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Abstract

Hospitals commonly project demand for their services by combining their historical share of regional demand with
forecasts of total regional demand. Hospital-specific forecasts of demand that provide prediction intervals, rather than
point estimates, may facilitate better managerial decisions, especially when demand overage and underage are associated
with high, asymmetric costs. Regional point forecasts of patient demand are commonly available, e.g., for the number
of people requiring hospitalization due to an epidemic such as COVID-19. However, even in this common setting, no
probabilistic, consistent, computationally tractable forecast is available for the fraction of patients in a region that a particular
institution should expect. We introduce such a forecast, DICE (Demand Intervals from Consistent Estimators). We describe
its development and deployment at an academic medical center in California during the ‘second wave’ of COVID-19 in
the Unite States. We show that DICE is consistent under mild assumptions and suitable for use with perfect, biased and
unbiased regional forecasts. We evaluate its performance on empirical data from a large academic medical center as well as
on synthetic data.

Keywords COVID-19 - Hospital-level forecast - Prediction interval - Parametric bootstrap - Moment method -
Prediction bias

Highlights 1 Introduction

® Hospital managers require forecasts of the number of
people requiring hospitalization for COVID-19 at their
institution, but such forecasts are available only at the
level of county or state.

e DICE is a probabilistic model that converts regional
estimates into hospital-specific forecasts.

e DICE provides point forecasts along with prediction
intervals that incorporate uncertainty about the accuracy
of the regional forecast and uncertainty about the frac-
tion of the patients in the region that will go to a parti-
cular hospital.

The COVID-19 pandemic has disrupted hospital operations
the world over. Large influxes of patients requiring intensive
care and mechanical ventilation have overwhelmed capac-
ity, forced hospitals to triage, and have been associated
with significantly elevated case fatality rates. Shortages of
personal protective equipment (PPE) have exposed health-
care workers to additional risk and many have contracted
COVID-19 and died.

Hospitals managers have a variety of options to increase
total and available capacity when planning for an influx of
COVID-19 patients [1]. Managers may be able to increase
total capacity by calling in additional nurses and doctors,
opening previously closed beds, and acquiring additional

0< Linying Yang PPE. Managers may be able to increase available capacity
yanglinying1024 @gmail.com by expediting patient discharge or canceling or delaying
non-discretionary, non-urgent patient admissions [2]. The
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insufficient intensive care unit (ICU) or ventilator capacity,
patients with COVID-19 may experience significantly
higher case mortality rates [3]. In less dire scenarios, nurses
called in to work on short notice may require overtime pay
while those scheduled a week in advance may not; PPE is
less expensive when its purchase is not expedited; and pa-
tients whose non-urgent procedures are scheduled for later
will experience less disruption than patients whose procedu-
res are cancelled on short notice. In the United States, where
healthcare is paid for through a combination of private and
public insurance, the pandemic has created the additional
challenge of significant financial stress as COVID-19 pa-
tients are associated with lower rates of reimbursement than
patients who receive non-urgent, non-discretionary proce-
dures such as tumor removal surgery or chemotherapy [4].

The complementary challenges of ensuring sufficient
capacity to meet the demand associated with COVID-19
while avoiding unnecessarily long delays to non-COVID-
19 care, require hospital managers to generate forecasts
of the volume of COVID-19 patients requiring care at
their institution. Managerial decisions based on forecasts of
COVID-19 may benefit from the availability of the forecast
with as much lead time as possible. To allow managers
to account for the asymmetric risk associated with having
insufficient capacity to meet urgent COVID-19 demand
or non-urgent procedural demand, such forecasts should
provide probabilistic, rather than point, estimates.

Our methodology reflects the random fluctuations that
arise at the hospital level that are averaged out at the regional
level. For example, if a hospital receives, on average,
5% of a county’s hospitalization and the forecast county
hospitalization level is 100, the random fluctuation about
the mean hospital load of 5 patients can be significant
(in a relative error sense). In particular, our methodology
provides a prediction interval on the number of COVID-
19 positive patients at a given hospital rather than a
“point forecast”. In addition, our methodology takes into
account the additional uncertainty induced by estimation
error associated with estimating the underlying statistical
parameters from observed data.

This paper is concerned with developing statistical meth-
ods to support hospital decision making with regard to
COVID-19 capacity planning issues. In particular, hospi-
tal leadership can benefit from statistical tools to help them
assess the amount of capacity that will need to be assigned
to coronavirus patients in the weeks to come. A serious com-
plication is that epidemiological forecasts typically focus
on aggregate COVID-19 predictions that are provided at
the regional level. For example, in California, the avail-
able COVID-19 forecasts are provided at the county level.
Our goal in this paper is to provide a statistically princi-
pled methodology for obtaining hospital-level coronavirus
hospitalization forecasts from such regional forecasts. Such
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forecasts are more useful than regional ones, for exam-
ple, for manager preparing for an influx of COVID-19
patients to a busy hospital that has capacity available to
simultaneously accommodate up to 20 COVID-19 patients,
would have to call in further staff to accommodate 21-30
COVID-19 patients, and would have to call in additional
staff and cancel scheduled procedures to accommodate over
30 COVID-19 patients.

