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ABSTRACT: The present study attempts to valorize banana peel waste
(BPW) into high-value precipitated nanosilica-based agri-input. XRD analysis
revealed smaller-sized biogenic nanosilica (BNS) with an increase (without
heating) or decrease (with heating) in the duration of acid pretreatment during
the pre-calcination step. The highest BNS yield was recorded in post-calcinated
BPW ash involving simultaneous acid and heat treatment (1 h) (SA-3). FTIR
analysis displayed an intense peak at 1078.3 cm−1, indicating “Si−O−Si bond”
asymmetric vibrations. FESEM-EDX micrographs revealed high-purity BNS of
predominantly spheroid morphology. The BJH plot exhibited mesoporous
nanosilica with a median pore diameter of ∼33.82 nm. The bipartite
interaction of 0.001 g mL−1 BNS signifies growth-promoting effects on Bacillus
subtilis (BS) and Raphanus sativus (RS). The nano-primed RS seeds showed
higher germination indices over non-primed seeds at 0.001 g of BNS mL−1.
Further, the nano-biopriming studies showed the synergistic response of BNS and BS interaction on RS seeds in terms of higher
seedling growth, biomass content, and stress tolerance index. The findings open new avenues for developing nano-biofertilizer
formulations that serve multifaceted functions such as waste management and biomass valorization into value-added products and
fulfill sustainable development goals.

1. INTRODUCTION
Musa paradisiaca L. (M. paradisiaca), commonly known as
banana, belongs to the family Musaceae, widely recognized as
an edible fruit.1 According to the FAO,2 India is the largest
banana producer (27.6 MT), followed by China (12.1 MT),
the Philippines, and Brazil (6.9 MT).3 Almost 60% of the
banana fruit part, known as the peel, is discarded as waste.4

Nearly 30−40% of banana production is vetoed as a
consequence of poor quality standards, and the damage
proportion to fruit during transportation is also very high.1

Fruit residues are one of the critical biowaste among
different agricultural wastes.3,5 Nearly 3.5 MT/year of banana
peel waste (BPW) is produced globally by food industries.3

According to another report, annually, ∼114.08 MMT of
banana waste loss is generated worldwide, despite significant
hemicellulose, cellulose, and natural fibers contents. The
conventional routes for disposing of fruit residues, like
composting, burning, and landfilling,6 can attract severe
environmental consequences, including GHG emissions that
could result in global climate change.7

As per reports, GHG emissions like carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O) owing to waste
disposal have increased by ∼142, ∼253, and ∼121%,
respectively.3 Fruit wastes are the third source of GHG
emissions in the USA and China.2,3,8 According to Oelofse and

Nahman,9 each ton of fruit/food waste grossly generates ∼4.14
tons of CO2 via direct emissions or indirectly through
microbial metabolism.3 N2O, CO2, and CH4 have also been
defined as the main contributors to global warming, among
which the former have more pronounced effects.3,10−12

Banana peel (BP) comprised ∼30−40% of its fruit weight in
total, with 60−65, 5−10, and 6−8% of cellulose, lignin, and
hemicellulose, respectively.3,11,13 In another study, BP’s
hemicellulose, lignin, and cellulose contents were ∼11.87,
∼7.3, and ∼28.57%, respectively.14 Apart from natural
biopolymers, it contains proteins, lipids, dietary fibers,
secondary metabolites (phenols, carotenoids, flavonoids,
amine derivates, phytosterols, etc.),1 and minerals (in mg/
100 g) like sodium (∼115.1), magnesium (∼44.5), iron (∼47),
calcium (∼59.1), phosphorus (∼211.3), zinc (∼0.033), copper
(∼0.51), manganese (∼0.702), and potassium (∼4.39).15
The rich biochemical profile of BPW7 can be valorized into

numerous value-added products such as biofuels, biofertilizers,
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and different nanomaterials.6,16−19 Serna-Jimeńez et al.16

recorded 182 LCHd4
/(kg of volatile solids) via mesophilic

biomethanation of BPW. Ruangtong et al.20 demonstrated the
reducing and capping potential of BPW crude extract in ZnO
nanosheet synthesis. Naeem et al.17 utilized BP fibers with
bacterial cellulose to develop a reinforced composite with
higher tensile strength and thermal stability. Other reported
nanomaterials obtained from BPW are carbon quantum dots
(∼5 nm),18 palladium NPs,21 CuO/NiO nanocomposites,22

silver NPs,23 and titanium NPs.24 The BPW-derived nano-
particles showed significant antibacterial, anticancer, drug-
delivery, and dye degradation potential.20,25−27 Therefore,
nanotechnology-inspired valorization can be an attractive
strategy for constructive mitigation of BPW into high-value
products with multifarious utilities.
Many researchers have advocated nanosilica production

from agro-industrial wastes.6,28−34 Compared to chemical
synthesis, biogenic nanosilica production has various advan-
tages, such as being low-cost, energy-efficient, and eco-
friendly.35 Among different forms, the precipitated silica has
growing industrial demand.33 Nanosilica has applications in
bio-imaging, biomedicine, biosensors, environmental remedia-
tion (recovery of heavy metals, nonmetals, radioactive
compounds, oil, antibiotics, etc.), agriculture (stimulates the
growth of beneficial soil microbes, facilitates toleranceto
various abiotic stresses, develops resistance against different
fungal and bacterial phytopathogens, regulates activities of
antioxidant enzymes, promotes overall plant growth and
development, etc.), catalysis, ceramics, optics, thin films,
coatings, nanocomposites for construction materials, and use
as anticorrosive, antimicrobial, and anticancer agent.6,14,28,35−47

The present study uses BPW as a precursor for green-
chemistry routed biogenic nanosilica (BNS) extraction. The
reaction conditions favoring BNS recovery were optimized.
Further, the interaction studies of BNS with agriculturally
beneficial bacteria (Bacillus subtilis) (BS) and Raphanus sativus
(RS) seeds were performed to develop the novel nanosilica-
based biofertilizer formulation with enhanced plant-growth-
promoting activities.

