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Abstract
Excessive consumption of fructose, the sweetest of all naturally occurring carbohydrates, has been linked to worldwide epidemics of
metabolic diseases in humans, and it is considered an independent risk factor for cardiovascular diseases. We provide an overview
about the features of fructose metabolism, as well as potential mechanisms by which excessive fructose intake is associated with the
pathogenesis of metabolic diseases both in humans and rodents. To accomplish this aim, we focus on illuminating the cellular and
molecular mechanisms of fructose metabolism as well as its signaling effects on metabolic and cardiovascular homeostasis in health
and disease, highlighting the role of carbohydrate-responsive element–binding protein in regulating fructose metabolism.
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Introduction

In the past decades, dietary patterns have changed
remarkably. In conjunction with the advent of sedentary
lifestyles in both industrialized and developing countries,
this trend of changing dietary patterns is highly associated
with the increasing epidemic of obesity, non-alcoholic fatty
liver disease (NAFLD), type 2 diabetes, and metabolic
syndrome.[1,2] The rapid increase in pediatric obesity and
NAFLD has become one of the major public health
concerns globally. Sugars in the form of sucrose (half
fructose) or high-fructose corn syrup (HFCS, about 45–
55% fructose) are major sweeteners added in food and
beverages, which comprise a large proportion of the
modern diet, in particular in children, adolescents, and
young adults. In Western diets, added sugars account for
about 14% to 17% of the total caloric intake, which is
above the recommended level of 10% of the total caloric
intake according to the World Health Organization’s
guidelines.[3] In China, the past decades have seen a great
increase in the consumption of sugar-sweetened beverages
(SSB), according to the China National Nutrition Surveys
(CNNS).[4] It is well recognized that excessive consump-
tion of added sugars is a risk factor for cardiometabolic
diseases, and has been a big public health problem.[5,6]

Therefore, recommendations for the restriction of sugar
consumption attract significant attention.
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As the major component of added sugar, fructose is a
monosaccharide with a similar formulary to glucose.
However, its metabolism pathway is quite different from
glucose in vivo.[7-9] There is substantial evidence that
excessive fructose intake has detrimental effects onmultiple
metabolic diseases. It causes visceral fat accumulation and
leads to obesity, hyperlipidemia, insulin resistance, hyper-
tension, and hyperuricemia, which are associated with
development of diabetes, fatty liver disease, cardiovascular
disease, and gout.[5,6,10] Even for those in the “normal”
range of fructose consumption, fructose can still rapidly
impair intermediate physiological endpoints like circulating
lipids and insulin sensitivity in humans.[11] Therefore,
further understanding fructose metabolism and its role
in the development of metabolic diseases will provide
fundamental insights into pathogenic mechanisms, which
assists to develop new diagnostic, preventative, and
therapeutic strategies for metabolic disease. In this review,
we aim to illuminate the physiological and biochemical
characteristics of fructose metabolism as well as its
association with metabolic diseases.
Fructose Metabolism and Homeostasis

Intestinal fructose absorption

Dietary fructose is predominantly absorbed from the
intestinal lumen and transported across apical membrane,
which is mediated by the facilitative glucose transporter
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(GLUT) family members.[9,12] Both GLUT5 and GLUT2
are able to facilitate fructose transportation, but GLUT5
shows higher affinity for fructose. Fructose absorption
occurs mainly in the brush border of the lower part of the
duodenum and jejunum via GLUT5 and translocated into
the circulation through GLUT2.[13] In intestinal epithelial
cells, fructose induces GLUT5 expression and activation to
facilitate its translocation in an energy-independent
manner. This sensibility of GLUT5 for fructose thereby
triggers intracellular signaling in response to nutrient
concentrations.[12] As a consequence, GLUT5 deficiency
leads to intestinal fructose malabsorption as well as
intestinal dysfunction.
Endogenous fructose production

