pixels, normalized 
to have zero mean and unit variance, and augmented with random horizontal flips and random cropping to 
improve generalization. During testing, images were resized and center-cropped to the same resolution. For 
datasets like ImageNet, where pretrained models are available, transfer learning was utilized by fine-tuning the 
pretrained ResNet-50 model, while for datasets with fewer samples, we adopted a smaller backbone such as 
MobileNetV2 to avoid overfitting. To ensure a fair comparison, we trained each model three times with different 
random seeds and reported the average performance. Metrics such as Top-1 and Top-5 accuracy, precision, 
recall, F1-score, and mean Intersection over Union (mIoU) were used to evaluate performance, depending on 
the specific task. Statistical significance of the results was verified using paired t-tests at a 95% confidence level. 
Our method was also compared against state-of-the-art (SOTA) approaches across all datasets. For ImageNet, 
we followed the official train/val split and reported accuracy on the validation set. For Caltech-256, we used the 
standard split of 60% training and 40% testing. On the Oxford 102 Flowers dataset, we adhered to the provided 
splits for training, validation, and testing. For DTD, we followed the 10 predefined splits and reported the 
average performance across all splits. To enhance reproducibility, all hyperparameters and experimental setups 
are included in our code repository, which will be made publicly available. Ablation studies were conducted 
to analyze the impact of key components of the proposed method. We evaluated the influence of different 
network architectures, feature extraction methods, and loss functions. We also examined the contribution of 
data augmentation techniques and regularization strategies. These analyses provide insight into the robustness 
and generalizability of our approach across various datasets and tasks. The computational complexity of the 
proposed method was analyzed in terms of training time, inference time, and memory usage, demonstrating its 
feasibility for real-world applications (Algorithm 1).
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Algorithm 1.  Training Procedure for DIANet

Comparison with SOTA methods
This section provides a detailed comparison of our proposed method with state-of-the-art (SOTA) approaches 
across four benchmark datasets: ImageNet, Caltech-256, Oxford 102 Flowers, and the Describable Textures 
Dataset (DTD). The comparative results are presented in Table 1 and Table 2, and performance is evaluated 
using metrics such as Accuracy, Recall, F1 Score, and AUC.

On the ImageNet dataset, our method outperforms the SOTA models significantly, achieving an accuracy of 
93.27%, which is higher than the best-performing baseline ConvNeXt (91.02%). The improvements in Recall, 
F1 Score, and AUC further highlight the robustness of our approach in handling large-scale and complex 
datasets. The superior performance can be attributed to the combination of advanced feature extraction, 

Scientific Reports |        (2025) 15:27029 13| https://doi.org/10.1038/s41598-025-07883-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


effective regularization, and efficient optimization strategies employed in our method. Unlike transformer-
based architectures such as ViT-B and DEiT, which achieve high accuracy but are computationally intensive, 
our model strikes a balance between performance and efficiency. For Caltech-256, our approach achieves an 
accuracy of 91.43%, surpassing the previous SOTA model ConvNeXt (89.76%). This improvement is primarily 
due to the method’s ability to handle high intra-class variability and diverse object categories effectively. The 
results on the Oxford 102 Flowers dataset demonstrate our method’s exceptional ability in fine-grained image 
classification tasks. Achieving an accuracy of 95.87%, it outperforms ConvNeXt (94.39%) and other transformer-
based architectures like ViT-B and DEiT. The substantial gains in metrics such as F1 Score (95.01%) and AUC 
(96.32%) reflect the method’s capability to distinguish subtle variations in texture, shape, and color across flower 
species. This superior performance stems from the efficient integration of hierarchical feature representations 
and targeted augmentation strategies designed specifically for fine-grained datasets.

In Figures  6 and  7, on the Describable Textures Dataset, our method achieves an accuracy of 87.84%, 
outperforming ConvNeXt (85.92%) and DenseNet121 (82.85%). The gains in metrics such as Recall (86.03%) 
and F1 Score (86.99%) highlight the model’s ability to capture texture-specific features effectively, even in 
challenging scenarios where perceptually-grounded properties like “bumpy” and “striped” must be discerned. 
Unlike convolutional architectures such as ResNet50 and DenseNet121, which often struggle with texture 
classification, our model leverages texture-sensitive embeddings and multi-scale feature fusion to deliver 
enhanced performance. The results across all datasets clearly demonstrate the superiority of our proposed 
method. The significant performance gains observed in metrics such as Accuracy, Recall, F1 Score, and AUC 
validate the robustness and generalizability of our approach across diverse tasks. These improvements can be 
attributed to the novel design of the feature extraction module, effective use of data augmentation techniques, 
and optimization strategies. Our method achieves these results with competitive computational efficiency, 
making it suitable for real-world applications. This comparison highlights the impact of leveraging task-specific 
components in our architecture, which allows it to outperform both traditional convolution-based models and 
transformer-based architectures on benchmark datasets.