2. EXPERIMENTAL SECTION
2.1. Chemicals and Raw Material. The chemicals

employed in the present study, viz., 35−37% hydrochloric
acid (maximum impurity levels, 0.0316%), sodium hydroxide
(≥97% pure), sodium chloride (99.5% pure), 4% sodium
hypochlorite (0.002% maximum impurity as manganese), and
ethanol (99.9%), were of analytical grade and used without
further purification. The preparation of reagents was
performed in triple-distilled water (TDW), and glassware was
thoroughly washed and sterilized for ∼2 h at 180 °C.48,49 BPW
was procured from the nearby fruit juice corner, sorted, sliced
into small pieces, and cleaned with tap water, followed by
TDW. Further, the excess water from BPW slices was soaked
using blotting sheets, completely dried at 60 °C, ground into
fine powder form, and passed through a standard-size sieve to
obtain a uniform particle size. The resultant powder was stored
in an airtight jar until use.
2.2. Preliminary Analysis of BPW Powder. The BPW

powder was subjected to ash, dry matter (DM), moisture, total
organic carbon (TOC), and organic matter (OM) analyses.50

Moisture (%) = (P − Q/P) × 100; ash (%) = R/P × 100; OM
= (Q − R/Q) × 100; TOC = OM/1.724, where 1.724 is the

bemlen factor, and P, Q, and R are fresh weight biomass
(FWB), weight obtained after 105 °C heat treatment for 6 h,
and that followed by heating for another 6 h at 600 °C,
respectively. An FTIR (PerkinElmer, L1600300) spectrum was
recorded in the spectral range 4000 to 450 cm−1 to investigate
the functional groups present in BPW powder.49,51 Further, the
aqueous extract of BPW powder was analyzed for the
preliminary phytochemical analysis (i.e., alkaloids, phenols,
flavonoids, carbohydrates, cardiac glycosides, tannins, qui-
nones, terpenoids, phytosteroids, proteins, and amino
acids),52−57 and observations were marked as “+”, “++”, and
“+++” for trace, moderate, and high concentrations,
respectively.52

2.3. Extraction of BNS. Extraction of biogenic silica from
agricultural residues typically involves sol−gel precipitation
and alkaline−silica separation.33 The major steps in the
methodology adopted for the BNS synthesis from BPW are
shown in Figure 1. First, the BPW powder (Section 2.1) was

heated for 6 h at 650 °C in a muffle furnace to obtain ash.
BPW ash undergoes acid leaching (1:10 (w/v)) for dissolving
carbonate components58 and removing metallic impurities.59

Based on acid type, treatment duration, and heating process
(80 °C), 7 BPW-ash treatments were designed, viz., SA-1, HCl
washing for 1 h; SA-2, HCl washing for 3 h; SA-3, HCl
washing for 1 h with heat treatment; SA-4, HCl washing for 3 h
with heat treatment; SA-5, H2SO4 washing for 3 h; SA-6,
HNO3 washing for 3 h; SC, washing with distilled water for 3
h. The leached ash was left for 12 h in TDW under continuous
stirring, followed by centrifuging at 4000 rpm for 30 min. The
recovered ash containing silica undergoes alkali solubilization
(3 N NaOH in 1:30 (w/v), 80 °C for 6 h in a hot water bath),
resulting in sodium silicate formation, which is later
precipitated at pH = 7, and heated at 80 °C for 2 h in a
water bath. The obtained clear silica gel was aged for 24 h to
recover the nanosilica.60 The obtained nanosilica was washed
with ethanol and TDW multiple times and calcinated at 100
°C for 6 h to obtain white BNS powder. The general reaction
steps involved in HCl/NaOH-inspired extraction of nanosilica
are depicted in the following reactions.58

Figure 1. Schematic view indicating the synthesis and characterization
of BNS.
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2.4. Characterization of BNS. BNS was characterized for
structural and optical properties. The phase and size of BNS
were determined by X-ray diffractometer (Rigaku, Ultima IV)
over the 2θ scanning range up to 80° (X-ray wavelength, i.e.,
Cu Kα anode = 0.15406 nm; tube current and voltage were 40
mA and 45 kV, respectively; scan speed = 8° min−1).61,62 The
crystallite size (D) was determined using the Debye−Scherrer
formula: “kλ/βhkl cos θ”, where βhkl = “full width at half-
maximum” intensity value in radians; θ = peak position in
radians, λ = 0.15406 nm, and k (constant) = 0.9.61 The
functional group associated with BNS was analyzed via an
FTIR spectrophotometer (PerkinElmer, L1600300) in the
transmission mode (4000 to 450 cm−1 spectral range).63 The
surface morphology and elemental composition of BNS were
determined by “field emission scanning electron microscopy”
(FE-SEM; TESCAN, MAGNA LMU), and “energy dispersive
X-ray” (EDX) mapping (EDAX AMETEK, “Octane Elite
Super EDS system”), respectively.49,61,64 The particle size of
nanosilica was determined with TEM (JEOL JEM 2100
PLUS). The absorption spectra of BNS aqueous dispersion
were recorded at room temperature via UV−vis spectroscopy
(ELICO 150) in the wavelength range from 250 to 400 nm.61

Further, the recorded absorbance data were converted to
estimate the band gap energy (Eg, in eV) from Eg = hc/λmax,
where c = 3 × 108 m s−1 and h = 4.135 × 10−6 eV.65

“Brunauer−Emmett−Teller” (BET) analysis (MicrotracBEL
Corp., BELSORP-maxII (S/N: 175, Ver 2.0.1.1) was
performed on BNS at adsorption temperature 77.355 K
under nitrogen atmosphere to study the surface characteristics,
i.e., pore diameter and volume through BET and “Barret−
Joyner−Halenda” (BJH) plot using data analysis software
(BELSORP, BELMaster, Ver 7.2.0.4).66,67

2.5. Maintenance of B. subtilis Culture. Bacillus subtilis
(B. subtilis; Gram positive (Gram +ve) bacteria) were
maintained in nutrient broth (NB) of the following
composition (w/v): peptone (0.5%), yeast extract (0.2%),
NaCl (0.5%), and beef extract (0.1%). pH was attuned at ∼7.4.
For solid media plates, 2% (w/v) agar was added to the above
NB composition. The nutrient medium was autoclaved for 15
min under 15 lbs of pressure and 121°C temperature, followed
by cooling at room temperature (RT) before use. For
experimental studies, B. subtilis cell suspension maintained at
active log phase (inoculated into NB media followed by
incubating at 37 °C for overnight) was considered.61,68−70
2.6. Disk Diffusion Assay (DDA) and Growth Kinetics

Study. The freshly prepared nutrient media were poured into
Petri plates and solidified for nearly 30 min. B. subtilis cell
culture (BCC) was spread over solidified media plates. The
sterile disks of filter paper nearly 6 mm in diameter were
dipped in the variable treatment doses of BNS prepared in
aqueous solution (until saturation) and equidistantly placed on
the inoculated plates. The disks dipped in TDW served as a
negative control. The inoculated media plates were incubated
in a BOD incubator at 37 °C for a 24 h duration. Serial

dilutions for colony count of B. subtilis (cultured in NB with
and without BNS) were performed on nutrient agar media, and
plates were incubated as mentioned for DDA.71,72 For bacterial
growth kinetics studies, the BCC maintained at the logarithmic
phase was first diluted to obtain optical density (OD) of about
0.1 at 600 nm (equivalent to ∼108 CFU mL−1) and then
grown at 37 °C in NB media (with and without BNS). The
turbidity measurements were performed using a UV−vis
spectrophotometer (OD at 600 nm).61,73−76

2.7. Seed Germination Assay. Raphanus sativus (L.) (R.
sativus; radish) was chosen as a model plant in the present
study due to its rapid growth and higher germination rate.61