The vast majority of fructose in vivo is derived from the
dietary source of sugar, while it can also be synthesized
endogenously through sorbitol (polyol) pathway. This
metabolic route exists in a wide range of tissues and is
regulated by two enzymes: aldose reductase and sorbitol
dehydrogenase. Glucose is first converted to sorbitol by
aldose reductase, and then oxidized to fructose by sorbitol
dehydrogenase.[10] Physiologically, endogenous fructose is
produced as a source of energy mainly for sperm and
fertility as well as for fetus development. In contrast to the
ubiquitous expression of sorbitol dehydrogenase, aldose
reductase expression is largely limited to the hypertonic
areas of the inner medulla and papilla in the kidney;
therefore, the sorbitol pathway was once considered to be
inactive in the majority of tissues other than those in
kidney. As a result, the locally produced and accumulated
sorbitol helps maintain osmotic pressure for a proper
urinary concentrating mechanism.[14] Therefore, circulat-
ing fructose levels are much lower than that of glucose.[15]

The estimated blood concentration of fructose in human
and laboratory rodents ranges from 6 mmol/L to
1500 mmol/L, as determined by mass spectrometry detec-
tion (only ∼1/1000 of glucose level in circulation).[16,17]

Recent studies suggest that the sorbitol pathway can also
be active in brain.[18-20] In this regard, researchers have
reported the fructokinase expression and fructose metab-
olism in the brain, as well as the endogenous fructose
generation in the hypothalamus, for the production and
release of vasopressin.[18] In addition, the endogenous
fructose and activated sorbitol pathways are also consid-
ered to be a contributor to diabetic microvascular
complication. There is some evidence supporting the view
that endogenous fructose production and ketohexokinase
(KHK) activation within the kidney contribute to the
development of diabetic nephropathy.[21] Meanwhile,
glucose activates the sorbitol pathway both in humans
and mice, which could be a mechanism for the exacerbated
cardiometabolic risks by severe hyperglycemia.[22] The
question of whether endogenous fructose is involved in the
pathogenesis of metabolic diseases needs to be addressed
by further investigation.
Fructolysis and fructose disposal

Cellular glucose is catalyzed by glucokinase to produce
glucose-6-phosphate (G-6-P) and eventually enters the
glycolysis pathway after a series of catalytic reactions.
1277
Remarkably, fructose metabolism occurs via a divergent
pathway with distinctive metabolic consequences.[7] The
canonical pathway of fructose metabolism is fructolysis,
that is initiated by KHK to produce fructose-1-phosphate
(F-1-P). F-1-P is then cleaved by aldolase B into
dihydroxyacetone phosphate and glyceraldehyde. Glycer-
aldehyde is phosphorylated by triokinase to generate
glyceraldehyde 3-phosphate (GAP). GAP and other triose
phosphates are resynthesized into glucose via gluconeo-
genesis or converged with glycolytic pathway to enter the
lipogenesis or oxidation pathways.[6] Incontrast to
glucose, intracellular fructose is rapidly phosphorylated
by KHK due to the lack of negative feedback of substrate,
which depletes the cells of adenosine triphosphate (ATP)
and phosphoric acids stores after intake of excessive
fructose. The excessive cellular consumption of ATP
stimulates adenosine monophosphate (AMP) deaminase
activation to catalyze AMP to hypoxanthine and eventu-
ally increases uric acid levels via purine pathway. Uric acid
can be degraded by uricase in rodents. However, humans
lack uricase, and that leads to the elevation of circulating
uric acid after excessive fructose consumption, which
might contribute as an evolutionary benefit[23] [Figure 1].

Fructose concentrations are at a low level of 0.04 mmol/L
in peripheral blood. After dietary fructose intake, it rapidly
increases about 10 fold then returns to fasting levels within
2 h.[10] Dietary fructose metabolism is initiated in small
intestine, which is a primary organ for fructose clear-
ance.[8] Low doses of fructose are about 90% cleared by
the intestine, with only trace fructose but extensive
fructose-derived glucose, lactate, and glycerate entering
the portal blood. Therefore, the small intestine not only
provides a place for the absorption and metabolism of
fructose, but also acts as a barrier to prevent a large
amount of fructose from pouring into the liver, with
potential toxic effects. The capacity to absorb fructose in
healthy adults ranges from <5 g to >50 g.[10] When
fructose ingestion exceeds intestinal clearance capacity, the
extra fructose is released into portal circulation at the
disposal of the liver.