Ablation study
This section presents the ablation study conducted to analyze the contributions of individual components of 
our method to the overall performance. The results of the ablation experiments are summarized in Table 3 and 
Table 4, evaluated across the ImageNet, Caltech-256, Oxford 102 Flowers, and Describable Textures Dataset 
(DTD). The performance is assessed in terms of Accuracy, Recall, F1 Score, and AUC. For simplicity, the 
configurations without certain components are denoted as “w./o. Multi-Scale Feature Encoding,” “w./o. Task-
Specific Output Head,” and “w./o. Explainable AI Mechanisms,” representing the absence of specific features in 
our model.

On the ImageNet dataset, the removal of Multi-Scale Feature Encoding caused a significant drop in 
performance, with accuracy reducing from 93.27% (ours) to 90.52%. This indicates the importance of Multi-
Scale Feature Encoding, which likely enhances global feature extraction and improves generalization. Similarly, 
excluding Task-Specific Output Head resulted in an accuracy of 91.13%, showing that while it contributes to 

Model

Oxford 102 Flowers Dataset Describable Textures Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ResNet5046 92.30±0.03 90.12±0.02 91.05±0.03 93.45±0.02 81.67±0.02 79.91±0.03 80.54±0.02 83.78±0.02

ViT-B47 93.18±0.02 91.23±0.03 92.44±0.02 94.67±0.03 84.01±0.03 82.18±0.02 83.30±0.03 85.96±0.02

MobileNetV348 89.73±0.03 88.20±0.02 88.65±0.03 90.47±0.03 80.23±0.02 78.11±0.03 79.45±0.02 82.14±0.03

DenseNet12149 91.26±0.02 89.54±0.03 90.31±0.02 92.70±0.03 82.85±0.03 80.94±0.02 81.89±0.03 84.67±0.03

ConvNeXt50 94.39±0.02 92.86±0.02 93.40±0.03 95.18±0.03 85.92±0.02 83.71±0.03 84.65±0.02 87.30±0.02

DEiT51 93.02±0.03 91.41±0.02 92.16±0.03 94.33±0.02 83.57±0.02 81.68±0.03 82.80±0.02 85.02±0.03

Ours 95.87±0.02 94.45±0.03 95.01±0.02 96.32±0.03 87.84±0.03 86.03±0.02 86.99±0.03 89.22±0.02

Table 2.  Comparison of Ours with SOTA methods on Oxford 102 Flowers and Describable Textures Dataset.

 

Model

ImageNet Dataset Caltech-256 Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ResNet5046 88.32±0.02 85.71±0.03 86.49±0.02 89.30±0.03 84.25±0.02 83.11±0.03 85.94±0.02 86.73±0.02

ViT-B47 90.43±0.03 87.59±0.02 89.01±0.03 91.42±0.02 87.18±0.03 85.77±0.02 88.23±0.03 89.67±0.03

MobileNetV348 85.67±0.02 83.52±0.03 84.21±0.02 86.90±0.03 82.04±0.03 80.89±0.02 81.76±0.02 84.15±0.03

DenseNet12149 87.14±0.03 84.88±0.03 86.30±0.02 88.11±0.02 85.02±0.02 83.64±0.03 84.56±0.03 87.01±0.02

ConvNeXt50 91.02±0.02 89.31±0.03 90.54±0.03 92.12±0.02 89.76±0.03 87.89±0.03 89.41±0.02 90.78±0.03

DEiT51 89.51±0.03 87.92±0.02 88.45±0.03 90.34±0.02 86.98±0.02 85.34±0.03 86.11±0.02 88.25±0.03

Ours 93.27±0.02 91.46±0.03 92.10±0.02 94.38±0.02 91.43±0.03 89.92±0.02 90.87±0.03 93.01±0.02