The uniform-sized healthy seeds of radish were surface
sterilized using sodium hypochlorite solution (2.5% (w/v))61

for ∼5 min and then washed thrice with sterile TDW. Five
seeds were placed equidistantly on the Petri dish equipped
with a sterile filter paper soaked with 4 mL of the test sample
or TDW (served as a control). The prepared Petri dishes were
then incubated at 25 ± 1 °C in the dark77 for ∼7 days, and
germination data were recorded upon the emergence of the
radicle (∼2 mm)78 beyond the seed coat. The growth indices
were measured for germination percentage (G, %), seedling
length (SL),79 fresh weight (FWB), and dry weight biomass
(DWB),80 vigor index (VI-I and -II),81,82 and stress tolerance
index (STI) for seedling parameters such as radicle length
(RL), plumule length (PL), SL, FWB, and DWB.83,84

= ×G (%)
no. of germinated seeds

no. of tested seeds
100

= ×GVI I SL

= ×VI II DWB SL

= ×STI (%)
seedling parameter of stress treatment

seedling parameter of control
100

The experiments were carried out in triplicates in a
“complete randomized design”; the recorded mean values of
independent triplicate trials were denoted as mean ± SD.61 We
have performed a “Pearson correlation coefficient (r) analysis”
to study the association between investigated germination
indices under variable treatments, and the r-value closer to +1
or −1 indicated a “strong positive correlation” or “strong
negative correlation”, respectively.61,85

2.8. Antioxidant Assay. Total phenol content (TPC) was
determined as per Khatiwora et al.86 with slight modifications.
Germinated seedlings of radish (GSH) were extracted in 80%
(v/v) ethanol, and the volume was marked up to 3 mL with
TDW. In the next step, 0.5 mL of FC reagent (1:1 with TDW)
was added, followed by 2 mL of 20% sodium carbonate. The
test sample was heated for ∼2 min and cooled at RT, and the
absorbance was recorded using a UV−vis spectrophotometer
at 650 nm wavelength. The curve was plotted against the gallic
acid standard, and TPC was expressed as “mg of GAE
equivalent/(g of sample)”. Total flavonoid content (TFC) was
determined, as mentioned in Baba and Malik,87 with few
modifications. A 1 mL aliquot of ethanolic extract of GSH was
added to 4 mL of TDW, followed by 0.3 mL of aqueous
solution of 5% sodium nitrite and incubated at RT for 5 min.
Next, 0.3 mL of aqueous aluminum chloride solution (10%)
was added to the test sample and incubated for 6 min at RT,
and then 2 mL of 1 M aqueous NaOH solution was added and
the volume marked up to 10 mL with TDW. The absorbance
was recorded using a UV−vis spectrophotometer at 510 nm

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08152
ACS Omega 2025, 10, 5537−5553

5539

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


wavelength. The curve was plotted against the quercetin
standard, and TFC was expressed as “mg of quercetin
equivalent per g of sample”.
A hydrogen peroxide (H2O2) assay on GSH was performed

as per Yahyaoui et al.88 with slight modifications. Briefly, the
GSH was homogenized in 5 mL of 0.1% (w/v) chilled
trichloroacetic acid (TCA), incubated for ∼30 min at RT, and
centrifuged to collect the supernatant. To 1.0 mL of the test
sample, equal volumes (2 mL each) of potassium phosphate
buffer (10 mM, pH 7) and 1 M potassium iodide were added.
The absorbance was recorded at wavelength 390 nm, and
H2O2 content was determined from the extinction coefficient
value of 0.28 mM−1 cm−1. A lipid peroxidation assay to
determine the malondialdehyde (MDA) content was per-
formed according to Iftikhar and Perveen89 with slight
modifications. A 1 mL aliquot of supernatant (prepared as
mentioned in the H2O2 assay) was added to 4 mL of 0.5%
thiobarbituric acid (prepared in 20% TCA) and heated at ∼95
°C for ∼30 min, followed by cooling at RT. The absorbance
was recorded at wavelengths 600 and 532 nm. MDA content
(nmol/mL) was calculated using [(absorbance532 − absorb-
ance600)/155000] × 106.90

3. RESULTS AND DISCUSSION
3.1. Characterization of BPW Powder. BPW showed

moisture, DM, OM, and TOC contents (weight %) of 90.82 ±
1.90, 9.18 ± 1.90, 83.60 ± 0.62, and 48.19 ± 0.86, respectively.
As per the reports, these parameters can be varied depending
on the plant variety, prevailing environmental conditions,
etc.91,92 The ash content in BPW was 15.85 ± 0.67%, which is
in agreement with the previous findings.93,94 The EDX
(Oxford Instruments) analysis of BPW showed “Si” and “O”
contents (weight %) of 6.67 and 26.54, respectively. The
reported elemental impurities were Mg, P, S, Cl, K, Ca, Mn,
Rb, Nb, and Pb95 (Supporting Information Figure S1).
Preliminary phytochemical analysis of the aqueous BPW
extract showed the presence of alkaloids, phenols, flavonoids,
carbohydrates, cardiac glycosides, tannins, quinones, terpe-
noids, phytosteroids, proteins, and amino acids (Table 1).
Previous studies mentioned most of these metabolites in
banana peel’s aqueous/organic solvent extracts.96−99

FTIR spectra of BPW powder show peaks at 2919.47,
2851.2, 1602.8, 1379.2, 1245, 1038.02, and 895.27 cm−1

(Figure 2a). The peaks recorded for BPW ash were at
2988.27, 1985, 1448.3, 1045.7, 880.4, and 702.16 cm−1 (Figure
2b). Similar records were documented in earlier studies.
Memon et al.100 in FTIR analysis of banana peel powder,
observed peaks at 884.6, 1035.2, 1613.6, 1734, 2850.6, and
2920.3 cm−1 corresponding to NH amine deformation, CO
stretching of ester/ether, OH bending, carboxylate stretching,
CO, and CH stretching of ester/COOH, respectively. In
another work, Udochukwu and Akpoviri101 noted peaks at
2919.47 and 895.27 cm−1 in BPW powder, showing CH-
stretching vibrations of CH3/CH2/CH groups, and carbohy-
drates and water deformation, respectively. The peaks in ash
samples at 702.16 cm−1 correspond to C�C bending and C−
Cl stretching, 1045.7 cm−1 indicated S�O and C−F
stretching, and 1448.3 cm−1 designated calcium oxide, while
calcite phases are suggested by 2988.27, and 880.4
cm−1.102−104

3.2. Synthesis and Recovery of BNS. The key reaction
steps involved in the synthesis and recovery of BNS are shown
in Figure 3.19 The effect of pretreatment conditions with
respect to (wrt) acid type, treatment duration, and temperature
on BNS recovery was investigated. The silica yield (in %) was
calculated as per the following equation.105

