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Multiplex glycan bead array for high throughput
and high content analyses of glycan binding
proteins
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Glycan-binding proteins (GBPs) play critical roles in diverse cellular functions such as cell

adhesion, signal transduction and immune response. Studies of the interaction between GBPs

and glycans have been hampered by the availability of high throughput and high-content

technologies. Here we report multiplex glycan bead array (MGBA) that allows simultaneous

analyses of 384 samples and up to 500 glycans in a single assay. The specificity, sensitivity

and reproducibility of MGBA are evaluated using 39 plant lectins, 13 recombinant anti-glycan

antibodies, and mammalian GBPs. We demonstrate the utility of this platform by the analyses

of natural anti-glycan IgM and IgG antibodies in 961 human serum samples and the discovery

of anti-glycan antibody biomarkers for ovarian cancer. Our data indicate that the MGBA

platform is particularly suited for large population-based studies that require the analyses of

large numbers of samples and glycans.
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Many cell surface and secretory proteins produced by
mammalian cells are modified by glycans, which play
an essential role in the maintenance of diverse cellular

functions. Alterations to glycans, such as increased levels of
truncation and branching as well as presence of unusual terminal
sequences, may cause changes in various physiological and

pathogenic processes, including oncogenic transformation1–3 and
autoimmunity4–6. There are a large number of glycan-binding
proteins (GBPs). The three main mammalian GBP families are C-
type lectins, galectins and siglecs, which play critical roles in
diverse cellular functions such as cell adhesion, signal transduc-
tion and immune response6. Other GBPs include proteins
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Fig. 1 Design and workflow of MGBA. Each glycan was conjugated to one region specific Luminex bead, using 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride. After blocking the beads with 1% BSA in PBS (w/v), the beads were probed with biotinylated lectins, anti-glycan antibodies
and glycan-binding proteins. After washing, the bound lectins, anti-glycan antibodies and glycan-binding proteins were detected using phycoerythrin
labelled streptavidin (SAPE). The unbound SAPE was removed by washing, and beads were resuspended in wash buffer. The beads were read in FLEXMAP
3D, as per settings defined in “Methods” secrion. The median fluorescence intensity data is then presented as mean+standard deviation of two replicates;
each experiment was repeated three times
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involved in mediating intracellular trafficking, bacterial adhesion
molecules, bacterial toxins, viral GBPs and other microbial GBPs,
which are important for pathogen-host interactions. A special
category of GBPs is anti-glycan antibodies7,8, which play an
essential role in various diseases, including autoimmune diseases,
cancer, blood transfusion, organ transplants and responses to
vaccines5,9–11. In addition to blood transfusion, anti-glycan
antibodies may also have a tremendous potential as diagnostic
and prognostic markers for other diseases such as cancer and
autoimmunity5,9–11.

Despite the critical importance of GBPs in normal physiology
and pathogenesis, progress in this field has been slow due to the
lack of available glycans and adequate assay technologies. ELISA
has been traditionally used to analyze GBPs, including anti-glycan
antibodies. ELISA can analyze large numbers of samples but only
for a small number of glycans. This obstacle was partially alle-
viated by advent of the glycan arrays on flat surface such as glass
slides, which were mainly developed by the consortium of func-
tional glycomics (CFG)12,13. Glycan arrays have been used in a
variety of studies and have greatly enhanced our understanding of
glycan functions13,14. For example, it was shown for the first time
the presence of antibodies to a variety of simple sugars and
structurally complex glycans7,8. However, the flat surface glycan
array is technically challenging and cannot be easily made
available to non-experts. It is difficult to translate flat surface
microarray into a clinical tool due to the technical difficulties and
long turn-around time of the assay. Furthermore, the flat surface
array does not allow rapid analyses of large numbers of samples
required by many studies. Therefore, there is still an urgent need
for improved and affordable technologies that can analyze
simultaneously large numbers of samples (high throughput) and

large numbers of glycans (high content). Development of such a
platform that can be used by all biologists and clinic technologists
without sophisticated technical expertise will greatly speed up
glycomic studies and the translation of glycomic discoveries into
clinical tests for diagnosis of microbial response15–18, inflamma-
tion10,19–21 and cancers5,22,23. Earlier studies on development of
suspension glycan array used a cumbersome procedure with
unknown reproducibility and scalability24–26. Only a few glycans
were used, of these reproducibility of the procedure was
determined by using blood group A and B antigens on 45 serum
samples24–26. Taken together the studies did not address the
reproducibility, specificity and sensitivity of the glycan array to
produce convincing data to demonstrate the utility of the plat-
form24–26.

We report here the development of multiplex glycan bead array
(MGBA), which is based on Luminex bead array technology27. To
create the MGBA, we covalently attach one glycan per bead
region, creating a panel of 184 beads corresponding to 184 gly-
cans used in this study. This high throughput and high-content
platform allows rapid and economic analyses of large numbers
(thousands) of glycans and large number of samples (thousands
to tens of thousands).

Results
Creation of MGBA version I. The overall design and workflow
for MGBA is depicted in Fig. 1. The first task of establishing the
MGBA was to determine the optimum conditions for glycan
conjugation to Luminex beads. Towards this goal, we tested
different conjugation strategies for covalent coupling of defined
glycan structures to carboxylated Luminex beads (–COOH
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Fig. 2 MGBA data using lectin as detection reagents. Bar charts show median fluorescence intensity (MFI) (on y-axis) for each of the 184 glycans by their
order of glycan ID (on x-axis). Data for three representative lectins are shown and data for all other lectins are in Supplementary Figure 3. The data are
presented as mean+standard deviation of two replicates; each experiment was repeated three times
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beads). We optimized the conjugation chemistry as well as the
concentration of glycans required to achieve reproducible cova-
lent attachment. We tried three different conjugation chemistries
(Sulfo NHS-EDC, DMTMM and EDC), which have been
described in the literature28–30, to covalently attach glycans to
carboxyl microspheres. The Sulfo NHS-EDC conjugation method
did not give us acceptable signal to noise ratio for any glycans
used in our pilot studies and was not further pursued. DMTMM
conjugation yielded good signals but was generally weaker than
the data from the EDC conjugation (Supplementary Fig. 1).
Therefore, the final protocol uses covalent attachment of glycan
to beads using the EDC activation procedure by the formation of
an amide bond. This procedure was used to generate conjugated
beads for our first version of MGBA. Each glycan was conjugated
to a specific bead type in duplicate to assess the quality of the
conjugation, which was done by plant lectin binding based on
their known binding affinities, discrepancy in plant lectin binding
to the known glycans or between duplicate conjugations. Any

glycan that did not meet these QC parameters was re-conjugated
and retested using the same procedure.

