
January 2018 | Volume 8 | Article 18251

Review
published: 05 January 2018

doi: 10.3389/fimmu.2017.01825

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Rohtesh S. Mehta,  

University of Texas MD Anderson 
Cancer Center, United States

Reviewed by: 
Sarah M. Temkin,  

Virginia Commonwealth  
University, United States  

Francesco Colucci,  
University of Cambridge,  

United Kingdom  
Alessandro Moretta,  

Università di Genova, Italy

*Correspondence:
Melissa A. Geller 

gelle005@umn.edu

Specialty section: 
This article was submitted  

to Cancer Immunity  
and Immunotherapy,  

a section of the journal  
Frontiers in Immunology

Received: 06 October 2017
Accepted: 04 December 2017

Published: 05 January 2018

Citation: 
Uppendahl LD, Dahl CM, Miller JS, 

Felices M and Geller MA (2018) 
Natural Killer Cell-Based 

Immunotherapy in Gynecologic 
Malignancy: A Review. 

Front. Immunol. 8:1825. 
doi: 10.3389/fimmu.2017.01825

Natural Killer Cell-Based 
immunotherapy in Gynecologic 
Malignancy: A Review
Locke D. Uppendahl1, Carly M. Dahl 2, Jeffrey S. Miller3, Martin Felices3  
and Melissa A. Geller1*

1 Department of Obstetrics, Gynecology and Women’s Health, Division of Gynecologic Oncology, University of Minnesota 
School of Medicine, Minneapolis, MN, United States, 2 University of Minnesota School of Medicine, Minneapolis, MN,  
United States, 3 Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota 
School of Medicine, Minneapolis, MN, United States

Harnessing the immune system has proven an effective therapy in treating malignancies. 
Since the discovery of natural killer (NK) cells, strategies aimed to manipulate and aug-
ment their effector function against cancer have been the subject of intense research. 
Recent progress in the immunobiology of NK cells has led to the development of prom-
ising therapeutic approaches. In this review, we will focus on the recent advances in 
NK cell immunobiology and the clinical application of NK cell immunotherapy in ovarian, 
cervical, and uterine cancer.
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iNTRODUCTiON

Exploiting the immune system has proven an effective therapeutic approach in treating a variety 
of malignancies. Identified in 1975, natural killer (NK) cells exist in the blood as preactivated 
cytolytic lymphocytes and are recognized as the most efficient antitumor effector (1–3). Distinct 
from T and B cells, NK cell effector function is not mediated by high-resolution antigen specificity 
but through signaling of multiple germ line-encoded activating and inhibiting receptors. Over the 
past 40 years, research has defined the regulation of NK cells and established essential roles they 
play in anticancer immunity. Strategies to harness and augment NK cells for cancer therapy are 
a relatively new and rapidly developing field. At this point, the success of NK cell-based immu-
notherapy has largely been confined to hematologic malignancies and has yet to translate to solid 
organ tumors (4). As a subset of solid organ tumors, gynecologic malignancies are a heterogeneous 
group of tumors derived from vulvar/vaginal, cervical, uterine, fallopian, and ovarian tissues. The 
treatment regimens for gynecologic cancers continue to develop with great room for improve-
ment. With increased understanding of NK cell biology, there is renewed interest in NK cell-based 
immunotherapy directed against gynecologic malignancies. In this review, the advances in our 
understanding and clinical application of NK cell immunotherapy against ovarian, cervical, and 
uterine cancer is summarized.

CHARACTeRiSTiCS OF NK CeLLS

The innate and adaptive immune systems function together to recognize and effectively eliminate 
aberrant cells, including cancer. Historically seen as part of the innate immune response, NK cells are 
large, granular lymphocytes. They were found to have the ability to kill tumor cells without any prior 
sensitization (thus “natural”) or restriction of major histocompatibility complex (MHC) molecule 
expression (1, 2, 5).
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Phenotypically, NK cells are defined via flow cytometry by 
the absence of CD3 and the presence of CD56 surface expression 
and comprise approximately 5–10% of circulating lympho-
cytes (6, 7). NK  cells can be divided into CD56brightCD16− or 
CD56dimCD16+ populations with different functional properties. 
Developmentally immature CD56brightCD16− NK cells are capa-
ble of producing abundant cytokines, particularly interferon 
gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), 
immediately after activation but possess little direct cytolytic 
function. In contrast, mature CD56dimCD16+ NK cells are char-
acterized by the direct killing of transformed cells via perforin/
granzyme release or death receptor pathways (Fas, TNF-related 
apoptosis-inducing ligand, TRAIL) (8–10).

As discussed below, NK cells are involved in tumor immuno-
surveillance and mediate antitumor responses (11). Their activity 
is highly regulated by a variety of germ line-encoded inhibitory 
and activating receptor expression (12, 13). Collectively, the 
complex balance of inhibitory and activating signals promotes 
self-tolerance or drives potent effector function of NK cells.

NK CeLL eFFeCTOR FUNCTiONS

Natural killer cells identify and eliminate foreign, infected, 
damaged, or malignant cells through a variety of mechanisms. 
The most well-known is through receptor-mediated cytotoxic-
ity. NK  cells express a series of activating receptors capable of 
binding stress-induced ligands expressed on tumor cells. They 
also express a number of inhibitory receptors that interact with 
ligands to induce activation-limiting signals. When activating 
signals over-ride inhibitory mechanisms, the NK  cell mediates 
exocytosis of stored lytic molecules. The membrane-disrupting 
protein perforin and serine protease granzymes then function in 
coordination to gain access to the target cell and induce apoptosis 
through the activation of caspases (14, 15).