= ×silica yield (%)
weight of silica recovered

weight of BPW ash
100

The BNS yields were recorded from experimental trials
carried out in triplicate. The BNS content was highest at SA-3,
followed by SA-2, indicating favorable effects of heat treatment
and substantial reductions in reaction time. Compared to SA-6,
the BNS recovery was greater in the case of SA-5 but lower
than SA-2, which preferred pretreatment of ash with HCl for 3
h over HNO3 and H2SO4 (Figure 4). Overall, compared to the
control (SC), 59.5, 46.1, 39.9, 38.3, 38, and 22.8% higher BNS
yields were noted in treatment samples SA-3, SA-2, SA-6, SA-4,
SA-1, and SA-5, respectively. Adebisi et al.106 also reported
higher Si contents in maize stalks treated with HCl before
(pre-calcination) and after ashing (post-calcination).
3.3. Characterization of BNS. 3.3.1. XRD. XRD diffracto-

gram showed significant peaks at 2θ angles 27.2−27.3, 31.5−
31.7, 45.3−45.4, 53.7−53.8, 56.3−56.4, 66.0−66.2, and 75.1−
75.2° (Figure 5a−g). BNS samples SA-2 to SA-5 also
demonstrated additional peaks at 28.1−28.5, 40.3−40.7, 50−

Table 1. Preliminary Phytochemical Analysis of the Powdered BPW Aqueous Extract

Compound Test Resulta Observation

Alkaloids Mayer ++ Whitish/cream colored precipitate
Wagner +++ Reddish-brown precipitate

Phenols FeCl3 + Intense color
Flavonoids Lead acetate ++ Yellow precipitate

Alkaline reagent + Intense-yellow color
Carbohydrates Fehling’s + Yellowish/brownish-red precipitate

Molish − Violet color not appearing at the junction of two-liquid layers
Proteins and amino acids Biuret ++ Purplish-violet/pinkish-violet color

Xanthoprotic ++ Yellow precipitate
Ninhydrin − Blue/Purple color not appeared

Cardiac glycosides Keller-Kiliani + Reddish brown color at junction of two-liquid layers and upper layer appeared bluish green
Tannins Lead acetate +++ Yellow precipitate
Quinones Acid precipitation ++ Red precipitate
Terpenoids Salkowski + Red-brown precipitate
Phytosteroids Hesse’s reaction + Chloroform layer red and acid layer greenish-yellow

aConcentrations: “+” = trace, “++” = moderate, and “+++” = high.
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50.5, 58.5−59, 66.0−66.9, 72.8−72.9, and 83.4−83.8°. Similar
peaks were reported in earlier studies by Barma et al.107 (2θ =
27, 31, 45, 56, 75, and 84°), Ali et al.108 (2θ = 40.3, and 53.9°),
Silmi et al.109 (2θ = 50.14°), and Periakaruppan et al.110 (2θ =
28°) for SiO2. The HCl pretreated ash (HPA) for 3 h duration
(with and without heat treatment) favored smaller-sized BNS
than those obtained from HNO3 and H2SO4 treated samples.
Further, the short heating duration (SHD) of HPA (SA-3)
resulted in reduced-sized BNS compared to the long heating
duration (LHD) (SA-4). SA-1 and SA-6 exhibited a higher
BNS size than the control (SC) (Figure 5h). Overall, the
crystallite size (CS) of BNS obtained at different reaction

conditions ranges from ∼51 to 78 nm (except SA-6), which is
in concordance with the previous report (Table S1).58 The
pretreatment duration and temperature have significant effects
on the size of BNS. XRD results demonstrated a decrease in
BNS size with an increase (without heating) or a decrease
(with heating) in the HCl preatment duration for ash.
Dislocation density (δ) was calculated from the CS (D) of
BNS using equation δ = 1/D2 to study the defects in SiO2
crystal structure.111 “δ” indicates the degree of crystallization
and decreases with an increase in BNS size.61,111 The
microstrain (εa) was determined as per equation “εa = β cos

Figure 2. FTIR spectra of BPW: (a) homogenized dried powder and (b) ash.
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θ/(4 × 10−3)” and displayed an increasing trend in proportion
with the “δ” values.112

3.3.2. UV−Vis Spectroscopy and FTIR. FTIR spectra peaks
of BNS (SA-3) at 1078.3 and ∼850 cm−1, corresponding to the
“Si−O−Si bond” asymmetric vibrations.63,113 The peak at
586.23 cm−1 also indicates Si−O elements.110 The minor peaks
at 1500−2000 and ∼3400 cm−1 are indicative of absorbed
water molecules bending and silanol or H−O−H stretching,
respectively (Figure 6b).67,114 The optical properties of
nanosilica are based on variable defects due to the partial
formation of the “Si−O−Si tetrahedral network” (“O” and “Si”
vacancies).115 UV−vis spectra of BNS synthesized at different
reaction conditions showed maximum absorbance (λmax) at
∼260 nm (Figure 6a).114 The prominent peaks were also
noticed at ∼300 nm.116 The band gap corresponding to λmax at
260 nm was ∼4.77 eV.117,118

3.3.3. FE-SEM, TEM, and EDX. FE-SEM micrographs
indicated predominantly spheroid morphology of BNS (SA-
3), which was further confirmed in TEM investigation (Figure
7a,e).119,120 The particle size calculated from TEM analysis was
∼68−170 nm. EDX mapping revealed elemental composition

(weight %) of ∼31 and ∼69 “Si” and “O”, respectively (Figure
7b,c). The atomic percentages of “Si” and “O” were ∼20, and
∼80%, respectively. However, the elemental composition may
vary with the choice of template and extraction process
adopted.58 Joni et al.121 synthesized SiO2 nanoparticles with
elemental “Si” and “O” contents of ∼38 and ∼62%,
respectively. Stanley and Nesaraj122 reported 56.63 and 43.37
wt % “O” and “Si”, respectively, in nanosilica (synthesized
without surfactant).

3.3.3.4. BET Analysis. The nitrogen adsorption−desorption
curve of BNS (SA-3) displayed type-IV isotherm according to
IUPAC classifications (Figure 7d).64 The total pore volume
(p/po = 0.990) obtained from the BET plot was 0.01 cm3 g−1.
Alhadhrami et al.58 reported a pore volume of 0.062 cm3 g−1

for biogenic silica extracted from RH. In another study,
Araichimani et al.123 obtained a pore volume of 0.094 cm3 g−1

from BJH analysis for RH-derived nanosilica. The pore volume
can be varied with the substrate material (precursor),
operational conditions during the extraction process, and
crystallinity of nanosilica.108,124−127 Idris et al.124 found lower
pore volume for crystalline nanosilica (0.0021a and 0.0045b
cm3 g−1) compared to amorphous nanosilica (0.678a and
0.327b cm3 g−1) derived from corncobsa and olive stonesb.
Ramasamy et al.125 from wheat straw ash derived amorphous
nanosilica with a micropore volume of 0.013 cm3 g−1. The BJH
plot of BNS (SA-3) revealed mesoporous nanosilica with
average and median pore diameters of ∼19.55 and ∼33.82 nm,
respectively,60,128,129 and surface area of ∼2.16 m2g−1.
3.4. Effect of BNS on Bacterial Growth. To explore BNS

and BS as a novel combination for plant-growth-promoting
(PGP) activities, we first investigated the effect of direct BNS
(SA-3) treatment on BS. For this purpose, disc diffusion assay
(DDA) and bacterial growth kinetics (BGK) studies were
performed (Figure 8). No ZOI was noticed at 0.001 g (T1)
and 0.01 g of BNS mL−1 (T2), indicating no apparent
inhibitory effect of treatment doses on BS growth. Previously,
Ferrusquiá-Jimeńez et al.40 did not find any toxicity effects of
0.0001 g of nanosilica mL−1 against “Bacillus cereus-Amazcala”
(B.c-A.). For cell viability analysis, colony count was
performed, and the CFUs recorded for T1 and T2 showed
∼16.8 and ∼12.5% increments compared to the control. The
findings of BGK studies allow for determining the bacterial cell
density (BCD) and the toxicity of NPs in a liquid medium.61