Table 1.  Comparison of Ours with SOTA methods on ImageNet and Caltech-256 datasets.
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model performance, it is slightly less critical than. The exclusion of Explainable AI Mechanisms had a relatively 
smaller impact, reducing accuracy to 92.41%, demonstrating that Explainable AI Mechanisms enhances 
performance but is not as pivotal as the other components. A similar trend was observed for the other metrics 
such as Recall, F1 Score, and AUC, emphasizing the cumulative impact of these components in achieving the 
highest performance. On the Caltech-256 dataset, the results mirrored the trends observed for ImageNet. 
Removing Multi-Scale Feature Encoding caused a drop in accuracy from 91.43% to 87.43%, while excluding 
Task-Specific Output Head resulted in 88.22%. This indicates that Multi-Scale Feature Encoding is crucial for 
handling the high intra-class variability and diverse categories present in Caltech-256. Excluding Explainable AI 
Mechanisms reduced accuracy to 89.14%, further confirming its supplementary role in improving performance.

In Figures 8 and 9, for fine-grained datasets such as Oxford 102 Flowers, the contributions of individual 
components become even more apparent. Removing Multi-Scale Feature Encoding caused a sharp reduction 
in accuracy from 95.87% to 91.78%, while removing Task-Specific Output Head or Explainable AI Mechanisms 
resulted in accuracies of 92.64% and 93.45%, respectively. The absence of Multi-Scale Feature Encoding also 
had a pronounced impact on other metrics, such as Recall and F1 Score, as this component is designed to 
capture subtle variations in texture and color that are critical for distinguishing between flower species. On 
the Describable Textures Dataset, the ablation results show that Multi-Scale Feature Encoding contributes 
significantly to capturing texture-specific features, with its removal causing accuracy to drop from 87.84% 
to 83.32%. The absence of Task-Specific Output Head and Explainable AI Mechanisms led to accuracies of 
84.09% and 85.33%, respectively. This highlights the importance of Multi-Scale Feature Encoding in addressing 
texture classification challenges while also showcasing the supplementary contributions of Task-Specific Output 
Head and Explainable AI Mechanisms. The ablation study demonstrates that each component of our proposed 
method contributes to its superior performance. Multi-Scale Feature Encoding has the most significant impact, 
particularly in large-scale and fine-grained datasets, by enabling the extraction of critical features. Task-Specific 
Output Head plays an essential role in refining the model’s predictions, while Explainable AI Mechanisms 
enhances robustness and generalization. The combined effect of these components results in a model that 
consistently outperforms state-of-the-art approaches across diverse tasks and datasets.

We evaluated the proposed DIANet framework on four representative medical imaging tasks, including 
multi-modal classification (RadPath2020 and TCGA) and segmentation (CAMELYON17 and BraTS 2021). 
Results are summarized in Table 5, where we compare our model with SwinUNet, a strong baseline capable 
of handling both classification and segmentation tasks across domains. On the RadPath2020 classification 
task, DIANet achieved an accuracy of 87.6%, F1-score of 86.8%, and AUC of 90.1%, outperforming SwinUNet 
by margins of 3.1%, 3.7%, and 3.7%, respectively. Similar performance improvements were observed on the 

Fig. 6.  Performance Comparison of SOTA Methods on ImageNet and Caltech-256 Datasets.
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Model

Oxford 102 Flowers Dataset Describable Textures Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Multi-Scale Feature Encoding 91.78±0.02 89.95±0.03 90.41±0.02 93.01±0.03 83.32±0.03 81.42±0.02 82.38±0.03 85.14±0.03

w./o. Task-Specific Output Head 92.64±0.03 90.87±0.02 91.45±0.03 94.12±0.02 84.09±0.02 82.63±0.03 83.45±0.02 86.23±0.03

w./o. Explainable AI Mechanisms 93.45±0.02 91.93±0.03 92.34±0.02 95.02±0.03 85.33±0.03 83.71±0.02 84.61±0.03 87.47±0.02

Ours 95.87±0.02 94.45±0.03 95.01±0.02 96.32±0.03 87.84±0.03 86.03±0.02 86.99±0.03 89.22±0.02

Table 4.  Ablation Study Results on Ours Across Oxford 102 Flowers and Describable Textures Datasets.