Natural killer cells also appear to be the principal effectors for 
a process called antibody-dependent cell-mediated cytotoxicity 
(ADCC) (16). ADCC occurs when targets that become coated 
by antibody are recognized by NK cells via ligation to the low-
affinity receptor for the Fc portion of human immunoglobulins, 
CD16 (FcγRIIIa). Upon binding, downstream signal transduction 
mechanisms lead to NK cell degranulation, cytokine secretion, 
and tumor cell lysis (15). The recent advances in our understand-
ing of ADCC and NK function can be applied to augment NK cell 
immunotherapy. For example, monoclonal antibodies (mAbs) 
targeting CD20 (rituximab), Her2/neu (herceptin), epidermal 
growth factor receptor (cetuximab and panitumumab), and disa-
loganglioside (GD2) demonstrate significant antitumor contribu-
tions from NK cell-dependent ADCC in addition to the direct 
antitumor effect of the antibody (17). This strategy maintains 
the specificity against key molecular tumor targets important for 
cell proliferation or tumor growth with the added contribution 
of ADCC via NK  cell effector function (16). Highlighting this 
role of ADCC, previous studies have demonstrated depletion in 
NK cell populations decreases the efficacy of mAb therapy (18). 
There is further evidence showing that specific FcγR polymor-
phisms impact responsiveness to mAb therapy and may even 
predict clinical outcomes for certain tumors (19–22). Today, 

mAb are being developed with enhanced affinity for CD16 to 
better activate NK cells and improve antitumor response (23, 24). 
Unfortunately, strategies to include the use of mAb to enhance 
ADCC in gynecologic malignancies have not been thoroughly 
investigated.

Natural killer cells can also initiate the transduction of death 
signals within target cells through death ligand/receptor ligation 
(25). NK  cells are capable of expressing Fas ligand or TRAIL  
(26, 27). Interaction of these ligands with their respective anti-
gens on tumor cells activates caspases and induces apoptosis (14). 
Recent studies have demonstrated the proteasome and histone 
deacetylase inhibitors upregulate the expression of death recep-
tors and enhance NK  cell-mediated cytotoxicity of tumor cells 
through the death receptor pathways (28–30). This is particularly 
interesting because this strategy was effective in both hematologic 
and solid tumors.

Finally, specific subsets of NK cells are capable of producing 
important immunoregulatory cytokines (31). NK cells express-
ing CD56bright are the primary source of NK cell-derived IFN-γ, 
TNF-α, and other cytokines that play a major role during the 
innate immune response to infection or tumorigenesis (8). The 
NK cells provide an early source of IFN-γ to induce CD8+ T cells 
to become cytotoxic T  lymphocytes (CTLs) and drive a Th1 
response of CD4+ T cells to further promote CTL differentiation 
(32, 33). These interactions are illustrated in Figure 1.

iMPORTANT NK CeLL ReCePTORS

Due to the capability of immediate response, NK cells are tightly 
regulated through a combinatorial array of surface receptors. 
Functionally, these receptors are classified as activating or inhibi-
tory with their ligands either members or homologs of MHC 
class I molecules. Structurally, they belong either to the immuno-
globulin (Ig)-like receptor superfamily or the C-type lectin-like 
receptor (CTLR) superfamily (34). We will review a few of the 
selected inhibitory and activating receptors on human NK cells.

The NK  cell response is dominated by a variety of germ 
line-encoded inhibitory receptors from three families: killer 
immunoglobulin-like receptors (KIRs), C-type lectins (including 
NKG2A-CD94), and leukocyte immunoglobulin-like receptors 
(35–37). Stochastic surface expression within these families leads 
to subsets of NK cells with a diverse repertoire of receptors (35). 
Ligands for these receptors are both “classical” and “non-classical” 
class I molecules encoded within the MHC, termed human leu-
kocyte antigens (HLAs) (38–40). For example, inhibitory KIRs 
recognize the classical HLA-A, HLA-B, and HLA-C proteins but 
do not distinguish self from non-self peptides. The binding of 
inhibitory KIR on NK cells to their HLA cognate suppresses cyto-
toxicity and cytokine secretion. The diverse groups of inhibitory 
receptors are all glycoproteins that signal through the canonical 
immunoreceptor tyrosine-based inhibitory motif (ITIM) to sup-
press NK cell response. Only when sufficient activating signals are 
present does the NK cell initiate effector function.

The CD94 and NKG2 family of genes encode CTLRs that recog-
nize non-classical MHC class I molecules (HLA-E, -F, -G, and -H)  
and play a dominant role in NK cell function. CD94 can heter-
odimerize with NKG2A and signal through ITIM to function as 
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FiGURe 1 | Illustration of NK cell interaction with tumor cells, as well as NK influence on T cell differentiation.
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an inhibitory receptor when bound to HLA-E. However, CD94/
NKG2C heterodimers serve as activating receptors. The inhibi-
tory CD94/NKG2A and the activating CD94/NKG2C receptors 
are found in overlapping subsets of NK  cells in the peripheral 
blood (38). Not surprisingly, CD94/NKG2A inhibitory receptor 
binds HLA-E with higher affinity compared to CD94/NKG2C 
activating receptor (41).

The role and function of NK inhibitory receptors are well 
defined. Recent research has elucidated the NK effector functions 
of activating and coactivating receptors. Unlike B and T  cells, 
NK  cells do not possess an activating receptor that dominates 
their development and effector function. Instead, they express a 
complement of invariant activating receptors that include the NK 
specific natural cytotoxicity receptors (NCRs) (NKp46, NKp30, 
and NKp44), C-type lectin-like (NKG2D, CD94/NKG2C), 2B4, 
DNAM-1, NTB-A, NKp80, CD59, and CD16 among others  
(36, 38, 42, 43).

The NKG2D gene encodes one activating receptor that, unlike 
its name, shares very little homology with NKG2A or NKG2C. 
NKG2D is a type II transmembrane-anchored glycoprotein 
constitutively expressed on all human NK cells and recognizes 
cell surface glycoproteins structurally related to MHC class I 
molecules. NK  cells stimulated through NKG2D initiate cell-
mediated cytotoxicity and cytokine release. Known human 
ligands include MICA, MICB, ULBP1, ULBP2, ULBP3, and 
ULBP4 and are upregulated by stress and stalled DNA replica-
tion via DNA-damage checkpoint pathways (34, 44). MICA 

and MICB are stress-induced antigens frequently expressed by 
tumors (45). However, progressive stages of cancer are associated 
with tumor shedding of MICA/B, which appears to systemically 
impair the immunological competence of individuals with 
cancer by causing downregulation of NKG2D. This impairment 
of effector function promotes tumor immune evasion (46, 47). 
Targeting the tumor pathways that lead to the upregulation  
of NKG2D ligands or alternatively maintain and/or upregulate 
NKG2D receptors may be a productive method to enhance 
NK cell-based immunotherapy.