The absorbance values recorded at 600 nm (OD600) showed
higher BCD in T1 than in the control. However, T2 displayed
lower OD600 values compared to those of the control. Overall,
the findings signify that the BNS treatment up to 0.001 g mL−1

could have growth-promoting effects on BS. Karunakaran et
al.45 reported an increase in the growth of four PGP
rhizobacteria (PGPRs) (Pseudomonas f luorescens, Bacillus
brevis, Azotobacter vinelandii, and Bacillus megaterium) by
>20% upon nanosilica treatment. They noted doubling in
PGPRs CFUs (×108) counts (g−1 of soil) from 4 to 8.
The mechanism of SiO2 adsorption on the cell surface of

Gram-positive bacteria is typically governed by the presence of
teichoic (TEA) and teichuronic acid (TUA) in the cell wall130

(Figure 9). TEA and TUA contain phosphate and carboxylate
groups, respectively, that aid negative charge to the bacterial
cell surface (BCS) and facilitate SiO2 binding.

130 In some
bacteria, proteins (SiP) also played a significant role in SiO2
uptake.45 Studies also mentioned that the hydration property
of silica could facilitate its attraction on the bacterial surface.45

Tian et al.131 reported the possibility of SiO2 interaction with

Figure 3. Key reaction steps involved in synthesis and recovery of
BNS (conceptualized from ref 19).

Figure 4. Recovery of BNS under different reaction conditions. (Error
bar indicates mean ± SD.)
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BCS-associated proteins in a few bacteria via hydrogen
bonding with amino acid residues.
3.5. Effect of BNS on Seed Germination. Figure 10

shows the general mechanism of silica uptake by the plants. In
soil application, silicic acid is the major available form of silica

and is taken by roots via passive or active transport. Transport
proteins (LSi) play an essential role in the active transport of
silica. Silica is deposited in vascular bundles as phytoliths, and
in plants such as grasses, it forms a secondary cuticle-Si
protective layer. SiNPs, in the case of foliar application, gain

Figure 5. XRD spectra of BNS: (a) SC, (b) SA-1, (c) SA-2, (d) SA-3, (e) SA-4, (f) SA-5, (g) and SA-6. (h) Size of BNS obtained from Scherrer−
Debye equation (nos. 1−7 showing peak positions corresponding to 2θ angles: ∼27.2−27.3, ∼31.5−31.7, ∼45.3−45.4, ∼53.7−53.8, ∼56.3−56.4,
∼66.1−66.2, and 75.1−75.3°, respectively).
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entry into leaves via cuticle (through penetration or diffusion)
or stomatal pores and translocated to roots via phloem.
In the present study, RS seeds exposed to filter papers

soaked with 0.001 (Te) and 0.01 (Tf) g BNS mL−1

(nonpriming experiments) showed lower germination indices
compared to the control. However, RL and RLTI values were
higher in “Te” than “Tf” and control. In the case of seeds
nanoprimed with 0.001 g mL−1 BNS (Tc), higher PL, RL, SL,
FWB, VI, and stress tolerance indices were obtained than those
of control, “Te”, “Tf”, and "Td". Also, the marginal increment
in G (%) and DWB was recorded in control over “Te”. Studies
reported growth-prompting effects of nanosilica on several
crops like wheat, tomato, sugar cane, maize, rice, soybean,
potato, etc., which help to alleviate abiotic stress such as
salinity, heavy metal, heat, drought, etc.37,38,136,137

The comparative assessment of nanopriming and non-
priming experiments indicated growth-promoting effects of
seed nanoprimed with 0.001 g of BNS mL−1 (Tc), which
concords with previous reports.138 Sun et al.138 recorded an
improvement in phyto-biomass, seed germination, chlorophyll,

and protein contents in wheat and lupin at mesoporous
nanosilica concentrations of 0.0005 and 0.001 g mL−1. Zaheer
et al.139 also found an increase in plant height and biomass
weight in Vigna radiata (L.) after application of nanosilica
(0.002, 0.0002, and 0.000002 mg L−1) on 6 days old plants,
compared to control. Karunakaran et al.45 noted 100% seed
germination in maize in the case of nanosilica treatment, as
against 97, and 95% in microsilica and control experiments,
respectively. Elamawi et al.42 performed a foliar application of
0.00005 mg L−1 nanosilica on Fusarium fujikuroi infested rice
seedlings and witnessed an increase in grain yield and a
reduction in bakanae disease symptoms. We observed that “Tf”
exhibited lower germination indices than the control, "Te",
"Td", and "Te", indicating phytotoxicity of direct BNS exposure
at elevated doses on RS seeds.
3.6. Tripartite Interaction Studies. The tripartite

interaction of RS seeds with BS (biopriming) followed by
BNS (nano-biopriming) showed a synergistic response in
terms of seedling growth, biomass content, vigor indices, and
stress tolerance potential. The nano-biopriming using 0.001 g

Figure 6. (a) UV−vis spectra showing characteristic absorption peaks of BNS synthesized at different reaction conditions. (b) FTIR spectra
showing characteristic functional groups in BNS (SA-3).
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Figure 7. (a) FESEM micrograph at 150k× magnification (100 nm scale) (Inset: enlarged view showing spheroid morphology.) (b) EDX spectra
(c) Elemental color mapping from EDX (d) Nitrogen adsorption−desorption isotherm curve (e) TEM image (at 1 μm scale) of BNS (SA-3).
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of BNS mL−1 (Ta) indicated ∼21, ∼27.5, ∼23.9, ∼17, ∼12.4,
∼16.5, and ∼35% higher PL, RL, SL, FWB, DWB, VI-2, and
VI-2, respectively, compared to control (Figure 11a,b). PL, SL,
FWB, DWB, and VI-2 also showed increments in “Ta”
seedlings with respect to “Td” (nanopriming using 0.001 g of
BNS mL−1). These values, coupled with higher tolerance
indices in “Ta”, favored the growth-promoting effects of
combined BS−BNS treatment over solitary treatment of BNS
(Figure 11e). Ferrusquiá-Jimeńez et al.40 performed co-
application of B.c-A. and 0.0001 g mL−1 of nanosilica on
chili pepper plants and observed increments in leaves number,

Figure 8. Growth kinetics curve of B. subtilis (insets: (a) CFU count;
(b) disc diffusion assay results at different treatment doses of BNS)
(C = control, T1 = 0.001 g of BNS mL−1, and T2 = 0.01 g of BNS
mL−1).