Given a regional forecast for the daily number of hospi-
talizations as well as historical data on the share of regional
hospitalizations accommodated by a specific hospital, all
assumed to be Poisson random variables, we develop a fore-
cast model DICE (Demand Intervals from Consistent Esti-
mators). The model intentionally is “lightweight” in terms
of the data needed to make predictions: only county level
forecasts and actual hospitalizations, plus local hospital-
level hospitalization numbers. We take the view that the
epidemiology community is best suited to model county-
level hospitalizations. Such forecasts take into account local
measures to reduce contacts, county-level age distribution,
the number of patients testing positive, etc. One challenge in
producing prediction intervals in this setting is that the quan-
tity being predicted is count-level data that is integer-valued.
Especially when the number of hospitalizations is small, this
integrality plays a central role in generating good prediction
intervals. We note that the SIR models that are widely used
produce point forecasts that are non-integer. This requires
the building of a principled approach to convert forecasts
based on continuous modeling methods into a prediction
interval for a stochastic integer-valued quantity. Another big
issue is that the method needs to deal with an underlying
phenomenon that has dynamics that can exhibit periods of
quiescence, exponential growth, and gradual decay, so does
not exhibit the stationarity that is generally assumed in the
literature.

The primary contributions of this paper are as follows.

— We show that DICE is consistent under mild assump-
tions and suitable for use with biased and unbiased
regional forecasts.

—  We show that DICE performed well on empirical data
from a large academic medical center in California as
well as on synthetic data.

—  We describe the COVID-19 related capacity manage-
ment decisions facilitated by the use of DICE.

The rest of the paper is organized as follows. Section 2
reviews the related literature. Section 3 outlines the model
setting. Sections 4 to 7 describe the methods of generating
prediction intervals under three assumptions about the
county-level predictors: perfect forecast, unbiased forecast
and biased forecast. Section 8§ reports the empirical findings.
Further discussions and conclusions can be found in
Section 9.
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2 Literature

Numerous COVID-19 forecasting models have been devel-
oped since the start of the pandemic. A lot of them forecast
regional-level COVID-19 cases, hospitalizations and deaths
[5-12] and [13].! Most such models use publicly available
data and epidemic models to forecast hospitalizations down
to the level of a single county or several adjacent coun-
ties. However, few tools are available for hospitals to make
a probabilistic forecast of their expected share of the fore-
cast regional volume. The data available to make such a
forecast include: the outputs of the aforementioned mod-
els; detailed historical data on county-level hospitalizations,
available from the national authorities such as [14]; real-
time data on hospitalizations in a particular county or region
available from local authorities such as [15]; and hospital-
specific hospitalization data available to the managers of the
institution generating the forecast.

Work on epidemic/influenza forecasting has examined
national/state level [16, 17] and regional level [18-20]
forecasts. The most relevant research on the hospital level
we could find are [21, 22] and [23], where the authors
use historical data and public available data to generate
hospital influenza visits. Our work complements the prior
work in several ways: 1. most papers only generate point
estimates, while we provide prediction intervals; 2. apart
from historical data, these studies use numerous sources
of public data including the Google influenza index and
Twitter posts, while we require only projections generated
by regional forecasts; 3. since our model can make use
of any forecast, there is no additional effort necessary to
compare performance based on several forecasts. To our
best knowledge, this is the first model to generate integral
hospital-level forecasts with prediction intervals based on
regional projections.

From the broader literature on time series forecasting, we
summarize how the model presented differs from several
existing classes of methods:

1. Classic auto-regressive models [24, 25]. These models
assume a linear auto-regressive relationship with ran-
dom noise. However, such models are not well suited
for nonlinear and non-stationary processes such as the
spread of COVID and do not incorporate information
from outside the time series such as an external fore-
casts. Also, they model continuous random quantities,
not integer value quantities.

2. Hidden Markov models (HHMs) [26, 27]. This is a
special class of mixture models, where the observed

'More models can be found on the CDC website https:/www.cdc.
gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html,
where it reports forecasts from 32 models on case forecasts, 47 models
on death forecasts and 12 models on hospitalization forecast.

time series is structured as a function of the underlying,
unobserved states. However, it is usually computational
expensive to estimate such models and HMMs may per-
form poorly in non-stationary settings such as COVID
[28].

3. Neural networks [29, 30]. This is a class of nonlinear
parametric time series forecasting models that are app-
lied to areas including finance, energy, and manufactu-
ring. Far more data are typically required to fit neural
nets than what is available or used in our setting. Fur-
ther, such models generally do not produce prediction
intervals.