The activating DNAM-1 receptor (CD226) belongs to the Ig 
superfamily and is constitutively expressed on all human NK cells 
(48). The specific ligands CD112 (nectin-2) and CD155 (polio 
virus receptor) bind and augment NK cell-mediated cytotoxicity 
and cytokine release (49, 50). Similarly to MICA, ovarian cancer 
cells ubiquitously expressing the ligand CD155 show reduced 
DNAM-1 expression and impaired NK cell function (51). As our 
understanding of these signaling and inhibitory pathways 
expands, our potential targets for NK immunotherapy grow.

Other triggering receptors are the NCRs, which include 
NKp46 (NCR1, CD335), NKp44 (NCR2, CD336), and NKp30 
(NCR3, CD337) (52–56). These receptors have a variety of 
ligands with various structures. NKp46, the main activating 
receptor for human NK  cells, binds the hemagglutinins on 
influenza virus-infected cells (57). The human cytomegalovirus 
pp65 tegument protein was identified as the original ligand 
for NKp30 and was shown to be responsible for suppression of 
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NK cell cytotoxicity (58). Later on, HLA-B associated transcript 
3 protein (BAG6) and B7-H6 (NCR3LG1) were identified as 
novel surface ligands of NKp30 (59–61). Importantly, B7-H6 is 
present on a broad spectrum of tumors and may play a role in 
antitumor immunity (62). In addition, tumor shedding of B7-H6 
was demonstrated to be a novel mechanism of immune escape 
(63). A recent study in patients with ovarian cancer demonstrated 
B7-H6 tumor ligands were associated with decreased NKp30 
expression of tumor-associated NK  cells (64). These NK  cells 
demonstrated impaired IFN-γ production and cytolytic function. 
Together, these findings indicate how NK  cells may recognize 
and kill target cells without the decreased expression of MHC 
class I protein and serve as a template for designing molecules to 
stimulate NK-mediated cytotoxicity for tumor immunotherapy. 
It also exemplifies the important role the tumor microenviron-
ment plays on NK cell function and immune surveillance, which 
will be elucidated below.

NK ROLe iN iMMUNOSURveiLLANCe

In 1909, the German physician Paul Ehrlich predicted the 
immune system routinely identified and eliminated aberrant 
cells that would otherwise lead to cancer (65). The theory was 
revisited with great interest 50  years later following a deeper 
understanding of tumor immunobiology (66–70). Eventually, 
the concept of tumor immunosurveillance was experimentally 
validated with the advancement in mouse genetics and the gen-
eration of mAb production (71–73). The complex relationship 
between the tumor and immune system further expanded to 
incorporate tumor immunoediting, a process where tumor cells 
reduce their immunogenicity thereby rendering the immune 
system incapable of recognizing and destroying the aberrant cells 
(74). Today, it is accepted both innate and adaptive immunity 
play vital roles in continuously monitoring tissues to eliminate 
aberrant tumor cells (73).

Some of the earliest experimental evidence detailing the role 
NK  cells play in tumor control and immunosurveillance was 
obtained in mice. An early study demonstrated beige (bg) mice 
with 75 NK cell activity resulted in increased tumor growth rate 
and metastasis compared to control mice with normal NK cell 
function (75). The presence of NK  cell activity also correlated 
with better control of in  vivo tumor growth and metastasis, 
particularly against histocompatibility complex (MHC) class 
I-deficient variants (76). In addition, mice depleted of NK cells 
by the anti-asialo-GM1 mAb resulted in a twofold to threefold 
increase in 3′-methylcholanthrene (MCA)-induced tumorigen-
esis compared to wild-type controls (77). Similarly, mice with 
defective NK function due to a deficiency of NK1.1+CD3− cells 
but with functionally normal B, T, and NK/T  cells showed 
impaired in vivo rejection of tumor cells (78).

More recently, a prospective cohort of 3,625 individuals were 
assessed for natural cytotoxic activity of peripheral blood lym-
phocytes and then followed for 11 years to observe the incidence 
of cancer (79). These results indicate individuals with impaired 
NK cell function display an increased risk of developing cancer. 
In an alternative study, NK  cells were identified to also play a 
role in surveillance against DNA damage through checkpoint 

pathways (44). The DNA damage response is activated early in 
tumorigenesis and induces surface expression of ligands for an 
activating receptor of NK  cells, providing a link between the 
innate immune system and tumor surveillance (80). Together, 
these studies highlight the contribution NK cell effector function 
plays in immune protection from tumor development.

It is now established that NK  cells participate in first-line 
defense against tumor development. NK  cells are able to dis-
criminate self and non-self due to a wide array of cell surface 
receptors that control their response, particularly the MHC class 
I molecules (38). In a 1986 observation, NK  cells eliminated 
MHC class I-deficient cells but not cells with normal MHC 
class I expression (81). This seminal observation was termed 
the “missing-self ” hypothesis; in the absence of critical sur-
face proteins cells are recognized and eliminated by NK  cells  
(82, 83). This feature is important because solid tumors 
undergoing malignant transformation frequently reduce MHC 
class I expression and this process represents one of the main 
mechanisms for tumor cells to avoid detection by the adaptive 
immune system (84–88). Thus, one key function of NK cells is to 
monitor the integrity of MHC class I expression on tumor cells. 
The significance uncovered in the “missing-self ” hypothesis 
was NK cell effector function is actively inhibited with engage-
ment of MHC class I molecules on cells. More importantly for 
solid tumor malignancies, newer evidence suggests inhibitory 
MHC class I receptors only dampen, rather than eliminate, the 
effector function of NK cells (89–91). This suggests a sufficient 
activating signal either through a single potent stimulation or 
the simultaneous engagement of multiple activating receptors 
is capable of mediating NK  cell effector function to eliminate 
target cells despite MHC class I expression. Thus, a modified 
“missing-self ” hypothesis states “NK cells patrol for abnormal 
cells that lack MHC class I or overexpress ligands for activating 
NK cell receptors” (38).