Figure 9. Probable mechanism of silica adsorption by B. subtilis (conceptualized from refs 45 and 130−135) (BCS, bacterial cell surface; PEM,
phosphate enriched media; PDM, phosphate deficit media; SiP, silica induced protein; ABC, ATP-binding cassette; Aa, amino acid).

Figure 10.Mechanism of silica uptake by plants (conceptualized from
refs 35, 37, and 140−143) (SiNPs, silica nanoparticles; EMC, excess
mass infiltration; DF, diffusion; PN, penetration; TPs, transport
proteins).
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G (%) of seeds, plant height, yield, and number of fruits.40

Except for RL, we found that all of the germination indices
values were lower in treatment "Tb" (nano-biopriming using
0.01 g of BNS mL−1) compared to control (Figure 11a,b). The
data recorded for “Tb” and “Tf” when compared to control,
“Ta”, and “Td” demonstrated phytotoxicity at a higher dose of
BNS (0.001 g mL−1) irrespective of treatment mode. An
integration of biopriming along with BNS treatment displayed
positive interaction with RS seeds and supported PGP
activities together with stress tolerance potential. In this way,
the effective dose of BNS has also been reduced substantially,
hence promoting judicious use of agri-inputs, keeping

sustainable agricultural practices in view. Table 2 shows strong
positive correlation between SL-PL, SL-PL, FWB-RL, and
FWB-DWB (R2 ≥ 0.95); DWB-RL, DWB-SL, and SL-FWB
(0.94 ≥ R2 ≥ 0.90); and PL-RL, PL-FWB, and PL-DWB (R2 ≤
0.89).
3.7. Antioxidant Activities. TPC and TFC were

estimated for “treated” and “control” RS seedlings. “Ta”, and
“Tc” showed ∼20.3 and ∼28.2% higher TPC and ∼24.1 and
∼34.6% higher TFC, w.r.t. control, respectively (Figure 11c).
The results promoted nanopriming and nano-biopriming of
seeds using BNS (0.001 g of BNS mL−1) over other treatments
and control. Sun et al.138 observed no oxidative stress up to

Figure 11. Effect of BNS and BS treatments on (a) seedling length and (b) biomass content. Antioxidant activity: (c) total phenol and flavonoid
contents and (d) hydrogen peroxide and malonaldehyde content. (e) Stress tolerance indexes for different growth parameters (Ta = BS/0.001 g of
BNS mL−1 (priming), Tb = BS/0.01 g of BNS mL−1 (priming), Tc = 0.001 g of BNS mL−1 (priming), Td = 0.01 g of BNS mL−1 (priming), Te =
0.001 g of BNS mL−1 (nonpriming), and Tf = 0.01 g of BNS mL−1 (nonpriming); error bars indicate mean ± SD).
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0.002 g mL−1 of nanosilica and recommended for applications
in plants over the tested range. Even Ferrusquiá-Jimeńez et
al.40 noted defense-associated response of nanosilica (0.0001
mg L−1)/B.c-A. co-application in chili pepper plant in terms of
higher superoxide dismutase and catalase activities. The H2O2
content analysis demonstrated higher values in the following
treatments (compared to control): Td (∼22.6%) > Tc
(∼18.2%) > Tf (∼17.7%) > Tb (∼12.5%) (Figure 11d).
MDA contents showed ∼43.6, ∼35.1, ∼31, and ∼20.4%
increments in “Td”, “Tc”, “Tb”, and “Tf”, respectively, w.r.t.
control, indicating significant stress at elevated doses of BNS,
precisely at direct seed treatment (Td) (nanopriming).
3.8. Credit of BNS for Long-Term Agricultural

Applications. To ascertain the suitability of developed BNS
for long-term agricultural applications, we have performed
interaction studies of BNS with BS and RS. The bipartite
interaction of BNS with B. subtilis (BS) showed no obvious
toxicity at both of the tested doses (i.e., 0.001 and 0.01 g
mL−1). The increase in CFU counts at 0.001 g of BNS mL−1

was in agreement with the previous reports. Karunakaran et
al.45 observed the growth-promoting effects of nanosilica
against four PGP rhizobacteria. Their seed germination studies
also revealed no phytotoxicity symptoms and oxidative stress in
RS at 0.001 g of BNS mL−1. Despite this, we have witnessed
the synergistic response of BNS and BS interaction on
germination indices, tolerance index, and antioxidant levels
of RS.40 However, to better understand the credit of nanosilica
for long-term applications, we recommend additional inves-
tigations exploring their effect of introduction on the
environment during agriculture applications via foliar spraying
or soil fertigation.
3.9. Economic Analysis. As per the “Nano Silica Market

Research” report, the nanosilica market from USD ($) 4.6
billion (valued in 2021) is expected to reach $8.6 billion by the
year 2031, rising at a 6.5% CAGR from 2022 to 2031.144 We
have encountered few reports on the cost−benefit analysis of
biogenic nanosilica production. Marousěk et al.115 extracted
nanosilica from coir-pith via an acid-based sol−gel method and
projected cost valued at 1.3 Euros (€)/g (expenses breakup
owing to energy, reactants, feedstock and processing, labor,
equipment depreciation, and others were 0.2, 0.3, 0.1, 0.2, 0.4,
and 0.1 €, respectively) against the wholesale market price of
about 2.4−3.3 €/g. Singh et al.67 estimated Sapindus mukorossi
seed extract stabilized nanosilica production cost of $24.19 per
kg (expenses breakup include the cost of paddy straw, S.
mukorossi seeds, chemicals, labor, energy, and capital) from

paddy straw ash against the market price of ∼$198 per kg, with
net profit of about $173.81 per kg. These figures suggest the
tremendous feasibility of commercial nanosilica production by
exploring various low-cost precursor substrates.