The liver is a central metabolic processor. It can sense and
integrate peripheral nutrient status, thereby coordinating
energy storage and consumption. It is also considered to be
the major organ to dispose fructose in circulation.[10,24]

Hepatic fructose uptake from portal circulation is
mediated by GLUT2, which then undergoes further
metabolism to produce substrates for multiple metabolic
pathways, affecting both glucose and lipid homeostasis,
and consequently contributing to the pathogenesis of
metabolic disorders.[25] Kidney is also an important organ
for fructose metabolism. Physiologically, fructose can be
converted into glucose by renal gluconeogenesis. Although
renal gluconeogenesis may result from classic substrates
such as lactate, glutamine, alanine, and pyruvate, fructose
appears to be the preferred substrate, based on the speed
and efficiency of the reaction.[26] The proximal straight
tubule, where the GLUT5 is expressed on the apical side of
the cell membrane, is a primary site for urinary fructose
uptake and subsequent metabolism by fructokinase. In
addition, the proximal convoluted tubule is also found to
express fructokinase and aldolase B, which can be rapidly
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Figure 1: Schematic demonstration for ChREBP-regulated fructose metabolism pathway and its effects on glucose metabolism. Fructose enters cells via GLUT2 or GLUT5, and undergoes
fructolysis without negative-feedback, which leads to the activation of ChREBP and its target genes encoding the key enzymes involved in fructolysis, gluconeogenesis, glycolysis, and
lipogenesis (as labeled in red). As a result, large amount of fructose uptake and fructolysis promotes uric acid production. AMP: Adenosine monophosphate; ATP: Adenosine triphosphate;
ChREBP: Carbohydrate-responsive element-binding protein; Elovl6: Very-long-chain fatty acid elongase 6; F-1,6-P2: Fructose-1,6-bisphosphate; F-1-P: Fructose-1-phosphate; F-6-P:
Fructose-6-phosphate; FBP1: Fructose-1,6-bisphosphatase 1; G-1-P: Glucose 1-phosphate; G-6-P: Glucose-6-phosphate; GA: Glyceraldehyde; GCK: Glucokinase; GLUT: Glucose
transporter; KHK: Ketohexokinase; PFK: Phosphofructokinase; SCD1: Stearoyl coenzyme A desaturase 1; TKFC: Triokinase; VLDL: Very-low-density lipoprotein.
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induced by fructose. Aldolase B deficiency in the patients
with hereditary fructose intolerance causes F-1-P accumu-
lation in the proximal convoluted tubule. On the other
hand, activation of fructose by fructokinase requires a
phosphate, which decreases intracellular phosphate levels
and depletes ATP. This process activates AMP deaminase
and stimulates uric acid via purine pathway.[27] Therefore,
an excessive amount of fructose, either from diet or as a
result of endogenous production, leads to intracellular uric
acid accumulation, which increases the risk of developing
gout.
Fructose intolerance

The development of fructose intolerance is closely related
to abnormal expression and function of the enzymes
critically involved in fructose absorption and metabo-
lism.[28] Hereditary fructose intolerance, caused by
catalytic deficiency of aldolase B, results in a serious
defect of fructose metabolism along with an severe
accumulation of F-1-P, which leads to hypoglycemic and
severe abdominal symptoms as well as liver and kidney
injury after fructose consumption.[29] Another hereditary
fructose intolerance is related to fructose bisphosphatase 1
(FBP1), which has long been recognized as a key
component to control the rate of hepatic gluconeogenesis
in response to energy status. Individuals with FBP1
deficiency present with hypoglycemia and metabolic
acidosis after fructose consumption, due to impaired
gluconeogenesis.[30] The hereditary fructose intolerance is
often fatal and increases mortality; however, the precise
mechanism is not entirely clear so far.
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Fructose intolerance is also caused by impaired fructose
absorption. The ability of a healthy adult to absorb
fructose daily is in the range of 5 to 50 g.[9] Unabsorbed
fructose in the intestine can be excreted through feces or
utilized by intestinal flora; the latter could lead to impaired
intestinal flora homeostasis and intestinal barrier function,
thereby causing gastrointestinal symptoms. Deletion of
GLUT5 in mice reduces fructose absorption by 75% and
causes fructose malabsorption with symptoms such as
cecum and colon dilatation, and gas accumulation.[31]