THe TUMOR MiCROeNviRONMeNT  
AND iTS iMPACT ON NK FUNCTiON

The malignant transformation of normal cells results from a 
multifactorial process resulting in genomic instability and a 
modification of immunosurveillance mechanisms that induce 
tolerance (92). As tumors evolve, they develop different strategies 
to escape the immune response: (i) the secretion of immunosup-
pressive cytokines or soluble tumor-derived inhibitory factors, 
(ii) the expression of co-inhibitory or loss of co-stimulatory 
receptors, and (iii) the loss or downregulation of MHC class I 
molecules (84). To be effective, NK cells must first extravasate 
through the vessel endothelial lining and migrate to the tumor 
tissue (93). Any localizing defect can lead to insufficient num-
bers of NK cells to the primary or metastatic sites. Once in the 
extravascular space, NK cells encounter hypoxia, acidic pH, and 
low glucose conditions that are hostile to immune effector cell 
function (94). Peripheral blood NK  cells and tissue NK  cells 
are notably different; tumor NK  cells are functionally defec-
tive, incompletely activated, or anergic compared to peripheral 
blood effectors. In addition, the effectors found within solid 
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tumors are often in limited supply. Further understanding the 
mechanisms of tissue immunity and its impact on NK cells will 
be important in our ability to treat solid tumors therapeutically 
with immunotherapy.

Here, we will discuss how the tumor microenvironment limits 
the effectiveness of the NK cell antitumor response with attention 
to ovarian cancer, cervical cancer and endometrial cancer.

epithelial Ovarian Carcinoma
Ovarian cancer is the most lethal gynecologic malignancy, with 
an estimated 14,080 deaths expected in the United States for 
2017 (95). Despite optimal treatment with surgery and adjuvant 
chemotherapy, the recurrence rate approaches 70–80% (96). 
Although the disease tends to remain confined to the abdominal 
cavity, women with recurrent ovarian cancer progress and ulti-
mately die. Therefore, there is an urgency to develop new and 
effective therapies.

Important to effective therapeutic development is the under-
standing of the immunologic interactions within the tumor and 
its physiologic impacts, which often includes the development 
of profuse ascites. It is well documented that the ascites fluid 
from patients with advanced stage ovarian cancer suppress 
the function of otherwise normal immune effectors, including 
NK cells (97–101). The ascites contains large numbers of growth 
factors and cytokines that promote the proliferation of tumor 
cells (102–104). While fresh NK cells (CD56+CD3−CD16+) iso-
lated from the ascites fluid are found in relatively high concen-
trations compared to peripheral blood, they are functionally 
deficient (105, 106). This population of NK cells demonstrates 
decreased CD16 expression and have reduced proliferative, 
cytolytic, and cytokine production compared to peripheral 
blood NK cells (107). Signaling proteins vital to interpreting 
the activating and inhibitory signals become defective and 
alter the expression of cytokine transcripts and proteins (100).  
As detailed above, tumor-associated ligands MICA/B and 
B7-H6 are often found within the peritoneal fluid of serous 
ovarian cancer patients and impair NK cell effector function 
(46, 64). These deficiencies act in combination and likely influ-
ence the ability to control the spread and proliferation of tumor 
cells within the peritoneal cavity of patients with advanced 
ovarian cancer.

For ovarian cancer, the role of the immune response has 
been well documented with immunohistochemistry. Multiple 
studies document a positive correlation between the number 
of tumor-infiltrating lymphocytes within the tumor and overall 
survival (OS) (108–110). The absence of CTL infiltration (CTL) 
also predicts platinum resistance (111). More recently, genomic 
profiling studies also support using immunophenotype as a 
method to predict response to therapy and clinical outcomes 
(112–114). However, most of the published studies document 
limited infiltration of NK  cells within the primary ovarian 
tumor and cells that suppress immune response and support 
tumor growth dominate (108, 115–120). The presence of infil-
trating NK cells impact on OS is also controversial. Infiltrating 
NK cells have largely not been associated with better outcomes, 
and in one case, predicted worse OS (121). However, it was 
recently shown that CD103+ tumor-infiltrating NK cells were 

almost always found with CD8+ T  cells and were the second 
best predictor of positive outcomes in primary ovarian cancer 
(122). In light of this evidence, further study regarding the role 
of infiltrating NK cells is warranted. Regardless of the uncer-
tainty of the role of NK cells and OS, freshly isolated NK cells 
from the tumor are drastically impaired through a variety of 
mechanisms (123, 124).

Within the tumor tissue, NK cells have complex interactions 
with other immune cells with suppressive functions, including 
myeloid-derived suppressor cells (MDSCs) and regulatory T cells 
(Treg) (125). The MDSCs typically suppress effector function of 
T  cells, thereby promoting tumor growth. In mice, a subset of 
MDSCs expresses the NKG2D ligand Rae-1 and is capable of 
elimination through NK cell-mediated cytolysis (126). If present, 
NK  cells are also potent producers of IFN-γ and prevent the 
macrophage polarization toward the M2 phenotype that support 
tumor progression (127).

Another mechanism interfering with NK effector function 
within the microenvironment is the secretion of immunosup-
pressive cytokines. The hypoxic environment induces transcrip-
tion of interleukin (IL)-8, a chemokine important for tumor 
growth, angiogenesis, and metastasis (128–130). Women with 
ovarian cancer have significantly elevated concentrations of IL-8 
compared to benign controls (131). In addition to promoting 
angiogenesis and tumor growth, in vitro studies demonstrate an 
immunosuppressive effect of IL-8 by inhibiting TNF-induced 
apoptosis (132). In addition, the cytokine transforming growth 
factor-β (TGF-β) can contribute to the immunosuppressive 
microenvironment (133). Overproduction of TGF-β by tumor 
cells suppresses CD16-mediated NK cell IFN-γ production and 
ADCC (134). These immunosuppressive cytokines attenuate 
NK cell effector function and limit the antitumor response.