To assess the reproducibility of conjugation over time, we
performed four sets of conjugations on four different days (day 1,
2, 5, and 10). The reproducibility of the conjugation was assessed
by detecting anti-glycan IgM in 48 serum samples within the
same assay plate. Correlations between different conjugations are
usually excellent (r> 0.96) (Supplementary Fig. 2a). Reproduci-
bility of the assay over time was assessed by measuring anti-
glycan IgM in 48 serum samples using the same batch of beads on
six different days (1, 2, 5, 10, 15, and 28). We consistently
observed high correlation values (r> 0.97) (Supplementary
Fig. 2b). Comparing the data in Supplementary Fig. 2a vs. 2b, it
is evident that there is more variability between different batches
of beads compared to different assays using the same conjugation,
although the batch-to-batch conjugations are reproducible.

Our glycan library contains a total of 184 glycans, of which 102
are aminoalkyl glycans synthesized in laboratory of Dr. Peng
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Fig. 3 Evaluation of MGBA’s sensitivity and specificity. a Serial dilutions of lectins and GBPs were used to assess the lower limit of detection of MGBA.
Lowest limit of detection values were 1.76 pMol (GSL-II), 0.06 pMol (VVL and AAL) and 13.3 pMol (E-Selectin). b Specificity for anti-glycan antibodies. The
data for three representative antibodies are shown here and the data for other antibodies are shown in Supplementary Fig. 6. The glycans with similar
structures without binding are also presented in the figure to show specificity of the binding. Mean of two replicates is presented and error bars are
standard deviations of the two replicates. Each experiment was repeated three times
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George Wang using combinatorial chemistry31 and 82 are AEAB
functionalized glycans from Dr. Richard D. Cummings as part of
the Consortium of Functional Glycomics (CFG) glycan array32.
The glycans and their associated structures used in this version I
of MGBA are listed in Supplementary Table 1. The glycan-
conjugated beads can be mixed in a single well and assayed
simultaneously or organized into subpanels at any desired
combinations and assayed separately.

Validation of MGBA by plant lectins. In the first set of valida-
tion experiments for our MGBA platform, 39 biotinylated plant
lectins (Supplementary Table 2) were used to probe each of the
184 glycan beads. As shown in Fig. 2 for three representative
plant lectins, each plant lectin binds to a specific subset of glycans.
Consistent with reported specificities33, RCA-I exhibited high
levels of binding to glycans containing Gal-β4-GlcNAc motif
present in several glycans (#17, 105 and 121), with the highest
signal observed for glycan #121 containing tandem repeats of
Gal-β4-GlcNAc. Glycan with similar motif such as Gal-β3-
GlcNAc (#18) did not show any binding with RCA-I. Surpris-
ingly, glycan #131 with an internal Gal-β3-GlcNAc motif [Gal-
α3-(Fuc-α2)-Gal-β3-GlcNAc-β3-Gal-β4-Glc] showed the second
highest binding. The binding of RCA-I observed in our MGBA is
similar to that observed for RCA-I in the CFG array, where RCA-
I had high signal levels for glycans containing Gal-β4-GlcNAc. As
reported in previous studies34, RCA-I was also found to bind to
Sia-α6-Gal-β4-GlcNAc-containing bi-antennary N-Glycan SGP
(#105). However, no binding was observed for α6- and/or α3-
linked mono- and/or di-sialylated forms of T-antigen (#65, 66, 67
and 68). Similarly, α6- and α3-linked mono-sialic acid or N-
glycolylneuraminic acid present on Gal-β3-GlcNAc (#22–24)) or
Gal-β4-Glc (#9 and 10) backbone also showed no binding.

GSL-II, a lectin from Griffonia simplicifolia, specifically binds
to β-linked GlcNAc oligomers (#48 and #87) and shows low level
of binding to a GlcNAc monomer (#6) (Fig. 2). The binding of
GSL-II is specific to GlcNAc-β4-GlcNAc motif, since no binding
was observed for similar motif GlcNAc-β6-GlcNAc (#33). The
binding of GSL-II in our MGBA showed some difference
compared to CFG array, where GSL-II binds to all glycans
containing terminal and internal GlcNAc, with higher signals
observed for tandem repeats of Gal-β4-GlcNAc-containing bi-
and tri- antennary glycans. On our MGBA, GSL-II only binds to
tandem repeats of Gal-β4-GlcNAc but does not bind to internal
or terminal GlcNAc, suggesting higher specificity in our
suspension array compared to glass arrays used by CFG.

As expected, the UEA lectin showed strong affinity towards
blood group H type2 (BGH2) glycan (#55) and a BGH type 5
glycan (#58) but did not bind to blood group H type 1 (BGH1)
glycans (#122 and 123) (Fig. 2). UEA also showed binding to Ley

(#60) that also contained the Fuc-α2-Gal-β4-GlcNAc motif.
While UEA shows high signals for BGH2 glycan (#55), it does not
bind to glycan #32, which only differs from glycan #55 by the
fucose linkage. Furthermore, UEA showed low signal to a long
chain glycan that contains the BGH2 motif (#124). Consistent
with a previous report34, UEA did not show binding to other α2-
Fuc containing glycans such as glycan #56 and #59. These results
together suggest that UEA specifically binds to Fuc-α2-Gal-β4-
GlcNAc (#55) or Fuc-α2-Gal-β4-Glc (#58) motifs but the binding
can be reduced or abolished by the structure beyond the core
motif as seen for glycan #60 and #124.