4. Susceptible exposed infected recovered (SEIR) models
[31, 32]. Such methods explicitly model the dynamics
of the data generating process using differential equa-
tions. SEIR models are primarily designed for large
populations rather than individual institutions. Also,
most widely used SEIR models are generally determin-
istic, not stochastic, and they produce point forecasts
that are non-integer. This requires the building of a prin-
cipled approach towards converting the forecasts based
on continuous modeling methods into a prediction inter-
val for a stochastic integer-valued quantity. We decide
to use such models as our underlying forecast models.

5. Discrete Event Simulation (DES) [33-35]. DES is a
technique that has been used to model the flow of
patients into a hospital based on historical patient data
and detailed, hospital- and region-specific assumptions
about resource consumption. Such methods require
numerous ad hoc, rather than principled, modeling choi-
ces and are of limited generalizeability beyond the
setting in which they are designed while we provide
a more principled, widely applicable approach. Also,
these methods only measure “interval stochasticity”;
they do not compute calibration error, for example. Our
model also considers calibration error.

3 Setting

This model was developed in response to a request from
the COVID-19 planning leadership of a large academic
medical center (AMC) in a large county in California du-
ring the summer of 2020. After the initial wave of COVID-
19 cases was brought under control with non-pharma-
ceutical interventions such as social distancing, the hospi-
tal restarted non-urgent admissions for procedures such as
surgery. As national news of a “second wave” of COVID-
19 hospitalizations spread, the AMC leadership wanted to
prepare. They requested a forecast that would inform them,
with as much notice as possible, of an influx of COVID-19
patients sufficiently large that elective admissions should be
halted in order to make capacity available for the expected
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COVID-19 patients. We were provided with the hospital’s
historical data on the number of admissions and the length
of stay of each patient in the ACU and ICU, historical
and forecast data for the total number of hospitalizations
in the county, and automated daily updates on the num-
ber of new COVID-19 admissions to the ICU and ACU
as well as patients currently in those units. We worked
with hospital leadership to estimate the capacity of COVID-
19 patients that the institution could accommodate without
having to increase available capacity by canceling sched-
uled procedures. We also worked with the leadership to
determine an order for cancelling scheduled, non-urgent
surgical procedures if necessary. The order was based pri-
marily on the clinical acuity of those requiring the proce-
dure, the average ICU and ACU post-operative length of
stay associated with the procedure, and additional con-
straints on hospital operations. The specifics of the hospital
operational planning efforts are likely to vary significantly
across institutions and are outside the scope of this work.

The goal of the present work was to generate a forecast
of patient demand based on recent data on the share of all
COVID-19 patients in the county. One specific use of the fo-
recast would be to provide two weeks notice that the insti-
tution may have to cancel scheduled procedures in order to
accommodate the demand for beds by COVID-19 patients.
Since hospital occupancy fluctuates naturally, rather than
determine a hard cut-off for cancelling procedures, hospital
leadership requested that we notify them if the upper bound
of the prediction interval exceeded a pre-specified lower
bound at which point they would evaluate the prospect of
cancelling cases.

4 Prediction intervals with perfect forecasts

We start by describing the problem setting from a mathema-
tical perspective. We assume that we are currently in day
0 and have been tasked with producing prediction intervals
for the future number of hospital-level acute care unit
(ACU) and intensive care unit (ICU) hospitalization at the
end of day r, with r > 0. For the purpose of predicting
these hospital-level prediction intervals, we have available
historical data ((A;, Bj, Nj) : —n < j < —1), where N;
is the total number of regional hospitalizations at the end
of day j, A; is the number of acute care hospitalizations
at the given hospital at the conclusion of day j, and B;
is the number of ICU hospitalizations at the given hospital
at the end of day j. Furthermore, we assume that we
have available a point forecast F, for the mean number of
regional hospitalizations at the end of day r.

Throughout the paper, we take the view that the
Aj’s,Bj’s and N;’s can be reasonably modeled as Poisson
distributed random variables (rv’s).We will use the notation
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P(1) to denote a Poisson rv with mean A. There is an
extensive mathematical theory supporting the use of Poisson
rv’s in the setting of such count statistics; see, for example,
[36].

A simple model relates A; and B; to N; by assuming
that EA; = poEN; and EB; = goEN; for pg,qo > O.
Because the N;’s are subject to episodic epidemic growth
spurts, we do not assume that EN is constant. Instead, we
permit A; = EN; to fluctuate in a potentially complex
fashion.

In this section, we assume that point forecast F, is
perfect, in the sense that

“.n

It follows that if we select [(A) (the lower endpoint) as
the largest integer such that P(P(A) < I(X)) < % and
u(A) (the upper endpoint) as the smallest integer such that
P(P(A) >u)) < % then [[(F,), u(F,)]is a 100(1 — 8)%
prediction interval for N, having the property that P(N, €
([(Fp), u(F)]) = 1—3.