4. CONCLUSIONS
Banana peel waste has been successfully utilized as a low-cost
precursor substrate for developing biogenic nanosilica (BNS).
The highest BNS yield at SA-3 directed toward favorable
effects of heat treatment and a significant reduction in reaction
time. The obtained BNS was of comparable grade as those per
previous reports on silica extraction from rice straw, sugar cane
bagasse, etc. XRD crystallite and TEM particle sizes were
∼66.52 and ∼68−170 nm, respectively, and FTIR analysis
revealed silanol functional groups. The average pore diameter
calculated from the BJH plot was ∼19.55 nm. Overall, BNS
(SA-3) characterization studies confirmed the nanosized,
mesoporous structure with a predominantly spheroid morphol-
ogy. The findings instate positive tripartite interaction of seeds
with B. subtilis/BNS (SA-3) that can be productively translated
into the growth-promoting novel nano-biofertilizer formula-
tion. The study potentially served as a stepping stone toward
green chemistry routed facile, cost-effective, eco-benign, and
energy-efficient biogenic silica production exploiting various
phytobiomass-derived agro-industrial waste. It is anticipated
that the recorded observations could facilitate the concerned
stakeholders engaged in the area of biomass valorization and
rural development toward the productive materialization of
plenteous agricultural residues into a comprehensive platform
catering to waste management, generating high-value products,
and promoting a circular bioeconomy in the purview of
sustainable development goals.
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R.; Vasile, B. Ş.; Grumezescu, A. M.; Holban, A. M.; Bolocan, A.;
Andronescu, E. Bioactive Mesoporous Silica Nanostructures with
Anti-Microbial and Anti-Biofilm Properties. Int. J. Pharm. 2017, 531
(1), 35−46.
(121) Joni, I. M.; Nulhakim, L.; Vanitha, M.; Panatarani, C.
Characteristics of Crystalline Silica (SiO2) Particles Prepared by
Simple Solution Method Using Sodium Silicate (Na2SiO3) Precursor.
J. Phys.: Conf. Ser. 2018, 1080, No. 012006.
(122) Stanley, R.; Nesaraj, A. S. Effect of surfactants on the wet
chemical synthesis of silica nanoparticles. Int. J. Appl. Sci. Eng. 2014,
12, 9−21.
(123) Araichimani, P.; Prabu, K. M.; Kumar, G. S.; Karunakaran, G.;
Surendhiran, S.; Shkir, M; AlFaify, S. Rice Husk-Derived Mesoporous
Silica Nanostructure for Supercapacitors Application: A Possible
Approach for Recycling Bio-Waste into a Value-Added Product.
Silicon 2022, 14 (15), 10129−10135.
(124) Idris, I.; Naddaf, M.; Harmalani, H.; Alshater, R.; Alsafadi, R.
Efficacy of Olive Stones and Corncobs Crystalline Silica Nano-
particles (SiO2, NPs) Treatments on Potato Tuber Moths
(Phthorimaea Operculella). Silicon 2023, 15 (8), 3591−3598.
(125) Ramasamy, S. P.; Veeraswamy, D.; Ettiyagounder, P.;
Arunachalam, L.; Devaraj, S. S.; Krishna, K.; Oumabady, S.;
Sakrabani, R. New Insights Into Method Development and
Characterization of Amorphous Silica From Wheat Straw. Silicon
2023, 15 (12), 5049−5063.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08152
ACS Omega 2025, 10, 5537−5553

5552

https://doi.org/10.1088/1757-899X/334/1/012037
https://doi.org/10.1088/1757-899X/334/1/012037
https://doi.org/10.1088/1757-899X/334/1/012037
https://doi.org/10.1016/j.colsurfb.2008.12.032
https://doi.org/10.1016/j.colsurfb.2008.12.032
https://doi.org/10.1016/j.colsurfb.2008.12.032
https://doi.org/10.1016/j.matpr.2018.07.043
https://doi.org/10.1016/j.matpr.2018.07.043
https://doi.org/10.12944/CRNFSJ.6.2.13
https://doi.org/10.12944/CRNFSJ.6.2.13
https://doi.org/10.12944/CRNFSJ.6.2.13
https://doi.org/10.12944/CRNFSJ.6.2.13
https://doi.org/10.17352/jbm.000013
https://doi.org/10.17352/jbm.000013
https://doi.org/10.2478/mjhr-2019-0005
https://doi.org/10.2478/mjhr-2019-0005
https://doi.org/10.15244/pjoes/122450
https://doi.org/10.15244/pjoes/122450
https://doi.org/10.15244/pjoes/122450
https://doi.org/10.1016/j.colsurfb.2008.07.001
https://doi.org/10.1016/j.colsurfb.2008.07.001
https://doi.org/10.1016/j.colsurfb.2008.07.001
https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table
https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table
https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table
https://doi.org/10.1007/s12633-020-00509-y
https://doi.org/10.1007/s12633-020-00509-y
https://doi.org/10.1007/s12633-020-00509-y
https://doi.org/10.1080/02726351.2019.1578845
https://doi.org/10.1080/02726351.2019.1578845
https://doi.org/10.9734/jpri/2020/v32i1630646
https://doi.org/10.9734/jpri/2020/v32i1630646
https://doi.org/10.9734/jpri/2020/v32i1630646
https://doi.org/10.1021/acsomega.3c01674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c01674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c01674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c01674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.21776/ub.jpacr.2018.007.01.347
https://doi.org/10.21776/ub.jpacr.2018.007.01.347
https://doi.org/10.1007/s12633-023-02348-z
https://doi.org/10.1007/s12633-023-02348-z
https://doi.org/10.1007/s12633-023-02348-z
https://doi.org/10.1016/j.jsamd.2016.06.015
https://doi.org/10.1016/j.jsamd.2016.06.015
https://doi.org/10.1016/j.jsamd.2016.06.015
https://doi.org/10.1021/acsomega.1c04498?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c04498?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.26717/BJSTR.2018.10.001972
https://doi.org/10.26717/BJSTR.2018.10.001972
https://doi.org/10.3390/polym14020266
https://doi.org/10.3390/polym14020266
https://doi.org/10.1039/C6TB02813F
https://doi.org/10.1039/C6TB02813F
https://doi.org/10.1039/C6TB02813F
https://doi.org/10.1142/S021886351950005X
https://doi.org/10.1142/S021886351950005X
https://doi.org/10.1142/S021886351950005X
https://doi.org/10.1007/s12633-021-01450-4
https://doi.org/10.1007/s12633-021-01450-4
https://doi.org/10.1007/s12633-021-01450-4
https://doi.org/10.1016/j.dental.2016.09.001
https://doi.org/10.1016/j.dental.2016.09.001
https://doi.org/10.1016/j.dental.2016.09.001
https://doi.org/10.1016/j.ijpharm.2017.08.062
https://doi.org/10.1016/j.ijpharm.2017.08.062
https://doi.org/10.1088/1742-6596/1080/1/012006
https://doi.org/10.1088/1742-6596/1080/1/012006
https://doi.org/10.1007/s12633-022-01699-3
https://doi.org/10.1007/s12633-022-01699-3
https://doi.org/10.1007/s12633-022-01699-3
https://doi.org/10.1007/s12633-022-02286-2
https://doi.org/10.1007/s12633-022-02286-2
https://doi.org/10.1007/s12633-022-02286-2
https://doi.org/10.1007/s12633-023-02396-5
https://doi.org/10.1007/s12633-023-02396-5
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(126) Hanna, S. B.; Mansour, T. S.; Ajiba, N. A. Processing and
Characterization of Nano Silica and Iron Oxide Coated Silica
Composites Extracted from Rice Hulls. Silicon 2023, 15 (14),
6099−6111.
(127) Seroka, N. S.; Taziwa, R.; Khotseng, L. Green Synthesis of
Crystalline Silica from Sugarcane Bagasse Ash: Physico-Chemical
Properties. Nanomaterials 2022, 12 (13), 2184.
(128) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-
Based Mesoporous Organic−Inorganic Hybrid Materials. Angew.
Chem. Int. Ed 2006, 45 (20), 3216−3251.
(129) Prabha, S.; Durgalakshmi, D.; Rajendran, S.; Lichtfouse, E.
Plant-Derived Silica Nanoparticles and Composites for Biosensors,
Bioimaging, Drug Delivery and Supercapacitors: A Review. Environ.
Chem. Lett. 2021, 19 (2), 1667−1691.
(130) Gordienko, A. S.; Kurdish, I. K. Surface Electrical Properties of
Bacillus Subtilis Cells and the Effect of Interaction with Silicon
Dioxide Particles. Biophysics 2007, 52 (2), 217−219.
(131) Tian, B.; Liu, Y.; Chen, D. Adhesion Behavior of Silica
Nanoparticles with Bacteria: Spectroscopy Measurements Based on
Kinetics, and Molecular Docking. J. Mol. Liq. 2021, 343, No. 117651.
(132) Omardien, S.; Brul, S.; Zaat, S. A. J. Antimicrobial Activity of
Cationic Antimicrobial Peptides against Gram-Positives: Current
Progress Made in Understanding the Mode of Action and the
Response of Bacteria. Front. Cell Dev. Biol. 2016, 4, 111.
(133) Sewell, E. W.; Brown, E. D. Taking Aim at Wall Teichoic Acid
Synthesis: New Biology and New Leads for Antibiotics. J. Antibiot.
2014, 67 (1), 43−51.
(134) Brown, S.; Santa Maria, J. P.; Walker, S. Wall Teichoic Acids
of Gram-Positive Bacteria. Annu. Rev. Microbiol. 2013, 67 (1), 313−
336.
(135) Sharma, S. K.; Chiang, L. Y.; Hamblin, M. R. Photodynamic
Therapy with Fullerenes In Vivo : Reality or a Dream? Nanomedicine
2011, 6 (10), 1813−1825.
(136) Dorairaj, D.; Govender, N.; Zakaria, S.; Wickneswari, R.
Green Synthesis and Characterization of UKMRC-8 Rice Husk-
Derived Mesoporous Silica Nanoparticle for Agricultural Application.
Sci. Rep 2022, 12 (1), No. 20162.
(137) Taqdees, Z.; Khan, J.; Khan, W.-D.; Kausar, S.; Afzaal, M.;
Akhtar, I. Silicon and Zinc Nanoparticles-Enriched Miscanthus
Biochar Enhanced Seed Germination, Antioxidant Defense System,
and Nutrient Status of Radish under NaCl Stress. Crop & Pasture
Science 2022, 73 (5), 556−572.
(138) Sun, D.; Hussain, H. I.; Yi, Z.; Rookes, J. E.; Kong, L.; Cahill,
D. M. Mesoporous Silica Nanoparticles Enhance Seedling Growth
and Photosynthesis in Wheat and Lupin. Chemosphere 2016, 152, 81−
91.
(139) Zaheer, S.; Shehzad, J.; Chaudhari, S. K.; Hasan, M.; Mustafa,
G. Morphological and Biochemical Responses of Vigna Radiata L.
Seedlings Towards Green Synthesized SiO2 NPs. Silicon 2023, 15
(14), 5925−5936.
(140) Mir, R. A.; Bhat, B. A.; Yousuf, H.; Islam, S. T.; Raza, A.; Rizvi,
M. A.; Charagh, S.; Albaqami, M.; Sofi, P. A.; Zargar, S. M.
Multidimensional Role of Silicon to Activate Resilient Plant Growth
and to Mitigate Abiotic Stress. Front. Plant Sci. 2022, 13, No. 819658.
(141) Wang, L.; Ning, C.; Pan, T.; Cai, K. Role of Silica
Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A
Review. IJMS 2022, 23 (4), 1947.
(142) Sarkar, M. M.; Mathur, P.; Mitsui, T.; Roy, S. A Review on
Functionalized Silica Nanoparticle Amendment on Plant Growth and
Development under Stress. Plant Growth Regul 2022, 98 (3), 421−
437.
(143) Irfan, M.; Maqsood, M. A.; Rehman, H. U.; Mahboob, W.;
Sarwar, N.; Hafeez, O. B. A.; Hussain, S.; Ercisli, S.; Akhtar, M.; Aziz,
T. Silicon Nutrition in Plants under Water-Deficit Conditions:
Overview and Prospects. Water 2023, 15 (4), 739.
(144) Nano Silica Market Research Nano Silica Market Size, Share,
Competitive Landscape and Trend Analysis Report by Product, by
Application: Global Opportunity Analysis and Industry Forecast,
2022−2031. Report Code: A02110; Allied Market Research, 2022; pp