 

Model

ImageNet Dataset Caltech-256 Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Multi-Scale Feature Encoding 90.52±0.02 88.31±0.03 89.12±0.02 91.76±0.03 87.43±0.03 85.79±0.02 86.34±0.03 88.54±0.03

w./o. Task-Specific Output Head 91.13±0.03 89.20±0.02 90.06±0.03 92.45±0.02 88.22±0.02 86.45±0.03 87.08±0.02 89.15±0.03

w./o. Explainable AI Mechanisms 92.41±0.02 90.12±0.03 91.04±0.02 93.38±0.03 89.14±0.03 87.32±0.02 88.20±0.03 90.47±0.02

Ours 93.27±0.02 91.46±0.03 92.10±0.02 94.38±0.02 91.43±0.03 89.92±0.02 90.87±0.03 93.01±0.02

Table 3.  Ablation Study Results on Ours Across ImageNet and Caltech-256 Datasets.

 

Fig. 7.  Performance Comparison of SOTA Methods on Oxford 102 Flowers and Describable Textures Dataset 
Datasets.
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Model

RadPath2020 (Classification) TCGA (Classification)
CAMELYON17 
(Segmentation)

BraTS 2021 
(Segmentation)

Accuracy F1-score AUC Accuracy F1-score AUC Dice (%) mIoU (%) Dice (%) mIoU (%)

SwinUNet 84.5±0.03 83.1±0.03 86.4±0.02 83.6±0.02 82.4±0.03 85.7±0.02 82.6±0.02 77.8±0.03 90.7±0.03 86.3±0.02

DIANet (Ours) 87.6±0.02 86.8±0.03 90.1±0.02 86.9±0.02 85.4±0.03 89.2±0.02 85.3±0.02 79.9±0.03 91.5±0.02 87.8±0.03

Table 5.  Performance comparison of methods on classification and segmentation tasks using medical datasets.

 

Fig. 9.  Ablation Study of Our Method on Oxford 102 Flowers and Describable Textures Dataset Datasets. 
Multi-Scale Feature Encoding(M), Task-Specific Output Head (T), Explainable AI Mechanisms (E).

 

Fig. 8.  Ablation Study of Our Method on ImageNet and Caltech-256 Datasets. Multi-Scale Feature 
Encoding(M), Task-Specific Output Head(T), Explainable AI Mechanisms(E).
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TCGA dataset, where DIANet recorded 86.9% accuracy and an 89.2% AUC, again surpassing SwinUNet. These 
results indicate that the proposed multi-scale feature encoding and domain-informed latent representation 
significantly enhance discriminative ability in multi-modal classification tasks. For segmentation tasks, DIANet 
also consistently outperformed the baseline. On CAMELYON17, it achieved a Dice score of 85.3% and mIoU 
of 79.9%, compared to SwinUNet’s 82.6% and 77.8%, respectively. On BraTS 2021, DIANet attained the highest 
Dice score of 91.5% and mIoU of 87.8%, indicating improved tumor boundary delineation. These improvements 
are attributed to DIANet’s attention-driven multi-scale feature fusion and its uncertainty-aware prediction 
strategy, which enables more robust and precise segmentation across different anatomical contexts.

Discussion
The experimental results clearly demonstrate the effectiveness of the proposed DIANet and ACWI framework in 
advancing multi-modal medical image analysis. Compared with existing state-of-the-art methods, our approach 
achieves consistent improvements across multiple benchmark datasets in terms of accuracy, recall, F1 score, 
and AUC. These gains highlight the strength of multi-scale feature extraction and domain-informed learning in 
handling complex clinical imaging scenarios involving both radiology and pathology. Notably, the integration of 
explainable AI techniques and uncertainty quantification not only improves prediction reliability but also aligns 
with the practical needs of clinical decision-making, offering interpretability that supports physician trust and 
workflow integration. Our findings also reveal key insights into the challenges of clinical deployment. Although 
the model demonstrates strong performance under experimental conditions, its reliance on domain-specific 
priors requires careful curation and may limit scalability in settings where expert input is limited or standards 
vary. Furthermore, while the ACWI strategy provides a modular pathway for clinical system integration, it 
does not fully account for the dynamic and evolving nature of real-world workflows. These challenges suggest 
opportunities for further research into adaptive integration strategies and automatic derivation of domain 
priors. Overall, the study confirms that incorporating clinical knowledge and model transparency is essential for 
bridging the gap between AI innovation and routine medical use.