To obtain similar prediction intervals for A, and B,, we
need to estimate pg and go from the data. The obvious

estimators for pg and gq are given by

-1

-1
> Ajl >N

b=
! j” ! :‘" 4.2)
=Y BN,
j=—n j=—n

In fact, p and ¢ are the maximum likelihood estimators
(MLE’s) for pg and go when A ; (and B}) are, conditional on
N_p, ..., N_1,independent in j and binomially distributed
with parameters N; and pg (and go).

This leads to the prediction intervals [[(pF}),
u(pF,)] for A, and [[(§F;), u(qF,)] for B.. We refer to
these prediction intervals as the plug-in prediction intervals
based on perfect forecasts.

5 Prediction intervals with perfect forecasts:
incorporating estimation uncertainty

Our frequentist approach starts by setting 6 = (p,q)
and letting Py(-) be the probability model under which
the (A;, B;, N; — A; — B;)’s are conditionally independent
given the N;’s, with (A;, B;, N; — A; — B;) following a
multinomial distribution with parameters (N;, po, qo, 1 —
po — qo)- Our ideal prediction interval for A, would,
of course, be the interval [£(poF;), u(poF,)]. Since pg
is unknown, the plug-in interval [£(pF,), u(pF,)] of
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Section 4 is an obvious alternative. However, because p is
random, we can not guarantee that

Poy(Ar < U(pFy)) =6/2, (3.1

where 6y = (po, qo)-
Instead, we seek a probabilistic guarantee, namely that
Eq. 5.1 holds, with probability (or confidence level) 1 — «.
We can accomplish this by choosing the integer z, so that

Poy (E(PFr) —L(poFy) < z¢) = 1 —a. (5.2)

On the event {£(poF,) > L(pF,) — z¢},
Py, (Ar < L(PFy) — z¢) < Pyy (A, < L(poFy)) < 8/2.

Hence, with confidence at least 1 — «, £(pF,) — z¢ is an
appropriately chosen value for the left endpoint of A,’s
prediction interval.

Similarly, if we choose the integer z, so that
Pay (u(pF) — u(poFy) = ) > 1 —a, (5.3)
u(pF,) — z, is aright endpoint for which
Py, (Ar >u(pF,) — Zr) < 6/2 holds, at a confidence level
of at least 1 — «. Hence, we adopt the interval [£(pF,) —
z¢, u(pF,) — z,] as our prediction interval for A, that takes
into account the estimation uncertainty that is present in p.

To compute z, and z, from Eqgs. 5.2 and 5.3, we use
the parametric bootstrap (see, for example, [37]), thereby
computing the values zj and z;* such that

Py (L(p*Fy) — L(pF) <2f) = 1 —«
and
Py (w(p*Fy) —u(pF,) = 2f) = 1 —a,

where & = (p,§) and p* is the estimator for p obtained
from a bootstrap sample of the data set; the details can be
found in the algorithm as described below. This leads to the
prediction interval [£(pF,) — zj, u(pF,) — z}]; we refer
to this as the bootstrap prediction interval for A, based on
perfect forecasts. We can similarly compute the bootstrap
prediction interval for B, based on perfect predictions.

Specifically, our bootstrap prediction intervals are
produced by the following algorithm.

Algorithm 1

1. Simulate independent Poisson random variables (Nl.* :
—n <i < —1)withmean (F; : —n <i < —1).

2. Conditional on N/, simulate a multinomial rv (A}, B},
N} — AY — B}) with parameters (n, p, g,

1—p—49).
3. Compute
. A
* _ Lj=—nfl
Pr=y N

R > B
k J n " j
4 =T o
Z_/:l—n N/
4. Compute (£(p*F,), u(p*F,), L(G*F,), u(g*F,)).
5. Repeat steps 1 to 4 b times, thereby yielding b 4-tuples
CPEED . u(p}F). @] Fr). u(@F Fy).
6. Compute the smallest integers z} , and z% , for which

M~

1 . .
A I(€piF) —L(PpF) <2h,) > 1 —«a
i=1

and

1
b 4
l

M=

I(LGFF) —L@GF) <2h,) =1 —a,
1

and the largest integers z% , and 77, . for which

I(w(p{F) —u(pF) >24,)=1—«a

Y-

I
-

1
b

1

and

1
b«

1

M=

](M(éi*Fr) _u(éFr) > ZE,) >1—o.
1

Then, the intervals [[£(pF,) — 2 Z]“L, u(pFy) — 23,1
and [[£(gF,) — ZE’Z]J’_, u(gF,)— 7p ] are the bootstrap
prediction intervals for A, and B, respectively, where
[x]T 2 max(x, 0) for x € R.