The net (background-subtracted) MFI values for all 39 lectins
and 184 glycans are provided in Supplementary Data 1 and bar
charts showing the binding activities for each lectin and each
glycan are shown in Supplementary Fig. 3. Overall, the binding
patterns for all lectins are largely consistent with previous

knowledge. A total of 16 lectins did not show binding in this
version of MGBA because specific glycans for eight lectins were
not present in this MGBA (ECL, PHA-L, PHA-E, NPL, HHL,
MPL, MAL-I and MAL-II) or possibly other technical issues such
as poor quality of the lectins, poor quality of lectin labeling, low
affinity binding, poor quality of the specific glycans, and
inadequate binding conditions (SBA, BPL, ACL, SuConA, LTL,
SJA, PTLII and BSIB4). One example for such issues is on AAL,
which gives high background at a concentration of 5 µg/ml that is
suitable for other lectins. However, the background for assays
using 1 µg/ml of AAL was reduced to levels comparable to those
observed for other lectins at 5 µg/ml. As expected, AAL binds
specifically to glycans containing α-fucose in α-2, α-3 and α-4
linkages34.
To further test the specificity of the MGBA, competition assays

were carried out for a number of plant lectins. Briefly, a simple
sugar unconjugated to beads with specificity to certain lectins was
added to the binding buffer before mixing with glycan-conjugated
beads to determine the ability of the sugar to compete for binding
with glycan-conjugated beads. Our data show that galactose can
specifically block binding of RCA-I to beads conjugated with
glycans containing galactose. Similarly, GlcNAc can specifically
block binding of GSL-II to GlcNAc-containing glycans and fucose
can specifically block binding of UEA and AAL to fucose-
containing glycans (Supplementary Fig. 4). These results provide
further evidence that plant lectins bind specially to the glycans
conjugated to beads.

We then proceeded to test the sensitivity of the MGBA assay by
using serial dilutions of seven plant lectins (RCA-I, ConA, GSL-II,
SuWGA, VVL, WFL, and AAL). The top panel of Fig. 3a shows
results for five-fold serial dilutions for GSL-II, VVL and AAL, and
the data for the other four lectins are presented in Supplementary
Fig. 5. The results suggest that the lower limit of detection
(LLOD) is highly lectin- and glycan-dependent. The LLOD for
VVL binding to GalNAc was found to be around 0.0085 µg/ml
(0.1 pmol), while LLOD for RCA-I, GSL-II, AAL, Con A, WGA
and AAL was observed to be around 0.2 µg/ml. For the majority
of glycans, the background MFI from the control beads was found
to be negligible even when 25 µg/ml of lectin was used in the
assays.

Validation of MGBA using anti-glycan antibodies. We further
evaluated the performance of MGBA using 13 anti-glycan anti-
bodies (Supplementary Table 3). Four antibodies against proteins
(two anti-human MUC1, one anti goat IgG and one anti rat IgG)
were used as negative controls and did not bind to any glycan in
our glycan array (Supplementary Fig. 6). A commercial Ley

antibody of the IgM class was found to bind specifically (Kd =
3.06± 0.61 µM, mean± SD, Supplementary Fig. 7) to the Ley

glycan Fuc-α2-Gal-β4-(Fuc-α3-)GlcNAc (#60) and weakly to
Fuc-α2-Gal-β4-(Fuc-α3)GlcNAc-β3-Gal (#134) but did not
recognize any other structures in the array (Fig. 3b). A mono-
clonal IgG antibody produced in our own laboratory was known
to bind to glycans but the binding specificity was unknown. Using
MGBA, it was quickly revealed that this antibody binds with high
specificity (Kd = 0.92± 0.079 µM, mean± SD, Supplementary
Fig. 7) to glycan #60 which contains the Ley motif (Fig. 3b),
demonstrating utility of MGBA for mapping glycan-binding
specificity of antibodies.

The blood group H (BGH) antibody had identical binding
profile as the UEA lectin with the only exception of glycan #124.
The BGH antibody binds to two BGH-type 2 motif-containing
glycans (#55 and 60) and one BGH-type 5 glycan (#58)
recognized by UEA as well as glycan #124 that is not recognized
by UEA (Fig. 3b). Our data suggest that anti-BGH antibody used
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to test the MGBA recognizes (Fuc-α2)-Gal-β4-x motif. If the
motif changes to BGH-type 1 as in glycan #123 [(Fuc-α2)-Gal-β3-
x] or (Fucα1-3)-Gal β4-x as in glycan #32, binding is abolished
(Fig. 3b). The monoclonal antibody raised against GA1 structure
(Gal-β3-GalNAc-β4-Gal-β4-Glc) specifically binds to glycan #171
as expected. The Leb antibody recognized the Leb glycans (#61
and 137) but also bound to several glycans containing Gal-β4-Glc
(#15) and Gal-β3-(Fuc-α4)-GlcNAc (#26, 62,135 and 136)
structures. The Lac/Gal-β4-Glc-β (#15) structure was recognized
by CA19.9 (IgG and IgM class), sLex, and Leb antibodies
(Supplementary Fig. 6).

Validation of MGBA by glycan-binding proteins. To assess the
utility of MGBA, we analyzed representative glycan-binding
proteins in different GBP families: mouse E-selectin (C-type
lectin), siglec-5 and siglec-3 (siglecs) and galectin-3 (galectins). In
addition to these GBPs, three proteins that are not expected to
bind to glycans (transferrin, α-1 acid glycoprotein and carbonic
anhydrase 9) were tested against a subset of 50 glycans. As
expected, none of the proteins showed appreciable binding to any
glycan (Supplementary Fig. 8), further confirming the high spe-
cificity of the MGBA platform. It is well known that GBPs have
multivalency for binding glycans35,36. In our studies, siglec-5
recognized several sialic acid-containing glycans such as Neu5Ac-
α3-Gal-β4-Glc motif (#8) and Neu5Ac-α6-Gal-β4-Glc (#9) as
well as Gal-β3-GalNAc-β4-(Neu5Ac-α3-)Gal-β4-Glc (#112) and
its structural analog Gal-β3-GalNAc-β4-(Neu5Gc-α3-)Gal -β4-

Glc (#113). However, it did not bind to any of the glycan struc-
tures containing the Gal-β4-Glc motif (Fig. 4). Siglec-3 showed
weak binding to glycan structures containing sialic acid. Similar
to Siglec-3, the overall binding to glycans by galectin-3 was weak
with the highest signal observed for glycan #151 [Gal-α3-(Gal-β4-
GlcNAc-β3)4-Gal-β4-Glc] (Fig. 4). Low levels of signals were also
observed to glycans containing the Sia-α3-Gal-β4-Glc (#111, 112,
and 114), Sia-α3-Gal-β4-(6 S)GlcNAc (#116), NeuraGc-α3-Gal-
β4-Glc motif (#113), GM2 KDN (#115) and the glycoside anti-
biotic sisomycin, (102) (Fig. 4). Mouse E-selectin showed high
signal levels for glycans containing Lewis motifs (#60, 61, 62, 131,
133, 134, 135, 136, 137, 138, 139) and showed binding to lacto-
difucotetraoase (#140), lacto-N-neofucopentaose (#143), GT3
ganglioside (#163) and 2’2Difucosyl lactose (#187) as well as
other glycan structures (#15, 26, 30, 47, 91, 105, and 111) (Fig. 4).
Why the binding signals vary between different GBPs is not
entirely clear. However, we do know that the amount of GBPs
required to detect binding vary for different GBPs (Fig. 3a).