Cervical Carcinoma
Cervical cancer is a human papillomavirus (HPV)-induced 
cancer. Mediated by an adaptive immune response against 
viral proteins, the greatest success involving immunotherapy in 
gynecologic malignancies is the development of vaccines against 
HPV and prevention of cancer (135). The two early viral pro-
teins E6 and E7 are defined tumor-associated antigens and are 
processed and expressed on MHC class I molecules. However, 
HPV-induced cervical cancers often show altered expression 
of MHC class I molecules resulting in the inability of CTLs to 
recognize the peptide epitopes (88, 136–138). The HPV16 E6 
and E7 oncoproteins also inhibit NK cell IL-18-induced IFN-γ 
production likely contributing to viral pathogenesis (139).  
In addition, HPV infection is non-lytic and produces only a 
modest inflammatory infiltrate of macrophages and lympho-
cytes (140). These changes likely affect the efficacy of the innate 
immune response and provide opportunities to escape immune 
surveillance. However, the “loss of self ” may render these HPV-
related cancers susceptible to NK cell attack.

Very little is known in regard to NK  cell function and 
phenotype in women with cervical cancer. Freshly isolated 
peripheral blood NK cells in women with cervical cancer and 
benign healthy controls demonstrated no significant functional 
differences until the patient had distant metastatic disease 
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(stage IVb) (141). Another study demonstrated infiltrating 
NK cells of patients with cervical cancer were present and of the 
CD56brightCD16− phenotype. They also observed the upregula-
tion of the DNAM-1 ligand CD155 and the NKG2D ligand 
MICA in cervical cancer but not in cervical intraepithelial 
neoplasia or normal controls (142). A follow-up study demon-
strated keratinocyte expression of HPV16 E6 and E7 produced 
rapid induction of intracellular adhesion molecule-1 protein 
levels (143). NK cells recognize expression of these ligands and 
adhesion molecules and may be a promising strategy to target 
for the treatment of cervical cancer.

Interestingly, certain combinations of KIRs and HLA loci 
associated with NK cell activation increase the risk of developing 
cervical cancer (144). Specifically, the presence of the activating 
KIR3DS1 on NK cells in the absence of ligands for inhibitory KIRs 
results in an increased risk of cervical neoplasia. In constrast, 
NK cell effector inhibition mediated by KIR2DL1 and KIR3DL1 
in the absence of KIR3DS1 results in protection from cervical 
neoplasia. KIR receptors and HLA ligands interact through an 
epistatic relationship in which HLA ligands activate a genetic 
molecular cascade through the KIR receptor that influences 
NK functionality. This KIR/HLA interaction suggests that an 
inappropriate inflammatory response, mediated by NK cell KIR-
ligand interactions, may lead to tumor progression. The precise 
role of NK cells in the context of cervical cancer is far from being 
defined.

endometrial Carcinoma
Endometrial carcinoma arises from the lining of the uterine cav-
ity and is the fourth most common malignancy in women (95). 
Most women are diagnosed with low-grade, early stage disease 
and are cured following surgery. There is very little informa-
tion on the microenvironment of uterine NK (uNK) cells and 
cancer. There is much more known about NK cell biology and 
pregnancy.

Uterine NK cells are a tissue-specific, specialized population 
of cells that make up large percentage of both endometrial and 
decidual lymphocytes (145). uNK cells are almost exclusively 
CD56brightCD16−, although they contain cytotoxic granules 
(146). uNK cells are thought to contribute to immunosuppres-
sive mechanisms during pregnancy when immune tolerance is 
vital. As a result, these uNK cells also display less cytotoxicity 
against tumor targets compared to peripheral NK cells (147). 
uNK cells are not only immunosuppressive during pregnancy 
in order to protect the fetus but also may play a key role in 
modulating fetal growth, with activated uNK  cells at the 
maternal–fetal interface producing factors that play a role in 
the regulation of trophoblast invasion and uterine vascular 
remodeling. These roles are critical to placental formation and 
healthy gestation (148, 149). A number of interesting questions 
remained unanswered with respect to NK  cells and uterine 
cancer: (i) does the immunosuppressive nature of the maternal–
fetal interface contribute to developing uterine carcinoma?  
(ii) Do peripheral NK cells migrate into the uterine cavity with 
tumorigenesis? (iii) Are uterine tumor cell lines susceptible to 
NK  cell killing? More complete knowledge of the biology and 
function of uNK cells in endometrial cancer is required prior 

to developing strategies of NK  cell immunotherapy for this 
malignancy.

NK iMMUNOTHeRAPY iN GYNeCOLOGiC 
MALiGNANCieS

Advances in understanding the NK  cell biology and func-
tion over the last few decades have resulted in promising new 
immunotherapeutic approaches for gynecologic malignancies, in 
particular ovarian cancer. There is scant research published on 
NK cell-based immunotherapy in cervical and uterine carcinoma 
at this time. In this section, we will review recent advances in 
NK cell-based immunotherapy for all gynecologic malignancies 
highlighting the opportunities and challenges for each cancer.

early Trials Using Biologic Response 
Modifiers and Cytokine Therapy
Early clinical trials in ovarian cancer patients aimed to improve 
the antitumor activity of immune cells through intraperi-
toneal injection of biological response modifiers, including 
Corynebacterium parvum, bacillus Calmette-Guerin, leukocyte 
interferons (IFN), and irradiated autologous and allogeneic 
tumor cells (150). Overall, these agents had limited success in 
treatment response with relative toxic side effects. Another novel 
strategy using an attenuated strain of influenza virus to infect 
ovarian cancer tumor cell lines was later developed. The nonvi-
able extracts from the tumor cells, termed viral oncolysate, were 
isolated and then injected intraperitoneally (IP) into patients 
with ovarian cancer with both clinical and pathological responses 
noted (151, 152). Follow-up studies noted the viral oncolysate 
enhanced the NK cell response (153). Although better tolerated, 
the treatment had limited clinical responses.