6 Unbiased forecasts with lognormal errors

The model described in Sections 4 and 5 assumes no
forecast error. As a consequence, the distribution for N; is
Poisson distributed with mean F;. However, the forecast
F; itself is imperfect, and there typically is additional
uncertainty in the prediction of N; (beyond the stochastic
variability of a Poisson rv) that should be reflected in the
prediction interval. In this section, we model the forecast

error by assuming that
Fi=nT7 (6.1)

where N; is (again) Poisson with mean A;, and the
relative forecast error I'; !'is assumed to be log-normally
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distributed. Furthermore, we assume that the N;’s are
independent of the I'; s, and that the forecasts are
relatively unbiased, in the sense that

E@):l
F;

for all 7, thereby implying that E[I";] = 1.

Of course, one expects that if the forecast under-predicts
N; at time i, Fj4 is also likely to under-predict N; 1. This
suggests that the I';’s should be modeled as a correlated
sequence. In particular, we will assume that if ¥; = log I';,
the Y;’s form a stationary sequence that evolves according
to the recursion

(6.2)

Yir1 = poYi +Ziq1,

where the Z;’s are independent and identically distributed
(iid) normally distributed rv’s with mean o and variance
og. Note that the stationarity of the Y;’s implies that
p € (—1,1), with ¥; having a normal distribution
having mean po(1 — p0)~! and variance 002(1 — pg)_l;
see [38].

For this model, we need to estimate the parameters
o, 002 and pg associated with the log-normally distributed
forecast error sequence. As in Sections 4 and 5, we assume
that we have observed the time series ((A;, B;, A;, F;) :
—n < i < —1), and we adopt the view that we wish to
impose as few assumptions as possible on the A;’s (given
the episodic nature of the coronavirus epidemic). For this
reason, we will use the method of moments to estimate
"o, crg and pg.

Given Eq. 6.2, we require that

2
Elexp(¥;)] = exp (15‘;0 +3 133)
A
= mi(po, og, po) = 1.

To obtain a second equation, note that

E|——
F;

E[N? — Ni1- 7 2E[T}]

(ki + A7) —2) - AT2E[TH
Elexp(2Y;)]

I
[¢]
>
o]
e
—_
e
D |°e
S
—_
I | Q
> [°®
(=]}
SNS—

= ma(po, s o).
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For the third equation, we observe that

N;N;q -
E|: Vit :| — ENl _]ENI.+] . ()‘-i)‘-i+l) IEFiFi+1
FiFitq
= Elexp(Y; + Yi+1)]

Elexp((1 + p0)Y; + Zi41)]

2 o2
exp 1o i 0
I—po 1-—po

m3 (Lo, 03, £0)-

This suggests that we estimate 1o, og and pg by minimizing
the objective

~ 5 2 ~ 5 2
(¥ =m0 )"+ (M5 = m3(u. 0. )
subject to

mi(w, 0%, p) =1,

-1=<p=1,
02 >0,
where
A 1 =1 NZ—N'
[ 1
My =5 X < e )
i=—n t
~ 1 l N;iN,
= NilVi—l
M; = n—1 Z (FiFi—l)’
i=—n+1

followed by utilizing the minimizer (/i,62, ) as our
estimator of (ug, 002, 00), and then estimate p and ¢ as
in Eq. 4.2. When n is large (and the statistical model
describes the data well), we expect that the objective
function will vanish at ({1, 62, p), in which case

mi(fi, 6%, p) = M;

will be satisfied as equations for i = 2, 3. In the Appendix,
we prove that our estimators for o, 002, and pp are
consistent, under very moderate assumptions on the A;’s.

We note that in this model, the prediction interval
for N, must reflect the additional randomness stemming
from the fact that the mean of the Poisson random
variable is itself random, namely it is given by F,T',. In
particular, let P(u, a2, p, f) be a rv that is conditionally
Poisson distributed, with (random) mean f exp(N (u/(1 —
p),a?/(1 = p*)), where N(u/(1 = p),o/(1 = p*)) isa
normal rv with mean /(1 — p) and variance o2/(1 — p?).
The plug-in prediction interval for A, based on this model
is the interval [£(, 62, p, pF,), u(ii, 62, p, pFy))], where
2w, 02, p, f) is the largest integer j such that
P(P(u,0%, p, f) < j) < 8/2 and u(u, o2, p, f) is the
smallest integer k such that P(P(/L,O’Z, P, f) > k) <
8/2. Similarly, [£(f1, 62, 5, GF,), u(t, 6%, p, GF,))] is the
plug-in prediction interval for B, .
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The computation of £(u, o2, 0, f) and u(u, o2, 0, f)
can be implemented via Monte Carlo, using the following
algorithm.