Analyses of natural anti-glycan IgM antibodies in human sera.
MGBA was used to measure natural anti-glycan IgM antibodies
in 613 human serum samples recruited in the Phenome and
Genome of Diabetes Autoimmunity (PAGODA) study. We
initially titrated serum concentration and here present data using
1:2500 dilution which yields low background and good signals for
many glycans. As shown in Fig. 5a, the levels of anti-glycan
antibodies vary greatly for different glycans, with net

177

138

15
26

60

62

91

133

143

102

151

8

9

113

30

47

105

111

Glycan #

2
4

5
6

7
8

9 11 14 16 18

10 13 15 17 19
20 22 24 26

21 23 25 27 29 31 33 43 45

28 30 32 34 44 46 48 54 56

47 52 55 57
58

59 61 63 65 67 69 71 73 75

60 62 64 66 68 70 72 74 76 78

97 99 10
1

10
3

10
5

10
7

11
1

11
3

11
5

11
7

10
0

10
2

10
4

10
6

10
8

11
0

11
2

11
4

11
6

11
8

11
9

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

12
0

12
2

12
4

12
6

12
8

13
0

13
2

13
4

13
6

13
7

13
9

14
1

13
8

14
0

14
2

14
3

14
5

14
7

14
9

15
1

15
3

15
5

15
7

14
4

14
6

14
8

15
0

15
2

15
4

15
6

15
8

16
0

16
1

16
2

16
3

16
5

16
7

16
9

17
1

17
3

17
5

17
7

17
9

16
4

16
6

16
8

17
0

17
2

17
4

17
6

17
8

18
0

18
1

18
2

18
3

18
5

18
7

18
9

19
1

19
3

19
5

19
7

19
9

18
4

18
6

18
8

19
0

19
2

19
4

19
6

19
8

20
0

68

70

106

15
9

0

5

10

15

20

0

0.5

1.0

2.0

3.0

1.5

2.5

0

0

7.5

β4

β4

β4

α4

α2
α4 α4

α3

α3 α3

α3β3

β4
β3 β3 β4 β

β

β3

β3 β4

β4β4 β3β3β4β3β4β3β4α3

α3

β4

β4

β4

ββ
β

β

βα3

α6

α6 Sp

Sp

Sp Sp1 AEAB

AEAB

β3

β4 β4

β4 β3 β4 β4β4 β

β

β

β

α3

α8

α8

α3

α3 α3 α3

α2–3 α4 β4

α3

Sp

Sp

Sp

Sp

Sp1
Sp1

Sp1

AEAB

AEAB

AEAB

Siglec-5

Siglec-3

M
ed

ia
n 

flu
or

es
ce

nc
e 

in
te

ns
ity

 (
×

10
00

)

60

45

30

15

Galectin-3

6.0

4.5

3.0

1.5

E-Selectin

80 82 84 86 88 90 92 94 96 98

77 79 81 83 85 87 89 91 93 95

Fig. 4 MGBA’s specificity for glycan-binding proteins. The data for four representative GBPs are shown here and the data for other GBPs are shown in
Supplementary Fig. 7. Representative glycans binding to the GBPs are shown for siglec-5 (top), E-selectin (lower middle) and galectin-3 (bottom). Mean of
two replicates is presented and error bars are standard deviations of the two replicates. The experiment was repeated three times

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02747-y

6 NATURE COMMUNICATIONS |  (2018) 9:258 |DOI: 10.1038/s41467-017-02747-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


17
6

17
4

18
7

10
0 89 94 60 16
9

19
5

19
2

19
9

18
1

18
0

18
6

19
4

19
7

19
8

16
5

18
2

19
3

18
8

16
1

11
7 32 68 20
0

17
8

19
6 5 33 17
7 64 67 66 95 12
6

19
1

19
0

10
5

15
7

15
8

16
6

17
5

18
9

17
9

18
5

17
3

12
8

13
7

13
3

14
1

16
2

12
2

13
5

13
4

12
5 34 46 22 90 65 10
6

11
1

11
0

10
7

18
4

18
3 87 63 18 19 13 15 7 11 17 11
2 44 16 43 15
5

12
7

12
0

12
3

13
2

12
4

12
9

13
6

15
6 84 10 54 48 2 20 6 14 96 13
8

15
9

14
3

14
0

14
5

14
6

16
4

14
8

16
8

16
3

15
0

15
3

14
4

17
2 98 10
8 93 91 10
3 24 31 26 11
5 8 9 23 21 25 28 30 17
1

13
0

13
1

11
9

13
9

12
1

14
9

17
0

15
4

16
7

14
2

15
2

14
7 59 76 73 86 74 62 10
4

15
1

11
4 88 27 4 29 47 10
1 99 97 10
2

11
6

11
8 45 52 71 56 55 83 78 75 81 69 82 85 60 92 77 79 70 72 61 57 588011
3

M
ed

ia
n 

flu
or

es
ce

nc
e 

in
te

ns
ity

 (
×

10
00

)

Glycan #

A

B

D

C

Cluster 5: 56 glycansCluster 4: 31 glycansCluster 2: 30 glycansCluster 1: 35 glycans

0

Cluster 3: 32 glycans

Blood group BBlood group A BGH Type 1 BGH Type 2/4/5 GangliosidesLewis antigens

Xeno antigens

80

60

40

20

15

10

5

0
80

60

40

20

15

10

5

0

10
8

2 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 43 44 45 46 47 48 52 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
5