Advancement in recombinant DNA technologies led to the 
purified production of cytokines and their use to treat a variety 
of malignancies. Today, cytokines are easy to manufacture and 
administer. While the central goal of cytokine therapy is to 
potentiate the autologous antitumor response in vivo, they lack 
specific immunomodulatory effects (154). Table 1 lists selected 
clinical trials in ovarian cancer evaluating cytokine therapy and 
NK  cell response if reported. The first generation of cytokines 
were recombinant (r) IFN-α, rIFN-γ, and rIL-2. The published 
results of IP therapy with recombinant IFN with or without 
chemotherapy have been comprehensively reviewed by Freedman 
and colleagues (155). They also reported on eight clinical trials 
evaluating IP therapy with IL-2 alone or in combination with 
cellular therapy (discussed below). The results demonstrated 
IP immunotherapy with cytokines was tolerated but had 
varying levels of success. Two important features were identified:  
(i) res ponse was dependent on remaining tumor burden prior to 
initiation of therapy and (ii) efficacy of first-line therapy is critical 
in these patients. Most of these early trials did not assess NK cell 
response to therapy.

Recently, a randomized phase III trial of 847 women with 
stage III or IV ovarian cancer evaluating front-line combination 
carboplatin/paclitaxel plus subcutaneous Escherichia coli-derived 
recombinant IFNγ-1b was stopped early following a second 
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TABLe 1 | Natural killer (NK) cell findings from clinical trials of cytokine immunotherapy for ovarian cancer.

Year No. of 
patients

Population Treatment Phase Clinical response NK cell response Reference

1982 5 Recurrent disease IM interferons (IFN) I 1 patient had PR; 2 patients with SD  
at 12 months

Increase in NK cell 
activity in peripheral 
blood in all three 
patients examined

Einhorn et al. 
(192)

1984 14 Persistent disease 
EOC on second look 
laparotomy

Intraperitoneally (IP) 
IFN-α

I 11 pts underwent surgical reevaluation after 
therapy: 4 had CR (36%), 1 PR (9%), and 6  
with disease progression (55%)

NK cytotoxicity was 
elevated in the IP 
cavity

Berek  
et al. (98)

1987 40  
(1 OvCa)

Advanced cancer Continuous IL-2 I PR in 1 OvCa pt NR West et al. (193)

1996 108 Persistent disease EOC 
on 2nd look laparotomy

IP IFN-γ II 98 evaluable pts: 31 (32%) with surgical RR, 
including 23 (23%) with CR

NR Pujade-Lauraine  
et al. (194)

2000 148 First-line therapy Cisplatin/cyclophosph 
amide ± SubQ IFN-γ

III Progression-free survival (PFS) at 3 years: 38%  
in control to 51% in treatment; CR 56% in  
control vs 68% in treatment; similar toxicity

NR Windbichler et al. 
(195)

2005 44 Maintenance following 
second-line

Low-dose SubQ 
IL-2 + RA

II Treatment decreased VEGF and improved 
immune function; absolute difference of 42% 
between treatment and matched controls in  
both PFS and overall survival (OS) at 2 years;  
well tolerated

Treatment improved 
lymphocyte and 
NK cell counts

Recchia  
et al. (159)

2008 847 First-line therapy Carboplatin/
paclitaxel ± SubQ  
IFN-γ

III Stopped early due to interim analysis: shorter  
OS (60 vs 70%) in pts receiving IFN-γ at time  
of analysis; more adverse events

NR Alberts  
et al. (156)

2009 31 Platinum-resistant/
refractory disease

IP IL-2 II 24 evaluable pts: 6 (25%) with surgical RR, 
including 4 CR (17%); well tolerated

NR Vlad et al. (196)

2010 65 Maintenance following 
second-line

Low dose SubQ  
IL-2 + RA

II Overall RR 57%, including 4 (6%) CR; median 
PFS 23.2 months and median OS 52.8 months

Treatment improved 
NK cell counts and 
decreased VEGF

Recchia  
et al. (158)
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interim analysis (156). At the time of analysis, patients receiving 
IFNγ-1b plus chemotherapy compared to chemotherapy alone 
demonstrated significantly shorter OS (60 vs 70%). It should be 
noted IFNγ-1b has biological activity identical to natural human 
IFN-γ (157). The authors speculate IFNγ-1b may have resulted 
in activation of Tregs and immunosuppression. They also suggest 
treatment with IFNγ-1b is more toxic and leads to decreased 
treatment adherence or dose reductions of chemotherapy. The 
ability to complete all six cycles of chemotherapy was compro-
mised in patients receiving IFNγ-1b (77 vs 83%). Regardless, it 
was concluded that IFNγ-1b does not have a role in first-line 
treatment of advanced ovarian cancer.

Finally, a phase II trial of advanced ovarian cancer patients 
treated with second-line therapy followed by maintenance low-
dose subcutaneous IL-2 with oral 13-cis-retinoic acid reported an 
overall response rate of 57% (158, 159). Treatment was associated 
with an improvement of peripheral NK cell counts and a decrease 
in VEGF compared to baseline. In this cohort of 65 patients, 
the progression-free survival (PFS) and OS was 29 and 38%, 
respectively.

Similar to IL-2, the cytokine IL-15 can potently increase 
NK cell numbers. While IL-2 and IL-15 share common signaling 
mechanisms, they differentially control the development, activa-
tion, and proliferation of NK cells (160). IL-2 activates a broad 
range of T cells, including Tregs. In contrast, IL-15 preferentially 
stimulates CD8+ T  cells and non-terminally differentiated 
NK cells and has been shown to enhance NK cell function in the 

ovarian cancer setting (101, 161). Several clinical trials evaluating 
IL-15 are underway (162).

In summary, biologic response modifiers and cytokine ther-
apy have demonstrated conflicting results in the limited clinical 
trials. In addition, the small number and heterogeneity of study 
participants limit interpretations. Additional investigations 
examining the role of cytokines in ovarian cancer and reporting 
standard immune and clinical responses is warranted.