Intestinal GLUT5 expression levels are low prenatally and
rapidly increase after weaning, which then can be further
induced by diets containing fructose.[32] In humans,
fructose malabsorption is prevalent in infants, toddlers,
and young children compared with that in adults; this
is due to their low expression pattern of intestinal
GLUT5.[33] Therefore, GLUT5 has been considered as a
potential pharmacologic candidate for the prevention of
fructose-induced diseases.
Regulation of Fructose Metabolism

Fructose metabolism is self-regulated in a flux-dependent
manner. Under physiological condition, fructose clearance
is accomplished through fructolysis and gluconeogenesis,
which are initiated from intestinal absorption and
metabolism, with the circulating fructose cleared in the
liver and kidney. Each component of fructose metabolism
pathway, which includes transporters and metabolic
enzymes, controls the metabolic flux as well as the amount
of intermediate metabolites to maintain metabolic homeo-
stasis.[10] Therefore, the activity and expression of these
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components are likely to have robust and sustained effects
on fructose metabolism. At the transcriptional level, the
expression of genes critically involved in fructose metabo-
lism is coordinately regulated by carbohydrate-responsive
element binding protein (ChREBP).
ChREBP

Carbohydrate-responsive element binding protein, a basic
helix-loop-helix leucine zipper transcription factor, was
initially found to recognize and bind to the carbohydrate
response element within the promoter of the gene encoding
liver-type pyruvate kinase (LPK).[34,35] It has two isoforms,
ChREBP-a and ChREBP-b, due to alternative usage of the
promoters and the first exons. Each isoform is complexed
with Mlx forms heterodimer to transcriptionally regulate
expression of the target genes. The b isoform is expressed
at extremely low levels; however, its transcriptional
activity is much more potent than that of the a isoform.[36]

ChREBP is abundantly expressed in both liver and
intestine,[37,38] and regulates transcription of many genes
involved in monocarbohydrate transport, glycolysis,
fructolysis, and de novo lipogenesis (DNL),[37,39-41]

thereby contributing to glucose and lipid homeostasis.
The target genes regulated by ChREBP are very extensive
with different physiological significance. Among them,
some are related to glucose metabolism such as LPK, G6P,
GLUT4, glycerol-3-phosphate dehydrogenase (GPDH),
and glucokinase regulatory protein (GKRP), whereas some
are related to lipid metabolism including fatty acid
synthesis, acetyl coenzyme A carboxylase, very-long-chain
fatty acid elongase 6 (Elovl6), stearoyl coenzyme A
desaturase 1, and microsomal triglyceride transfer protein
. It is particularly noteworthy to observe that the gene
encoding fibroblast growth factor 21 (FGF21), an
important factor regulating glucose and lipid metabolism,
is also a target of ChREBP.[42]

To a lesser extent, ChREBP is also expressed in adipose
tissue. We recently found that ChREBP-b overexpression
in brown adipocytes downregulates the expression of
genes involved in mitochondrial biogenesis, autophagy,
and respiration, as well as thermogenesis (eg, Dio2, UCP1),
which suggests that ChREBP acts as a negative regulator of
thermogenesis.[43] Thus, ChREBP plays an important role
in sensing nutrient metabolism and maintaining energy
homeostasis upon environmental changes.
ChREBP and fructose metabolism

Although ChREBP was initially identified as a glucose-
responsive factor, phenotypical characterization of its
global knockout mice first demonstrates that ChREBP is
required for fructose tolerance.[37] Upon fructose or
sucrose ingestion, ChREBP-deficient mice exhibit high
mortality, which was once linked to the diminished
expression of enzymes required for fructolysis, such as
aldolase B and KHK in the liver.[38,44] Given the consistent
phenotype as manifested by a severely distended cecum
along with proximal colon full of both gas and fluid
contents, and severe diarrhea upon fructose ingestion, the
relevance of intestinal ChREBP in fructose tolerance has
been established in recent years. In the small intestine,
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ChREBP expression is robustly induced by high-fructose
diet (HFrD), which is required for the subsequent
activation of GLUT5 and the genes involved in fructolysis
and gluconeogenesis.[45] In the absence of ChREBP,
insufficient induction of intestinal GLUT5 could be the
main reason for fructose intolerance. Therefore, as an
important site for fructose absorption and metabolism,
small intestine is highly regulated by ChREBP in response
to dietary fructose stimulation.