16
6

16
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

17
7

17
8

17
9

18
0

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

19
7

19
8

19
9

20
0

2 4 6 8 10 12

a

b

Fig. 5 Natural anti-glycan IgM antibodies in 613 human serum samples measured on MGBA. a Dot plots of anti-IgM antibody levels (MFI) for each glycan
in 613 individuals. Each dot represents one individual and mean for each glycan is represented by the red line. Background-subtracted net MFI data
(MFI×1000) on y-axis is expanded for 0–20,000 range to improve visualization. b Heatmap of anti-IgM antibody levels in 613 samples. The data are Log 2
transformed. Each row represents an individual sample and each column represents an individual glycan. IgM levels are represented by the color codes as
indicated by the color bar. Serum IgM was used to cluster glycans (Cluster 1–5) as well as subjects (Cluster a–d). Cluster A, B, C and D contain 221 (36%),
54 (8.8%), 325 (53.1%), and 13 (2.1%) subjects, respectively. The sample clusters are not associated with demographic or clinical variables such as
collection date, gender and age of the subjects, and batch of sample analyses
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(background-subtracted) MFI below 1000 in most individuals for
about 40% of the glycans and MFI in tens of thousands for most
subjects for over 30 glycans (Fig. 5a). We determined positivity of
a subject for each glycan if the observed net MFI is greater than
the mean plus 3 times of standard deviation of the background.
The percentage of subjects with positive IgM antibodies is pre-
sented in Supplementary Table 4. For 82 of the 184 glycans,
including #58, 130, 113, 62, 2, 190, 189, 27, 72, 80, 85, 185, 144,
154, 92 and 70, over 50% of the subjects have positive IgM, while
less than 10% of the subjects are positive for IgM for 44 glycans.

IgM levels in all 613 subjects were used to cluster the 184
glycans (Fig. 5b). The heatmap and clustering revealed five major
clusters of glycans as defined by the serum IgM levels. The 35
glycans in Cluster 1 are either completely negative for IgM in all
subjects or have only a few individuals with detectable antibodies,
while a tightly clustered group of 32 glycans (Cluster 3) detected
high levels (MFI >1000) of IgM antibodies in ~95% subjects.
Cluster 4 glycans detected moderate levels of IgM in about 50% of
the subjects, while Cluster 5 glycans detected high levels of IgM in
most subjects.

In our MGBA, serum IgM antibodies were detected for blood
groups A, B and H glycan antigens. Eight glycans on MGBA
contain the blood group-B motif. Four of the glycans (#56, 59,
130 and 131) detected moderate levels of IgM in most subjects
(Cluster 5) and two glycans (#129 and 132) detected high levels of
serum IgM antibodies in 90% of the subjects (Clusters 3). The
seventh glycan (#146), which contains the blood group-B motif
but has a complex structure (two fucose), had moderate reactivity
for IgM in about 50% of the subjects (Cluster 4). The MGBA also
contains five glycans with the blood group-A motif. Two of these
glycans, #54 [GalNAc-α-1,3-(Fuc-α-1,2)-Gal-β] and #127 [Gal-
NAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3Galβ1-4Glc, detected
high IgM levels in almost all subjects (Cluster 3). Two glycans,
#125 [GalNAcα1-3(Fucα1-2) Galβ1-3GalNAcβ1-3Gal] and #126

[GalNAcα1-3(Fucα1-2) Galβ1-4GlcNAcβ1-3Galβ1-4Glc] had
very low reactivity (Cluster 2), while #145 [GalNAcα1-3(Fucα1-
2) Galβ1-4(Fucα1-3)-Glc] detected moderate levels of IgM in
about 50% of the subjects (Cluster 4). The IgM data and the
glycan structure relationships argue that the linkage and residue
on the reducing end of the motif also influence the binding to
serum IgM antibodies.

The reactivity to BGH glycans was spread into three clusters.
The BGH type 1 glycan (#123) and one BGH type 2 glycan (#124)
detected high levels of serum IgM in ~90% of the subjects
(Cluster 3), while one BGH type 2 glycans (#55) and one BGH
type 5 (#58) detected moderate levels of IgM in most subjects
(Cluster 5). The BGH type 4 glycan (#122) was found to have low
reactivity (Cluster 2). Our glycan array featured ten Lewis antigen
glycans. Three of them are in Cluster 5 (#60–62, 139), one in
Cluster 3 (#136) and one in cluster 4 (#138), and the remainder in
Cluster 2.

Low reactivity was found for asialo GM2/GA2 (#173), GD1a
(#169), GT2 (#166), GM3 (#161), GD3 (#106, 107 and 162), GT3
(#110 and 111) and 3-sialyl Gb3 (#177) (all in Cluster 1 and 2).
Nine gangliosides, including fucosylated GM1 (#172), asialo
GM1/GA1 (#171), GM2 (#164 and 69), GM1a (#113 and 167),
GD2 and GD2-Gc (#70 and 114), GD1b (#170), GT3 (#163), and
GM1b (#168) are all grouped in Clusters 4 and 5. Only sialylated
GM1 (#112) and asialo GM2 (#43) are clustered in Cluster 3.

The IgM data on all 184 glycans were used to cluster the
subjects and four main clusters of subjects are recognizable
(Fig. 5b). The subjects in cluster A showed strong IgM reactivity
to glycans of cluster 3, 4 and 5. Cluster B subjects had high levels
of antibodies against glycans in Clusters 3, 4, and 5 as well as
some glycans in Cluster 1 and 2. Cluster C subjects are positive
for all glycans in Clusters 3 and most Cluster 5 glycans but mostly
negative for Cluster 1, 2 and 4 glycans. Cluster D includes a small
number of subjects (n = 13, 2.1%) who are negative for almost all
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Fig. 6 Kaplan–Meier survival analyses of ovarian cancer patients. Analysis was done using date of sample collection to death (top row) and date of
diagnosis to death (bottom row). The subjects were assigned to the low- (dashed lines) or high- (solid lines) level groups based on the anti-glycan IgG
levels for each glycan. The data for three glycans are shown here. The hazards ratio (HR) was determined by Cox regression analysis and the p values were
determined using log-rank test
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glycans. We determined that these subject clusters are not related
the subject gender, subject age at sampling, year of sampling or
the plates for sample analyses (Supplementary Fig. 9).