Algorithm 2

1. Simulate Y, as a normal rv with mean u/(1 — p) and
variance 02/(1 — ,02).

2. Generate N, as a Poisson rv with mean f exp(Y,).

3. Repeat Steps 1 and 2, independently, m times, thereby
yielding Ny 1, ..., Npm.

4. Define the estimator é(,u, o2, p, f) for £(u, o2, 0, f)
as the largest integer j such that

1 m
— >INy < j) <8/2
m

i=1

and define the estimator (i, o2, p, f) for
u(i, o2, p, f) as the smallest integer k for which

1 m
— ZI(Nr,,- > k) <8/2.
i=1

We now turn to the construction of prediction intervals
for A, and B, that reflect the additional uncertainty due
to the need to estimate g, og, po fro the observed data
((A;j, Bi, Nj, F;) : —n < i < —1). Again, we use the
bootstrap to compute the corrections 2} ;. 2 4, 24 s 25,
that appear in this setting (that are direct analogs to those
appearing in Algorithm 1 for perfect forecasts.)

Algorithm 3

1. Generate Y*, as a normal rv with mean (i/(1 — p) and
variance 62/(1 — p2).
2. For —n < i < —1, simulate Yi* via the recursion

YY) = pY | + ZF,

where the Z*’s are independently simulated as normal
rv’s with mean /i and variance 62.

3. Given (Yl.* —n < i < —1), simulate the Nl.*’s
as independent Poisson rv’s with means (F; exp(Y;") :

—n<i<-1).

4. Compute
-1 2
ME = l N~ - Nf
2 n . F? ’
i=—n i
-1
M* — 1 Z N;kNi*—l
ST -1 FiFi_1 )
i=—n+1

5. Compute the minimizer (1*, 62*, p*) of

~ ~ 2
(Mi“ —ma(u, 02, p)) + (Mi" —m3(u, 02, p))

subject to
mi(u,0°, p) =1,
—I=p=1,
o2 > 0.
6. Generate (A7, B, N} — A} — B}") as multinomial rv’s

with parameters (N, p, g, 1 — p —q), —n <i < —1.
7. Compute

-1
v _ 2j=nA]

= -1 % N*

Z/—*" J

1 +

q’\* _ Z_j:—n ;
- —1

Y1, N

8. Use Algor1thm2t0 compute £(Q*, 62*, p*, p*F),
u(fi*, U *, 0%, PFF), (¥, AZ*,ﬁ* G*F),
u(*, 6%, p*, g*Fy).

9. Repeat Steps 1 to 8 b times, thereby yielding b 4-tuples
(CGaF, 67 B P Er). u(i, 82, 7. BT Fr).
UYL 87 7 47 Fr) u(Af, 67 P 4T F),

10.  Compute the smallest integers z , and zj , for which

—Zl(ew* 67, BF . PFF)—

E(M,O’ 1p7ﬁFr)SZZ‘€)zl_a

and
—Zl(ew* &7*, bY 4i Fr)

—f(u«,a

and the largest integers z7 .., zj , for which

0,4F) <zp )= 1—a

b
1 nw AD% A
zZuew:‘, 67, br. PIFY)

— (R, 6% p, pF) =5 ,) = 1 —«

and

b
1 A2 s
D TG 62, B a7 Fr)

— (1, 6%, p,4F) = 25,) = 1 —«
Then, [[£(. 6%, p. pF,) — 24 It u(fh. 6%, p. pF,) —
Zz’r] and [[E(lla 6'25 ﬁa C}Fr) - ZE’E]+5 u([’\l” &27 167 ‘?Fr) -

7 ] are our bootstrap prediction intervals for A, and B,,
respectively, based on unbiased log-normal forecasts.

7 Biased forecasts with log-normal errors

We now modify the model of Section 6 to permit biased
forecasts. The only change we make here is that we drop
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the requirement Eq. 6.2. In this case, we need to add an
additional moment identity in order to uniquely identify
the coefficients (ug, ag, po) underlying the forecast errors

given by the I';” Is. Note that

i

N; -
E (F) = EN; 0 'ET) = ET; = mi (0. 0. po).

This suggests that we should estimate (u, 002, po) via the
minimizer ({1, 62, p) of the objective function

23:( i —mi(u, o’ /O))2

i=1

(7.1)

subject to
Sl=esl,
2>0,

where Mz and M3 are defined as in Section 4 and

. AN
M = Z (E) .
l=—n

As in Section 4, we estimate pg and go via p and g as
in Eq. 4.2. As in Section 4, [£(Q, 62, p, pFy), u(ji, 62,
p. pF)] and [£(Q, 6%, b, GFy), u(fi, 62, p, GF)] are then
our plug-in prediction intervals for N, based on the biased
log-normal forecast error model.

Similarly, incorporating the estimation error related to
estimating (10, 0. po. Po. qo) via (1. 62, .
P, q) requires only small modifications to the methodology
of Section 6. The modified version of Algorithm 3 reflecting
use of biased forecasts is provided next.