The liver is the major organ for the disposal of circulating
fructose; however, the role of ChREBP in liver fructose
metabolism is controversial. Fructose can producemultiple
intracellular carbohydrate metabolites that activate hepat-
ic ChREBP independently of hepatic insulin signal-
ing.[38,46,47] In both rats and mice, high fructose feeding
increases hepatic carbohydrate metabolites as well as the
activity of ChREBP and its target genes.[38,48] Another
recent study also indicates that fructose-activated ChREBP
stimulates hepatic FGF21 expression and secretion, which
participates in an adaptive response to fructose consump-
tion.[49] Although it has been observed that HFrD activates
hepatic lipogenesis in a ChREBP-dependent manner,
ChREBP-null mice chronically fed with a high fructose
diet exhibit severe steatohepatitis and early signs of
fibrosis.[50] This unexpected finding complexes the role
of fructose-activated ChREBP in hepatic lipid metabolism.
Jois et al[51] generated a liver-specific ChREBP-a knockout
mice with the deletion of exon 1a, while the alternative
promoter and expression cassette of ChREBP-bwas intact.
They demonstrated that deletion of hepatic ChREBP
caused insulin resistance, but did not change liver glycogen
contents or the expression of ChREBP target genes in liver
glycolysis and lipogenesis. Using another liver-specific
knockout mice model, Linden et al[52] show an approxi-
mately two-fold increase in liver glycogen contents and a
mild increase in plasma alanine aminotransferase levels in
HFrD-fed mutant mice, without significant morphological
abnormality in the liver. In contrast, our recent study
demonstrates that liver-specific ablation of ChREBP causes
severe transaminitis and hepatomegaly with massive
glycogen-overload in mice fed with an HFrD without
significant inflammation, cell death, or fibrosis in the liver,
suggesting that liver ChREBP protects mice against
fructose-induced hepatotoxicity by regulating liver glyco-
gen metabolism and ATP homeostasis.[53] These substan-
tial evidences demonstrate a protective role of liver
ChREBP in fructose-induced hepatic toxicity. The marked
difference in fructose-induced liver response in the above-
mentioned knockout mouse model is most likely caused by
the difference of gene targeting and mouse genetic
background. Nevertheless, the mechanism and biological
significance of differential responsiveness of the ChREBP
target genes to fructose requires further investigation
[Figure 2].
Regulation of ChREBP pathway

The expression and activity of ChREBP are tightly
regulated by carbohydrate in the liver.[44] At the post-
translational level, its nuclear translocation and transcrip-
tional activity depend on glucose-modulated phosphory-
lation and acetylation.[54,55] At the transcriptional level,
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Figure 2: ChREBP regulates fructose metabolism in intestine and liver. Dietary fructose gets into absorptive enterocytes in small intestine through GLUT5 located at brush border, and is
translocated into circulation via GLUT2. In enterocytes, fructose also undergoes fructolysis and gluconeogenesis, and consequently is absorbed into circulation in the form of glucose. As a
positive feedback mechanism, dietary fructose activates ChREBP pathway, and thereby promotes fructose absorption and glucogenesis in enterocytes. In the liver, fructose-activated
ChREBP promotes glucose production, lipogenesis, and FGF21 production and secretion. Long-term fructose overconsumption promotes the pathogenesis of hepatic steatosis due to
excessive activation of ChREBP pathway. ChREBP: Carbohydrate-responsive element–binding protein; FGF21: Fibroblast growth factor 21; GLUT: Glucose transporter.
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ChREBP-a is activated by glucose,[56,57] possibly through
its metabolites, the identity of which remains subject to
much uncertainty.[47,58] It is worth noting that ChREBP-a
has been identified as one of the direct target genes of liver
X receptor and thyroid hormone receptor b (TRb) in the
liver.[59-61] Although these nuclear receptors are involved
in transcriptional regulation of carbohydrate and lipid
metabolism,[62-64] neither of them is necessary for the
induction of ChREBP expression by glucose or refeed-
ing.[56,61] So far, the molecular mechanism for the
regulation of ChREBP expression is still unknown. Our
previous study identified a new member of C2H2
subfamily of zinc finger proteins, named as zinc finger
and BTB domain-containing protein 20 (ZBTB20),[65]