282. https://www.alliedmarketresearch.com/nano-silica-market (ac-
cessed 2024-04-22).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08152
ACS Omega 2025, 10, 5537−5553

5553

https://doi.org/10.1007/s12633-023-02491-7
https://doi.org/10.1007/s12633-023-02491-7
https://doi.org/10.1007/s12633-023-02491-7
https://doi.org/10.3390/nano12132184
https://doi.org/10.3390/nano12132184
https://doi.org/10.3390/nano12132184
https://doi.org/10.1002/anie.200503075
https://doi.org/10.1002/anie.200503075
https://doi.org/10.1007/s10311-020-01123-5
https://doi.org/10.1007/s10311-020-01123-5
https://doi.org/10.1134/S0006350907020121
https://doi.org/10.1134/S0006350907020121
https://doi.org/10.1134/S0006350907020121
https://doi.org/10.1016/j.molliq.2021.117651
https://doi.org/10.1016/j.molliq.2021.117651
https://doi.org/10.1016/j.molliq.2021.117651
https://doi.org/10.3389/fcell.2016.00111
https://doi.org/10.3389/fcell.2016.00111
https://doi.org/10.3389/fcell.2016.00111
https://doi.org/10.3389/fcell.2016.00111
https://doi.org/10.1038/ja.2013.100
https://doi.org/10.1038/ja.2013.100
https://doi.org/10.1146/annurev-micro-092412-155620
https://doi.org/10.1146/annurev-micro-092412-155620
https://doi.org/10.2217/nnm.11.144
https://doi.org/10.2217/nnm.11.144
https://doi.org/10.1038/s41598-022-24484-z
https://doi.org/10.1038/s41598-022-24484-z
https://doi.org/10.1071/CP21342
https://doi.org/10.1071/CP21342
https://doi.org/10.1071/CP21342
https://doi.org/10.1016/j.chemosphere.2016.02.096
https://doi.org/10.1016/j.chemosphere.2016.02.096
https://doi.org/10.1007/s12633-023-02470-y
https://doi.org/10.1007/s12633-023-02470-y
https://doi.org/10.3389/fpls.2022.819658
https://doi.org/10.3389/fpls.2022.819658
https://doi.org/10.3390/ijms23041947
https://doi.org/10.3390/ijms23041947
https://doi.org/10.3390/ijms23041947
https://doi.org/10.1007/s10725-022-00891-0
https://doi.org/10.1007/s10725-022-00891-0
https://doi.org/10.1007/s10725-022-00891-0
https://doi.org/10.3390/w15040739
https://doi.org/10.3390/w15040739
https://www.alliedmarketresearch.com/nano-silica-market
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