Adoptive Transfer of NK Cells
Initial efforts in adoptive transfer of immune cells aimed to 
improve the autologous antitumor responses through cytokine 
stimulation (155, 163–165). Immune cells removed from the 
peripheral blood of patients were activated with various cytokines 
and then infused back into the same patient. Table 2 lists selected 
clinical trials in ovarian cancer evaluating adoptive transfer of 
NK cell-related therapy and response if reported.

The early phase I clinical trials evaluating the adoptive 
transfer of autologous lymphokine-activated killer (LAK) 
cells with high-dose IL-2 therapy demonstrated limited clini-
cal responses with high rates of peritoneal fibrosis (165–167). 
Similar to LAK immunotherapy, cytokine-induced killer (CIK) 
cells arise from peripheral blood mononuclear cell cultures with 
stimulation of anti-CD3 mAb, IFN-γ, and IL-2 (168). CIK cells 
are characterized by a mixed T-NK phenotype (CD3+CD56+) 
and demonstrate enhanced cytotoxic activity compared to 
LAK cells against ovarian and cervical cancer (169, 170). 
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TABLe 2 | Natural killer (NK) cell findings from clinical trials of adoptive cellular transfer for ovarian cancer.

Year No. of 
patients

Population Treatment Phase Clinical response NK cell response Reference

1989 20 (7 OvCa) NR Autologous IP lymphokine-
activated killer (LAK) + IL-2

I 2/7 OvCa pts had PR; extended therapy  
was hampered by IP fibrosis

NR Urba  
et al. (165)

1990 24 (10 OvCa) Recurrent disease Autologous IP LAK + IL-2 I 2/10 laparoscopic documented PR; 8/10  
no response; progressive IP fibrosis

NR Steis  
et al. (166)

1990 10 Recurrent disease Autologous IP LAK + IL-2 I 1/10 (10%) RR; dose-limiting toxicity was 
ascites accumulation

LAK activity correlated with 
CD3−CD56+ lymphocytes

Stewart 
et al. (167)

1991 7 Advanced or  
recurrent disease

Cyclophosphamide, 
ACT of tumor-infiltrating 
lymphocytes (TIL)

II 5/7 (71%) had RR, including 1 (14%) CR NR Aoki et al. 
(197)

10 Cisplatin, ACT of TIL 9/10 (90%) had RR, including 7 (70%) CR

2011 20 (14 OvCa) Refractory disease  
(4+ prior therapies)

Allogeneic IV NK + IL-2 II Well tolerated overall, but 2 severe adverse 
events including 1 death; 4/14 (29%) OvCa 
pts had RR, 8/14 (57%) with SD, and 1/14 
(7%) with PD

No sustained in vivo 
expansion of NK cells  
was noted

Geller  
et al. (173)

2014 92 First-line therapy Primary debulking 
surgery, carboplatin/
paclitaxel ± autologous  
IV cytokine-induced  
killer (CIK) cells

III Progression-free survival: 37.7 vs 
22.2 months favor CIK (p = 0.004); overall 
survival 61.5 vs 55.9 months (NS); well 
tolerated

NKT (CD3+CD56+) cells 
increased; NK cells 
decreased in CIK culture; 
no changes in peripheral 
NK cells

Liu  
et al. (171)

2016 20 (2 OvCa) Advanced or  
recurrent disease

Allogeneic IV NK I Well tolerated; 1 had SD and 1 had PD Ex vivo expanded and 
activated NK cells were 
generated and safely 
administered

Yang  
et al. (174)

2017 1 First-line therapy Allogeneic IV NK Case 
report

PR, with CA-125 decreasing 11,270 to 580 
after 6 treatments

Expanded NK cells in  
culture

Xie  
et al. (175)
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A recent phase III clinical trial investigated adoptive transfer of 
autologous CIK cells following primary debulking surgery and 
adjuvant carboplatin/paclitaxel chemotherapy (171). Advanced 
epithelial ovarian cancer patients (n = 92) were paired to receive 
maintenance monthly CIK transfusions (n  =  46) vs standard 
of care observation (n  =  46). Median PFS was 37.7  months 
in the treatment group and 22.2 months in the control group 
(p = 0.004). Median OS in the treatment group was 61.5 months, 
compared to 55.9 months in the control group (p = 0.289). The 
therapy was well tolerated with no grade III or IV adverse reac-
tions. Interestingly, the proportion of Tregs in peripheral blood 
decreased following two courses of immunotherapy (p = 0.006). 
While only a small, non-randomized phase III study, these 
results are promising and follow-up studies are warranted.

Recently, insights into the molecular mechanisms regulating 
NK  cell function shifted the focus toward allogeneic NK  cell 
immunotherapy. The mismatch between donor KIR repertoire 
and recipient MHC class I molecules can improve the antitumor 
activity of NK cells (172). In a phase II clinical trial, we studied 
haplo-identical related IV infused NK  cells in patients with 
recurrent ovarian (n  =  14) and breast cancer (n  =  6) (173). 
Following a lymphodepleting chemotherapy regimen ± radia-
tion, women received adoptive transfer of a CD3/CD19-
depleted NK cell product and were treated with subcutaneous 
IL-2 injections. No successful NK cell persistence or expansion 
was noted, likely as a result from recipient Treg expansion and 
reconstitution following therapy. Only two other small reports 

using allogeneic NK cell therapy in ovarian cancer have been 
published (174, 175). Together, these studies suggest allogeneic 
NK cell therapy is feasible. However, further investigation into 
strategies to augment in vivo NK cell persistence and expansion 
are needed.