which is responsive to carbohydrate stimulation and
capable of binding to and activating ChREBP-a gene, thus
regulating the expression of ChREBP-driven metabolic
genes in the liver.[66] ZBTB20 is abundantly expressed in
adult hepatocytes. Tissue-specific deletion of ZBTB20
results in a marked decrease in ChREBP-a expression and
a dramatic decline of ChREBP-b expression levels upon
fructose stimulation, protecting the mice against fructose-
induced steatosis. Our finding points to ZBTB20 as a top-
level critical regulator in the hierarchy of ChREBP-
regulated fructose metabolism pathway in the liver,
providing a novel insight into the transcriptional regula-
tion of ChREBP. However, ZBTB20 is hardly expressed in
the intestinal epithelial cells. Therefore, the regulation of
ChREBP pathway in different tissues needs further
investigation.
Effects of Fructose on Metabolism

Energy storage as fat and glycogen

In humans, dietary fructose functions as an energy source
that can be deposited as fat and glycogen. Hepatocytes are
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able to convert fructose-derived carbon into glucose,
glycogen, lactate, lipid, carbon dioxide, and/or other
metabolites.[67] Isotope-labeled metabolic tracer techni-
ques provide a novel way to quantitatively evaluate the
conversion and oxidation of ingested fructose, even in
human bodies. In healthy subjects, after acute fructose
ingestion, about 29% to 54% fructose is converted to
glucose and then further incorporated into glycogen, 28%
fructose is converted to lactate, and a small trace enters
DNL pathway.[24] Fructose-derived metabolites enter the
triose-phosphate pool, bypassing the phosphofructokinase
(PFK)-restricted glycolytic flux, which results in unrestrict-
ed hepatic fructolysis. Thus, fructose-overloads lead to
large, rapid expansions in the hexose- and triose-
phosphate pools, providing increasing substrate for
multiple metabolic pathway, including glycogen and
lipogenesis for energy storage.[10] Very recently, Zhao
et al[68] report that dietary fructose feeds hepatic
lipogenesis via microbiota-derived acetate, indicating a
potential role of microbiota in the pathogenesis of fructose-
induced metabolic disease.

Fructose has been regarded as a potent adipogenic
nutrient. Chronic fructose intake increases the adipogenic
potential on adipocyte precursor cells.[69] Although
glucose and fructose consumption exhibit similar effects
on weight gain, fructose-sweetened, but not glucose-
sweetened, beverages increase visceral adiposity, induce
dyslipidemia, and impair insulin sensitivity in overweight/
obese humans.[70] The precise molecular mechanism of
fructose-induced insulin resistance is related to proin-
flammatory changes and endoplasmic reticulum stress in
visceral adipose tissue (VAT), as well as adiponectin
resistance.[71] According to the study by Marek et al,[71]

excessive fructose causes not only visceral fat accumula-
tion but also macrophage infiltration and production of
proinflammatory cytokines in the VAT, including TNF-a
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and MCP-1. This low-grade inflammation status in the
adipose tissue in obesity is widely recognized as a major
cause of insulin resistance and cardiovascular risk. In
addition, they also found the impairment of endoplasmic
reticulum (ER) function caused by fructose load, as
evidenced by XBP1 activation and decreased Ero-1a
expression. Their evidence may provide an important
mechanism for pathogenesis of insulin resistance and
progression of type 2 diabetes and cardiovascular disease
that are associated with increasing consumption of
fructose-sweetened foods in modern societies.
Eating behavior

The sweetness of added sugar increases the palatability of
food and beverages, thereby stimulating appetite and
encouraging overeating. In rats, both glucose and fructose
increase caloric intake, resulting in increased serum leptin,
decreased serum peptide tyrosine tyrosine (PYY) and
hypothalamic neuropeptide Y (NPY). However, fructose
vs. glucose increases circulating levels of the hunger hormone
ghrelin as well as hypothalamic levels of endocannabinoids
and cannabinoid receptor CB1 mRNA.[72,73] In humans,
fructose relative to glucose results in a smaller increase in
systemic glucose, insulin, and glucagon-like polypeptide 1
(GLP-1) levels, with an insufficient induction of satiety.
Functional magnetic resonance imaging based studies show
that consumption of fructose relative to glucose resulted in
greater hypothalamic blood flow and activation of brain
regions that are involved in attention and reward processing,
which may promote feeding behavior.[74,75]
Fructose in the Pathogenesis of Metabolic Diseases