Anti-glycan IgG as prognostic biomarkers for ovarian cancer.
A total of 348 serum samples from 119 ovarian cancer patients
were analyzed for the levels of anti-glycan IgG using MGBA. All
patients underwent primary debulking surgery followed by six
cycles of platinum plus taxol chemotherapy. Serum samples were
obtained before surgery and at different time points after che-
motherapy. Of these patients, 76 achieved complete response (or
remission) after six cycles of chemotherapy and serum samples at
remission were available. As shown in Supplementary Fig. 10, the
anti-glycan IgG levels vary from glycan to glycan, with glycan #54
and #149 having the highest IgG levels in these patients. Overall,
serum anti-glycan IgG titers are much lower than anti-glycan IgM
across almost all glycans on this MGBA. To illustrate the
potential application of MGBA, we focused our analyses on the
potential of using these antibody levels as prognostic biomarkers
for ovarian cancer. Similar to our previous analyses on serum
proteins37, anti-glycan IgG was determined for the at remission
serum samples from 76 patients and Kaplan–Meier survival
analyses were carried out using two phenotypes: survival from the
date of sample collection to death and from the date of diagnosis
to death (Fig. 6). IgG against glycan #11 (Gal-α3-Gal-β4-Glc) is
the best prognostic biomarker in this data set. Patients with
higher IgG levels against glycan #11 have significantly lower
probability of survival than patients with lower IgG. This is true
for both analyses using the survival data from sampling date to
death (Cox Regression Hazards Ratio (HR) = 4.12, Log-rank p =
0.00227) and from diagnosis to death (HR = 3.99, Log-Rank p =
0.00301). Glycan #11 is an abundant trisaccharide (known as Pk
antigen), a key fragment of glycosphingolipid globotriaosylcer-
amide (Gb3Cer) which is a component of erythrocyte and
endothelial cell membrane. Antibodies against this trisaccharide
were found to bind to synthetic version of the glycan as observed
here but not to glycan on cell membrane38. The binding differ-
ence between synthetic and natural forms of the trisaccharide is
probably due to the different spacing and conformation38. Our
results suggest that ovarian cancer cells may express the tri-
saccharide in a conformation that are different from those on
normal cells and can induce an antibody response in ovarian
cancer patients. High levels of anti-glycan antibodies for a similar
trisaccharide (#147: Gal-α3-Gal-β3-GlcNAc) are also associated
with poorer survival (HR = 3.97, Log-Rank p = 0.00188). On the
other hand, higher levels of IgG antibodies against blood group-A
trisaccharide (#54), are associated with better survival (HR = 0.31,
Log-Rank p = 0.0048) (Fig. 6).

Discussion
The ability to probe the interaction between glycans and GBPs is
of critical importance to biomedical research and clinical care of
patients. However, progress in this field has been hampered by
the difficulty and availability of suitable technologies. Glycan
arrays printed on nitro-cellulose membrane, ELISA plates, or
glass slides39,40 have been developed and used in various settings.
Each of these technologies have limitations, including through-
put, multiplex capability, sensitivity, specificity, upfront costs of
the setup, assay cost and technical difficulty. Glycan arrays
printed on nitro-cellulose membrane have limited number of
glycans (usually a few to a few dozens) and the sample
throughput is also very low. Glycan arrays on ELISA plates
usually contain only one glycan per well. Although the sample
throughput can be high if only a few glycans are to be analyzed,
the throughput becomes low for large number of glycans.

Furthermore, the dynamic range of signals for ELISA based on
optical density is much lower than fluorescent detection as done
with MGBA. On the other hand, glycan arrays on glass slides can
contain hundreds or more glycans per slide, while only a few
samples can be processed by a single technician and the proce-
dure for glass arrays is longer than MGBA. Furthermore, the
setup for producing glass arrays and performing the assay costs
several hundred thousand dollars and can be prohibitive and
highly trained personnel is required for both printing and assay.
Therefore, the glass array platform has never been used in a
clinical setting. Another key advantage of MGBA over glass arrays
is its flexibility to rearrange the content of the array, a task that
cannot be done easily for glass arrays.

The Luminex platform is based on 5.6 µm fluorescent micro-
spheres, each distinguished by a different mixture of red and
orange dye. The microspheres are excited with a red laser, and the
resultant emission wavelengths are used to distinguish 500 unique
spectrally encoded regions41,42. The high throughput, high-
content technology has been widely used to analyze plasma
proteomics43, autoimmunity44, kinase inhibitor45, protein phos-
phorylation46, miRNA47 and gene expression48. One research
group has previously attempted to use the Luminex beads for
glycan studies24–26. However, these studies used a cumbersome
conjugation procedure and only a few glycans and a small
number of serum samples were used in their studies, which do
not allow a rigorous evaluation of the specificity, sensitivity and
reproducibility of their assays. Here we developed a simple, effi-
cient and reproducible one-step glycan-conjugation procedure
and present our first version of the Luminex Multiplex Glycan
Bead Array (MGBA) that can be used to simultaneously analyze
the interaction between hundreds of glycans and various types of
GBPs, including naturally occurring anti-glycan antibodies. Using
a variety of glycan-binding proteins, including 39 plant lectins, 13
recombinant anti-glycan antibodies, 4 mammalian GBPs and
close to 1000 serum samples, we demonstrated that MGBA is
both high content and high throughput, and therefore are suitable
for the analyses of large numbers of biological samples and gly-
cans. The specificity of the binding on MGBA was validated using
three different types of proteins that can bind to glycans: plant
lectins, anti-glycan antibodies and mammalian glycan-binding
proteins (selectins and galectins). For the vast majority of the
plant lectins, the binding characteristics are largely consistent
with the CFG data and previous knowledge. For example, RCA-I
was found to recognize terminal Gal-β4-GlcNAc residues33 and
the UEA showed specific binding to BGH type-2 structures but
not the BGH type I structures34. The binding profiles of the anti-
glycan antibodies are also consistent with their known specificity.
We also demonstrated the utility of the MGBA to quickly identify
the glycan specificity of new anti-glycan antibodies with unknown
specificity.