Algorithm 4 Algorithm 4 is identical to Algorithm 3,
excepting that (/1, 62, p) is now the minimizer of Eq. 7.1,
and Steps 4 and 5 are modified as follows:

4’.  Compute
1 < (N
i =Ly (M)
"o ( Fi >
I=—n
-1 )
A 1 N*
M= - l
2 n (
i=—n

ka)

- Ni*Ni*—l)
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5. Compute the minimizer (2*, 62*, p*) of

Z (Mi — mi (1, o2, ,0)>2

i=1

subject to

Algorithm 4 yields our desired bootstrap prediction
intervals for A, and B,, just as Algorithm 3 yields such
intervals for the unbiased model of Section 6.

8 Use at a large academic medical center
and evaluation using synthetic data

8.1 Model deployment and evaluation: empirical
data

We use historical county-level COVID-19 hospitalization
forecasts and ACU, ICU COVID-19 hospitalizations from
the AMC studied. Given the small number of patients, we
protect patient privacy by replacing the actual date with the
number of days from a reference date during the summer of
2020. The values are shown in Fig. 1.

We compare the prediction intervals under the three set-
tings we discuss above (perfect, unbiased, biased), with
plug-in prediction intervals and bootstrap prediction inter-
vals under each setting. We choose § = 0.05 (corresponding
to 95% prediction intervals) for both plug-in and bootstrap,
and o = 0.05 (corresponding to confidence level of 95%)
for bootstrap.

To compare the prediction performance of each proposed
model with real data, we choose r = 7 (on each Monday
we make ACU, ICU predictions for the next Monday),
comparing with the actual value. Also we set n increased by
1 for each additional observed day in each model. We set
algorithm parameters by = 1000, m = 300,85 = 0.05, o =
0.05. With these parameters, the perfect model, unbiased
model and biased model proposed converged in 1.25, 4.08
and 4.25 seconds, respectively, when they were run by R
3.6.3 on a computer with an Intel Core i17-1065G7 (4 cores,
8 processors) and 32 GB RAM.

Projections for ACU and ICU made by different models
are shown in Figs. 2 and 3. In each plot, dash lines indicate
95% bootstrap prediction intervals, solid lines indicate 95%
plug-in prediction intervals and black dots indicate actual
values.
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Fig.1 Empirical Data

County and AMC Hospitalizations with County Forecasts

T DT

Groups

—— AMC.ACU.Hospitalizations

—— AMC.ICU.Hospitalizations

——— County.Forcasts.looking.ahead.r.7.days.

—— County.Hospitalizations

RS ©

®

The unbiased models tend to provide wider prediction
intervals. As we get larger n, the bootstrap prediction
intervals are getting closer to the plugin prediction intervals.

As shown in Table 1, with » = 7, the fractions of weeks
for which each 95% plug-in prediction intervals covered the
observed bed count in the ACU is 70% for all three models.
The 95% bootstrap prediction intervals covered 90% of
the observed bed count in the ACU for all models. All of

Projections for AMC ACU COVID-19 Hospitalizations

»

S & & R f &

Date

the prediction intervals covered 100% of the observed bed
count in the ICU. The results with 90% prediction intervals
(Figs. 12, 13 and Table 4) and 80% prediction intervals
(Figs. 14, 15 and Table 5) on AMC data can be found in the
Appendix.

The demand intervals forecast using the perfect model
were communicated to the hospital manager in charge of
COVID-19 response capacity planning. The upper bound

=7, 95% prediction intervals (plug-in prediction intervals) and 95% prediction intervals at a confidence level of 95% (bootstrap prediction intervals)

______

.....

#ACU cases prediction interval

................

model biased model

type

Week

plug-in prediction intervals

perfect model unbiased model

bootstrap prediction intervals

Fig.2 AMC ACU projections, r = 7, 95% prediction intervals, with black dots representing actual values
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Projections for AMC ICU COVID-19 Hospitalizations

1=7, 95% prediction intervals (plug-in prediction intervals) and 95% prediction intervals at a confidence level of 95% (bootstrap prediction intervals)

.....

#ICU cases prediction interval
N

model biased model

type

Week

perfect model unbiased model

plug-in prediction intervals ===---- bootstrap prediction intervals

Fig.3 AMC ICU projections, r = 7, 95% prediction intervals, with black dots representing actual values

of the prediction intervals remained below the threshold
hospital leadership felt comfortable could be accommodated
without the cancellation of elective admissions.

8.2 Performance evaluation: synthetic data

In this section, we generate two sets of synthetic data for 100
days. In both examples, we generate N; from the Poisson
distribution with mean A;. A;’s and B;’s are generated from
the multinomial distribution with parameters (N;, p,q, 1 —
p—q). They are all generated once and used in all following
sections.

In Example 1, the A’s are generated using S/ R model
(see, for example, [39] and [40]). In particular, here we set
the initial number of infections as 5, the initial population as
1000, the infection rate @ = 0.2 and the recovery rate y =

Table 1 Coverage rate of 95% plug-in prediction intervals and 95%
bootstrap prediction intervals at a confidence level of 95%, AMC

Model Plug-in,  Bootstrap,  Plug-in,  Bootstrap,
ACU ACU ICU ICU
Perfect Model 70% 90% 100% 100%
Unbiased Model ~ 70% 90% 100% 100%
Biased Model 70% 90% 100% 100%

@ Springer

0.1. In this example, we set the ratio of patients hospitalized
in ACU and ICU at hospital level as p = 0.14,q = 0.05
respectively.