Future efforts generating novel NK cell products for adoptive 
transfer are likely to be investigated in the ovarian cancer setting. 
Ex vivo inhibition of GSK3 kinase in peripheral blood enhances 
CD57 expression and late-stage maturation of NK cells (176). 
These NK  cells demonstrated significantly higher production 
of cytokines (TNF-α and IFN-γ) and ADCC when exposed to 
cancer cells. Recruitment for an ovarian cancer clinical trial 
using the product generated from this method has opened at 
the University of Minnesota. Another recent study evaluated 
the potency of NK  cells derived from human CD34+ hemat-
opoietic stem and progenitor cells (HSPC) against a mouse 
xenograft model for ovarian cancer (177). Mice that received IP 
HSPC-NK cell infusions had significantly reduced tumor pro-
gression compared to controls. Finally, efforts to generate ovar-
ian cancer specific NK chimeric antigen receptors are underway 
(178). These engineered proteins consist of a fused single-chain 
variable fragment (scFv) to an intracellular signaling domain to 
enhance NK effector function. A combination of these different 
techniques of generating NK cell products hold great promise 
and may make IP adoptive transfer effective against ovarian 
cancer following primary cytoreductive surgery and adjuvant 
chemotherapy.
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Other immunotherapeutic Options  
to enhance NK Cell Function
Other immunotherapeutic strategies are currently being charac-
terized for antitumor activity (162). The development of drugs 
known to influence NK cell presence and function include mAb 
therapy, immunomodulatory drugs, vaccines (peptide, viral-
based, tumor antigens, dendritic cells), and the adoptive transfer 
of T cells, dendritic cells, and macrophages. Even commonly used 
cytotoxic agents increase expression of NK cell-activating ligands 
and enhance NK cell recognition and killing more than others 
(179). A thorough discussion of each method is outside the scope 
of this review, but we will comment on several key issues.

Antibody-based immunotherapy has transformed the treat-
ment of many malignancies, but is not yet standard of care 
for ovarian cancer. The mAbs function through two separate 
mechanisms. First, treatment is aimed at antigens present on 
tumor cells to facilitate an antitumor response through opsoniza-
tion and activation of ADCC. Several tumor-associated antigens 
targeted with mAb for ovarian cancer have been identified, 
including NY-ESO-1, CA 125 (MUC16), MUC1, and epithelial 
cell adhesion molecule (EpCAM) (154). mAbs can also function 
in a non-immune-mediated manner to block vital growth and 
survival pathways, such as Her2/Neu, membrane folate receptor, 
and VEGF. Clinical trials evaluating the efficacy of mAbs should 
include investigations into both mechanisms.

A newer approach involves engineered bispecific antibodies 
and bispecific/trispecific killer engagers (BiKEs or TriKEs), 
which are molecules that cross-link antigens on tumor cells with 
CD16 on NK  cells, activating and enhancing ADCC (180). 
One example utilized anti-CD16 scFv spliced to anti-EpCAM 
scFv (181). This BiKE promoted immune synapse and ADCC 
between NK  cells and EpCAM-expressing tumor cells. More 
recently, a fully humanized TriKE utilized a modified IL-15 
to cross-link the anti-CD16 scFv and EpCAM scFv (182). The 
1615EpCAM TriKE was specific and active against EpCAM 
bearing ovarian cancer cells and mediated NK proliferation, 
sustained ADCC activity, improved lytic degranulation, and 
cytokine production. A TetraKE construct incorporating the 
cancer stem cell marker anti-CD133 scFv was recently engi-
neered to simultaneously target EpCAM and CD133 bearing 
cells (183). These engineered small molecules combine the speci-
ficity of mAbs with the NK cell expansion and survival benefits 
of cytokine therapies via IL-15 into a single product. This novel 
strategy to target NK cells for antigen-specific immunotherapy 
has recently been reviewed and will hopefully prove effective 
in supplementing traditional therapies against gynecologic 
malignancies (184, 185).

Immune checkpoints are inhibitory pathways that serve to 
prevent self-tissue damage. During tumorigenesis, cancer cells 
often express ligands to bind and induce immune suppression. 
A number of antibodies have been developed to block check-
point pathways expressed on certain T cells, B cells, monocytes, 
and NK cells, including CTL-associated protein 4, programmed 
death protein 1 (PD-1), TIM-3, NKG2A/CD94 complex, and 
CD96/CD226/TIGIT receptors (186, 187). A recent publica-
tion identified a population of NK  cells within the ascites of 
women with ovarian cancer where PD-1 is highly expressed 

suggesting therapies targeting PD-1/PD-L may be effective (188).  
In fact, in vitro studies have shown that PD-1 and CD96/TIGIT 
blockade augments NK  cell-mediated tumor lysis (189, 190). 
Future research is needed to clarify the effects checkpoint 
inhibitors have on the NK  cell response and the potential to 
enhance adoptive NK cell immunotherapy.

CONCLUDiNG ReMARKS

Here, we provide an extensive overview of NK cell-based immu-
nobiology and therapy in gynecologic malignancies. Over the 
past several decades, insight into biology controlling activation 
or inhibition has advanced the prospect of NK  cell-based 
immunotherapy, which is just now being realized. Today, there 
are strategies to harness NK cell function for immunotherapy, 
including: (i) adoptive transfer of alloreactive NK cells, (ii) block-
ing NK inhibitory signals with mAb, (iii) promoting death 
ligand expression, and (iv) enhancing specificity via activation 
of ADCC. In addition, using drugs or cytokines to promote 
NK cell proliferation and function or inhibit NK cell suppres-
sors are potential strategies. Complementary approaches also 
exist to manipulate the genetics geared to maximize NK  cell 
function against specific tumor targets. One example includes 
viral transduction and gene transfection through electropora-
tion technologies with the goal of increasing production of 
cytokines or cell receptors (191).

There are several crucial issues that require consideration 
for adoptive NK  cell-based cancer immunotherapy that need 
to be highlighted. These include (i) standardizing protocols and 
techniques in NK cell preparation, (ii) establishing firm criteria 
for donor selection to improve clinical response, (iii) identifying 
the best method of conditioning recipients to avoid rejection and 
promote survival of transferred NK cells, (iv) combining NK cell-
based immunotherapy with other therapies to eliminate cancer 
cells, and (v) enhancing understanding of tissue immunity and 
the tumor microenvironment (3).

Finally, early clinical studies have demonstrated promise of 
NK  cell-based immunotherapy for gynecologic malignancies. 
Future research will be important to identify patients that will 
most likely benefit from immunotherapy and define the specific 
role and timing of therapy. In addition, combination approaches 
need to be explored and optimized before therapeutic break-
throughs can realistically be envisioned.
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