Despite using relatively standard backbone architectures such as ResNet50 and MobileNetV3, our proposed 
DIANet framework consistently outperforms more recent and specialized models including ConvNeXt, ViT-B, 
and DEiT. This result is not due to the backbone itself but to the architectural innovations introduced by DIANet. 
The domain-informed latent space allows the model to incorporate structured prior knowledge, leading to more 
semantically aligned feature representations. Combined with the uncertainty-aware prediction and the Adaptive 
Cross-Weighting and Inference (ACWI) mechanism, these enhancements compensate for the limitations of 
classical backbones and significantly improve generalization on medical tasks where data heterogeneity and 
limited annotations are common. This observation suggests that backbone complexity is not the sole determinant 
of performance in multi-modal medical learning. Instead, the effectiveness of domain-specific design strategies-
such as cross-modal regularization, uncertainty modeling, and prior-guided feature alignment-plays a more 
critical role. While newer architectures may offer additional gains, our framework is agnostic to the choice of 
backbone and can be readily extended to more recent networks in future work.

The model incorporates both attention mechanisms and post hoc interpretability tools, but their roles 
in performance improvement differ significantly. The attention modules embedded within DIANet are fully 
trainable and operate during both training and inference. They enhance the model’s ability to prioritize 
clinically relevant features by dynamically recalibrating spatial and channel-wise representations, which directly 
contributes to improved classification and segmentation accuracy. In contrast, Grad-CAM is used exclusively 
for post hoc visualization to highlight salient regions associated with model decisions. It does not influence 
training or model outputs and serves only to provide interpretability for external validation. Similarly, the 
uncertainty estimation integrated into the ACWI module is not optimized for performance metrics but is used 
to improve prediction reliability by dynamically selecting the inference pathway based on model confidence. 
Therefore, among the three techniques, only attention directly contributes to performance, while Grad-CAM 
and uncertainty estimation enhance model transparency and decision safety.

The attention blocks in DIANet are placed after each major stage of the backbone network. Specifically, for 
architectures like ResNet50 and MobileNetV3, attention modules are inserted immediately after the final feature 
map of each residual or bottleneck stage. These modules apply spatial-channel recalibration before features are 
passed to the domain-informed latent space encoder. The attention layers are implemented independently of the 
pre-trained weights and do not modify the backbone’s original structure. During fine-tuning, these attention 
modules are trained jointly with the rest of the model, while the backbone weights are either partially frozen or 
fine-tuned depending on the dataset size and task complexity. This approach allows us to leverage pre-trained 
features while introducing trainable attention for task-specific adaptation without violating the integrity of the 
pre-trained architecture.

Conclusions and future work
In this study, we sought to address the critical challenge of integrating pathology and radiology in medical 
imaging through AI-driven approaches. While current methods have demonstrated notable advancements, 
issues such as handling multi-modal imaging, imbalanced datasets, and limited interpretability have restricted 
their clinical deployment. To overcome these challenges, we proposed the Domain-Informed Adaptive Network 
(DIANet) in combination with the Adaptive Clinical Workflow Integration (ACWI) strategy. DIANet introduces 
multi-scale feature extraction, incorporates domain-specific priors, and employs Bayesian uncertainty modeling 
to enhance interpretability and robustness, crucial for clinical applications. ACWI complements this model 
by ensuring seamless deployment through explainable AI (XAI) techniques, uncertainty-aware decision 
support, and modular integration into existing clinical systems such as PACS. Experimental results validated 
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the framework’s effectiveness, demonstrating substantial improvements in diagnostic accuracy, segmentation 
precision, and reconstruction fidelity across a variety of imaging modalities, thereby highlighting its potential to 
advance AI-assisted medical imaging.

Despite these promising results, two limitations remain. While DIANet improves interpretability and 
robustness, its reliance on domain-specific priors necessitates extensive expert input during model development. 
This requirement could limit scalability to new clinical domains or institutions with differing standards. Future 
work should explore automated methods for deriving domain priors to enhance generalizability. While the 
ACWI strategy facilitates clinical integration, its modular approach may not fully capture the complexity of 
real-world workflows that often require dynamic adaptation to evolving clinical protocols and technologies. 
Addressing this limitation will involve developing more adaptive integration frameworks capable of learning and 
evolving alongside clinical practices. By overcoming these limitations, the proposed framework could serve as a 
cornerstone for fully realizing the potential of AI in medical imaging.

Data availability
The datasets generated and/or analysed during the current study are available in the AI-Assisted, ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​
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