Although the question remains controversial as to whether
fructose consumption is amajor contributor to the epidemics
ofmetabolic syndrome,[76-78] SSB have been considered as an
independent risk factor for metabolic diseases.[79] Studies in
both young people and adults have suggested that excessive
fructose consumption may lead to adverse metabolic effects,
such as dyslipidemia, increased visceral adiposity, and fatty
liver disease,[80,81] which in turn increases the risk of
cardiovascular diseases. On the other hand, short-term
fructose restriction decreases liver fat, VAT, and DNL, and
improves insulin kinetics in children with obesity.[82]
Effect of fructose on obesity and insulin resistance

There are plenty of studies which support the contention
that fructose consumption is closely associated with weight
gain or obesity due to increased caloric intake.[83-85] On
the other hand, fructose induces adipogenesis, oxidative
stress, inflammation, and glucocorticoid activation to
promote adiposity.[86,87] For example, fructose stimulates
11-beta-hydroxysteroid dehydrogenase (HSD) – expres-
sion and activity, thereby promoting the adipogenic effects
of glucocorticoids.[86] In addition, fructose-induced leptin
resistance may be a contributing factor to dysregulated
energy metabolism and weight gain,[88] given the key role
of leptin in satiety response and energy expenditure.[89]

It is worthy to note that there are divergent effects of
fructose and glucose on metabolic disorders due to their
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distinct metabolic pathways. Kuzma et al[90] reported that
short-term overconsumption of high glucose-sweetened
beverages significantly increases fasting plasma insulin
levels in healthy humans. Rather than fructose, glucose
promotes blood glucose levels as well as insulin secretion,
more directly. Glucose-stimulated glycemic load may be a
determinant of fasting insulin concentrations. Previous
reports suggest that consumption of foods with a high
glycemic index is a risk factor for the development of
insulin resistance,[91] and pure glucose, by definition, has
the highest glycemic index. Therefore, in a short time,
glucose beverage was sufficient to induce chronic hyper-
glycemia and concomitant hyperinsulinemia. Although
fructose intake seems not to stimulate insulin secretion,
chronic fructose stimulation renders pancreatic b-cells
hyper-responsive to glucose-stimulated insulin secretion
through extracellular ATP signaling.[92] Moreover, it
readily induces hyperinsulinemia in both rodent models
and human subjects,[10,93] most likely as a result of insulin
resistance.[25] There is some evidence to support the role of
fructose-induced hepatic lipogenesis in insulin resistance,
which may be associated with diacylglycerol accumula-
tion, protein kinase C e activation, and impaired insulin-
mediated Akt2 activation.[94,95] However, the precise role
and mechanism of fructose in insulin resistance need to be
intensively explored.
Effect of fructose on NAFLD and hyperlipidemia

Excessive fructose consumptionmay have significant effects
on lipid metabolism, contributing to steatosis and hyper-
triglyceridemia.[10] Even in the setting of insulin resistance, it
stimulates hepatic lipid accumulation through increasing
hepatic DNL because fructose metabolism does not require
insulin. Fructose consumption activates lipogenic program
immediately and then contributes to increased triglyceride-
rich very-low-density lipoprotein secretion,[96,97] whereas it
acutely suppresses hepatic fatty acid oxidation.[98] Thus,
fructose stimulates hepatic triglyceride production both by
providing substrate for fatty acid and triglyceride synthesis
and by activating signaling systems to enhance lipid
production.[10] Meanwhile, fructose can increase transcrip-
tional regulation of DNL by activating key transcription
factors, including sterol regulatory element–binding protein
1c (SREBP1c) and ChREBP.[25,99] This fructose-induced
DNL has been strongly correlates with NAFLD and
hypertriglyceridemia.[100-102]