There is a considerable interest in exploring the potential of
using natural anti-glycan antibodies as potential candidate bio-
markers for human diseases. Several studies suggested that serum
antibodies to glycans may serve as biomarkers for autoimmune
diseases such as inflammatory bowel disease and Crohn’s dis-
ease49–51. It was shown that serum antibodies to blood group-A
glycans predict the survival of prostate cancer patients in a
clinical trial of a poxvirus-based cancer vaccine9,52. It has also
been shown that serum antibodies to glycans can distinguish
ovarian cancer patients from controls with sensitivity and speci-
ficity comparable to the clinically used CA-125 test22. In this
study, we illustrated the utility of using MGBA to identify
potential candidate biomarkers for cancer by discovering novel
anti-glycan antibodies that predict the survival of ovarian cancer
patients. The MGBA platform is particularly suited for such
population-based studies that require the analyses of large
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number of samples and for a large number of glycans. This
platform can be applied to the studies of any human disease.
However, like every other platform, the analytical range for
MGBA is sample and glycan dependent. For screening purposes,
this is not a major concern because one only wants to identify
glycans of interest and precise values for samples with saturation
signal are not critical at this stage and can be determined by
sample dilutions later if desired. As a clinical assay, there are
multiple ways to deal with the dynamic range issue. First, samples
with saturation levels of signals are usually analyzed with multiple
sample concentrations. Second, glycans can be organized into
subpanels based on their signal levels and analyzed with sample
dilutions in the linear range.

In summary, our data demonstrated that MGBA could produce
specific binding data with various types of GBPs, although the
assay conditions may need some adjustment for different types of
GBPs. The MGBA assay is also sensitive for most GBPs and
glycans. The results are very reproducible. The manufacturing of
the glycan-conjugated beads is a routine chemical reaction that
can be adopted in almost all research and medical laboratories
with basic training in biochemistry and immune assays. The assay
uses inexpensive equipment that is certified for clinical use,
requires small sample volume and has a relatively fast turn-
around time, 4 h for lectin/anti-glycan antibodies assays and for
measurement of anti-glycan antibodies in serum. Therefore, it can
be easily adopted by medical laboratories for clinical services.
Because of these advantageous attributes of MGBA, we believe
that it will become a method of choice to investigate glycan-GBP
interactions and significantly advance glycobiology.

Methods
Synthesis of glycans. Glycans were synthesized using Core Synthesis and Enzy-
matic Extension approaches31. A 3 or 4 carbon spacer was attached to the reducing
end as published by Bohorov et al.53. Bifunctional fluorescent tag, 2-amino(N-
aminoethyl) benzamide (AEAB), and labelled glycans with a free amino group were
also included in this study32. The chemical names and structures of 184 glycans
used in this study are presented in Supplementary Table 1.

Blood collection from human subjects. Serum samples used in the study were
obtained from participants of the Phenome and Genome of Diabetes Auto-
immunity (PAGODA), and Biomarkers and Therapy (BAT) Cancer Study. The
institutional review board at Augusta University approved the study. Blood sam-
ples were collected in a serum separator tubes from BD Biosciences. The blood was
allowed to clot for 30 min at room temperature and then centrifuged at 2500 × g for
10 mins. Serum was aliquoted and stored at −80 °C until use.

Conjugation of glycans to Luminex beads. Glycans that contain a free amino
group were chemically coupled to carboxylated beads with a unique fluorescent
spectral address (Luminex Corp., Austin, TX, USA). The bead region is encoded by
precise ratio of red and infrared fluorescent dyes, which can be identified by the
Flex-MAP3D (FM3D) analyzer. Briefly, the stock vial of beads (1.25 × 107 beads/
ml) was vigorously vortexed for 30 s, and 100 µl (1.25 × 106 beads) was aliquoted
into a 1.5 ml polypropylene tube. The beads were separated by centrifugation at
10,000 × g for 5 min at room temperature (RT). The storage solution was discarded
and beads were washed once with deionized water. Beads were then resuspended in
80 µl of deionized water, to which 10 µg of glycan and 2.5 µl of 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride (EDC) solution (10 mg/ml in
deionized water) was added. The beads were incubated on a shaker at RT for 2 h.
Beads were then centrifuged (10000 g for 5 min) and resuspended in 50 mM Tris-
buffered saline to block the reactive sites for 30 min. Beads were recovered and
resuspended in 1 ml of 1% bovine serum albumin (BSA, w/v) in phosphate-
buffered saline (PBS) overnight at RT. Following overnight blocking, beads were
suspended in PBS containing 1% BSA (w/v) and 0.2% sodium azide (w/v), and
stored in the dark at 4 °C. To assess the assay background, beads from three
different bead regions were included as “no glycan conjugation” (NGC) controls.
These NGC control beads underwent the same conjugation process at the same
time as the glycan-conjugated beads.

Plant lectin-binding assay. Thirty-nine plant lectins were obtained from Vector
Laboratories (Burlingame CA, Supplementary Table 2). All lectins were diluted to
5 µg/ml with 1% BSA in PBS freshly prepared on the day of the assay. Before the
assay, individual wells of a 384-well filter plate (EMD Millipore,MS, USA) were

washed with 90 µl wash buffer (PBS containing 0.05% Tween-20). An individual
microsphere stock suspension was mixed together to create an array and diluted
with 1% BSA in PBS (final dilution 1:100). Ten microliters of the diluted micro-
sphere suspension were added to each well, followed by addition of 10 µl of lectin
solutions. The mixture was incubated at RT on a shaker set at 550 r.p.m. (IKA
MTS4, Wilmington, NC) for 1 h. The reaction mixture was removed by vacuum
suction and the wells were washed twice with wash buffer. After washing, 10 µl of
streptavidin R-phycoerythrin (SAPE; 3 µg/ml freshly diluted in wash buffer) was
added. After 30 min incubation with SAPE, all liquid from the wells were removed
with vacuum suction. The beads were resuspended in 60 µl of wash buffer and the
median fluorescence intensities (MFI) were measured on a FlexMAP 3D reader
(Millipore, Billerica, MA) with the following instrument settings: events/bead: 50,
minimum events: 0, flow rate: 60 µl/min, sample size: 50 µl and doublet dis-
criminator gate: 8000–13,500.

Assay for recombinant anti-glycan antibodies. Thirteen anti-glycan antibodies
were obtained from commercial sources (ABCAM, US biologicals and EMD
Millipore) or produced in-house (Supplementary Table 3). Individual bead stocks
were diluted 1:100 in PBS containing 1% BSA, and 10 µl of diluted beads were
added to prewashed wells of a 384-well filter plates. Ten microliters of diluted
antibodies (2 µg/ml) were added and the mixture was incubated at RT for 1 h. The
reaction mixture was removed by vacuum suction and the wells were washed two
times with wash buffer. After washing, PE-labelled anti-mouse IgM or anti-mouse
IgG (2.5 µg/ml, Southern Biotech, AL, USA) were added to the wells and incubated
for one additional hour. The plates were washed two times with wash buffer and
the beads were resuspended in 60 µl of wash buffer and the MFI was measured on
FM3D reader with settings described above.

Affinity determination of binding on MGBA. To investigate avidity of binding to
glycans on MGBA, competitive assays were done according procedures described
by Rath et al.54. Briefly, Ley (gly#60)-conjugated beads were incubated with Ley

IgM antibody and the Ley IgG antibody (0.5 µg/ml in 1%BSA/PBS) for 1 h. The
beads were then washed two times to remove the unbound antibodies. Diluted Ley

was then added to the well at decreasing concentrations (25–0.000423 µM), and
incubated for 1 h at 37 °C. At the end of the incubation, the plate was washed and
bound antibody was detected with 3 µg/ml of SAPE. The binding affinity (Kd) was
defined as the concentration of free LeY that blocked 50% of the antibody binding
to the immobilized Ley beads.

Recombinant glycan-binding protein assay. Recombinant FC chimera contain-
ing siglec-3, siglec-5, E-selectin and galectin-3 were obtained from Biolegend (San
Diego, CA). The GBPs were processed as described by Blixt et al35. Briefly, a 25 µg/
ml of the GBP solution was mixed with secondary and PE-labelled tertiary anti-
body in a ratio of 1:0.5:0.25 and incubated at 37 °C for 30 min. After formation of
the multivalent GBP-antibody complexes, a 10 µl aliquot was added to the
microsphere mixture in a well of 384 well plate, and further incubated for 1 h with
shaking on a shaker set at 550 r.p.m. (IKA MTS4, Wilmington, NC). The
microsphere-GBP complexes were washed with 25 mM Tris-HCl buffer pH 7.5,
containing 75 mM of NaCl, three times and resuspended in the same buffer. The
beads-GBP complexes were read using a Luminex FM3D machine as described
above.

Profiling of natural anti-glycan IgM in human serum. Human serum samples
were diluted 2500-fold in 5% BSA in 25 mM Tris-HCl, pH 7.5 containing 75 mM
NaCl and 0.8% polyvinyl pyrrilidone 360 (PVP). Briefly, 1000 microspheres for
each glycan were added to each well and incubated with 10 µl of diluted serum
sample for 2 h. After 2 h, unbound reagents were removed by vacuum suction and
the wells were washed with wash buffer (25 mM Tris-HCl, pH 7.5 containing 75
mM NaCl and 0.025% Tween-20). Detection was performed by adding biotinylated
anti-human IgM (Southern Biotech, AL, USA) to each well and the plates were
incubated for 1 h. After incubation, the plates were washed and incubated with
SAPE (3 µg/ml in wash buffer) for 30 min. The plates were washed and the beads
resuspended in 60 µl of wash buffer. The MFI was captured using Luminex FM3D
machine.

Measuring natural anti-glycan IgG antibodies in human serum. Glycans were
conjugated using one-step EDC method, the unreactive sites on the beads were
blocked with 1% human serum albumin prepared in phosphate buffer saline. For
measurement of anti-glycan IgG, human serum samples were diluted 500-fold in
1% BSA in PBS. Briefly, 1000 microspheres for each glycan were added to each well
and incubated with 10 µl of diluted serum sample for 2 h. After 2 h, unbound
reagents were removed by vacuum suction and the wells were washed with wash
buffer (PBS containing 0.1% Tween-20). Detection was performed by adding
biotinylated anti-human IgG (3 µg/ml in 1% HSA/PBS Southern Biotech, AL, USA)
to each well and the plates were incubated for 1 h. After the incubation, the plates
were washed and incubated with SAPE (3 µg/ml in wash buffer) for 30 min. The
plates were washed and the beads resuspended in 60 µl of wash buffer. The MFI
was captured using Luminex FM3D machine.
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Data analysis. Raw data files from Luminex FM3D machine were processed using
a software pipeline, which we have developed for quality control, visualization and
normalization of raw Luminex data. Wells with individual bead counts below 30
were flagged for exclusion and were not included in further analyses. The average
of three no glycan control (NGC) beads was compared with the mean MFI value
for each glycan without sample (blank control). The higher value of NGC and
blank control was used for background subtraction. Bar plots represent mean MFI
with standard deviation values as error bars from replicates. Dot-plots were gen-
erated to summarize the distribution of MFI levels for each glycan on log2 scale,
each sample for each glycan is represented using a dot. The binding levels of the
natural antibodies in human serum were described using four categories: no
binding: MFI <3 × SD of the no glycan control (NGC), weak/low binding: mean
MFI of NGC+ 3× SD, elevated/moderate: MFI >5 × mean MFI of NGC and
strong/high: MFI >20 × mean MFI of NGC. Visualization of MFI matrix was
performed using heatmap, after log2 transformation, to graphically summarize the
global interaction between glycans and glycan-binding proteins. The red color was
used to represent larger values and green color was used to represent smaller
values. Hierarchical clustering was performed to discover the patterns and to
arrange the profiles based on the glycan-GBP interactions. To assess the prognostic
potential, we used Cox regression analysis and Log-Rank test to evaluate the impact
of serum anti-glycan IgG levels on survival. Overall survival was calculated as time
from diagnosis date to the death of patient and date of the analyzed sample to the
death of patient. Patients who are alive with no evidence of disease were censored
at the date of last follow-up visit. Kaplan–Meier plots are shown and statistical
significance was assessed using the log-rank test. Antibody affinity (IC50) was
determined using “drc” package in R. All analyses were performed using the R
language and environment for statistical computing (R version 2.15.1; R Founda-
tion for Statistical Computing; www.r-project.org).

Data availability. All the relevant data are available from the authors upon
request.
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