It is well established that fructose enhances hepatic
lipogenesis; however, so far the association between
fructose and cholesterol metabolism has been poorly
appreciated. Based on a cross-sectional study among 6113
US adults in 1999–2006, there was a statistically
significant correlation between dietary added sugars and
unfavorable blood lipid levels, namely lower high-density
lipoprotein cholesterol levels and higher triglycerides levels
in fructose consumers, and higher low-density lipoprotein
(LDL)-cholesterol levels in women.[103] A short-term (3.5
inpatient days) intervention study showed that HFCS
intake with 10% to 25% of energy requirement increased
postprandial triglyceride, and 17.5% to 25.0% of energy
requirement increased fasting and/or postprandial LDL
cholesterol.[11] Recent animal studies show that high
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fructose diet induces elevation of hepatic cholesterol,
which can be abolished by deletion of hepatic ChREBP in
mice.[25] It is further confirmed by us that hepatic-specific
ChREBP knockout mice show decreasing level of total and
free cholesterol in the liver.[53] These data indicate a
potential role of ChREBP in fructose-regulated cholesterol
metabolism. Since multiple organs are involved in
cholesterol absorption, synthesis, transport, clearance,
and biotransformation, it is worthwhile to clarify the
precise molecular mechanism of excess fructose-mediated
cholesterol metabolism disorder.
Effect of fructose on hyperuricemia and hypertension

A large body of evidence revealed the association of excessive
consumption of fructose with hyperuricemia in both animals
and humans, and for this reason, fructose has been recognized
to be a potential risk for developing hyperuricemia and
gout.[104-106]Despite the conflicting studies on the relationship
between fructose consumption and hyperuricemia, it is
undeniable that excessive fructose intake is potentially related
to the risk of hyperuricemia. The National Health and
Nutrition Examination Survey (NHANES) 1999–2004 data-
bases and a logistic regression model reveal no significant
correlation between fructose intake and hyperuricemia
risk.[107] There is a meta-analysis showing an undesirable
association between SSB and fruit juice intake with the risk of
gout, but no association with fruit intake.[108] In fact, the
majority of studies support that high fructose intake can lead
to hyperuricemia. In a meta-analysis involving 125,299
participants, it is shown that high fructose consumption
corresponds with an increased risk of gout.[105] Also, a
substantial correlation between SSB consumption and the
elevated risk of gout and hyperuricemia in adults is indicated
in a systematic review and meta-analysis.[109] In addition, a
cross-sectional survey based on the Brazilian Longitudinal
Study of Adult Health (ELSA-Brasil) baseline data (2008–
2010) reports a substantially positive correlation of a high
fructose intake with hyperuricemia.[104] A recent meta-
analysis including 244 rats with diverse fructose feeding
indicates a significant link of hyperuricemia to high fructose
consumption.[106] Fructose rapidlygeneratesF-1-P topush the
fluxes of trioses for lipogenesis that causes depletion of ATP
store and degradation of AMP. This process contributes to
production of uric acid by purine pathway.[6] As a result, uric
acid activates the renin-angiotensin system and inhibits
endothelial NO, thereby increasing blood pressure.[110,111]

A systematic review of 18 prospective cohort studies
demonstrate that incidence of hypertension increases by
13% per 1 mg/dL increment in serum uric acid level.[112] In
addition to uric acid, fructose ingestion induces several other
physiologic responses that contribute to the pathogenesis of
hypertension, which include gastrointestinal sodium absorp-
tion, renal sodium reabsorption, RAS system, and renal
sympathetic nervous system.[113] Therefore, restriction of
sugar consumption may be a practical means to prevent
cardiovascular disease.
Perspective

Excessive fructose is an independent risk factor for
metabolic diseases; therefore, restriction of dietary fructose
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intake is an important approach to preventing cardiome-
tabolic diseases, and intervention of endogenous fructose
production also receives increasing attention. While
intestine, liver, and kidney are the major organs involved
in fructose metabolism, the physiology and significance of
brain in fructose metabolism need intensive investigation
to better understand the effect of fructose on sweet taste
preference and eating behavior. While there is some
evidence to indicate that excessive fructose consumption
affects cholesterol homeostasis, the underlying cellular and
molecular mechanism needs to be clarified. ChREBP is the
master regulator of fructose metabolism; the means by
which ChREBP senses fructose stimulation is still an
enigma. Obtaining a better understanding of the biochem-
ical regulatory mechanism of ChREBP pathway will
definitely provide new insights to the regulation of fructose
metabolism and its metabolic effects. Future advances in
this field will benefit our efforts to achieve better
cardiometabolic health.
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