In Example 2, we generate A’s uniformly on the supports
changing by time. For day 1 to day 20, the A’s are
uniformly generated from {100, 101,..., 149, 150}; for
day 21 to day 50, the A’s are uniformly generated from
{20, 21, ..., 99, 100}; in the last 50 days, the A’s are
uniformly generated from {100, 101, ..., 199, 200}. In
this example, we set the ratio of patients hospitalized in
ACU and ICU at hospital level as p = 0.5,q = 0.2
respectively.

The synthetic forecasts are generated following different
model assumptions. To evaluate the performances, we apply
the above prediction methods on the last 60 observations.
The synthetic data are shown in Figs. 4 and 5.

8.2.1 Synthetic data under perfect forecasts model

Here we generate

Fi=x,i=1,..,100

satisfying the “perfect forecast” assumption. The 95%
prediction intervals for ACU({A;}), ICU({B;}) are shown in
Figs. 6 (Example 1) and 7 (Example 2).
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Fig.4 Synthetic Data, Example Synthetic Data, Example 1
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The fractions of observations for which 95% plug-in
prediction intervals covered the observed bed count are
97%, 92% for ACU, ICU respectively in Example 1, and
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B_ICU.Hospitalizations
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the ones for Example 2 are 92% and 92%; the ones for 95%

bootstrap prediction intervals are 98%,

and 98%, 97% in Example 2.
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Fig.5 Synthetic Data, Example Synthetic Data, Example 2
280

Groups

98% in Example 1
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Projections for Synthetic ACU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Perfect Model, 85% prediction intervals

#ACU cases prediction interval
>

TR O® RS S S’ E SN ALRNR SRS S
Time
type plug-in prediction intervals ---------- bootstrap prediction intervals

Projections for Synthetic ICU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Perfect Model, 85% prediction intervals

#ICU cases prediction interval
(==}

Time

plug-in prediction intervals ---------- bootstrap prediction intervals

type

Fig.6 Projections on synthetic data, Example 1, 95% prediction intervals, perfect model, with black dots representing actual values

Projections for Synthetic ACU COVID-19 Hospitalizations, Example 2

Last 60 Observations, Perfect Model, 95% prediction intervals
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Time

plug-in prediction intervals ---------- bootstrap prediction intervals
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 2

Last 60 Observations, Perfect Model, 95% prediction intervals

60
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#ICU cases prediction interval

Time

plug-in prediction intervals --------- bootstrap prediction intervals

type

Fig.7 Projections on synthetic data, Example 2, 95% prediction intervals, perfect model, with black dots representing actual values
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#ACU cases prediction interval

#ICU cases prediction interval

Fig.

#ACU cases prediction interval

#ICU cases prediction interval

Fig

Projections for Synthetic ACU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Unbiased Model, 95% prediction intervals

plug-in prediction intervals --------- bootstrap prediction intervals

type

Projections for Synthetic ICU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Unbiased Model, 95% prediction intervals

Time

plug-in prediction intervals --------- bootstrap prediction intervals

type

8 Projections on synthetic data, Example 1, 95% prediction intervals, unbiased model, with black dots representing actual values

Projections for Synthetic ACU COVID-19 Hospitalizations, Example 2

Last 60 Observations, Unbiased Model, 95% prediction intervals
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 2

Last 60 Observations, Unbiased Model, 95% prediction intervals
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.9 Projections on synthetic data, Example 2, 95% prediction intervals, unbiased model, with black dots representing actual values
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Projections for Synthetic ACU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Biased Model, 95% prediction intervals
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Biased Model, 95% prediction intervals

#ICU cases prediction interval
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plug-in interval predictions --------- bootstrap interval predictions

Fig. 10 Projections on synthetic data, Example 1, 95% prediction intervals, biased model, with black dots representing actual values

Projections for Synthetic ACU COVID-19 Hospitalizations, Example 2
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 2

Last 60 Observations, Biased Model, 95% prediction intervals
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Fig. 11 Projections on synthetic data, Example 2, 95% prediction intervals, biased model, with black dots representing actual values

@ Springer



The development and deployment of a model for hospital-level COVID-19 associated patient demand intervals... 389

Table 2 Coverage rate of 95% prediction intervals, synthetic data,
Example 1

Model Plug-in,  Bootstrap,  Plug-in, = Bootstrap,
ACU ACU Icu ICU
Perfect Model 97% 98% 92% 98%
Unbiased Model ~ 100% 100% 92% 97%
Biased Model 98% 100% 95% 97%

8.2.2 Synthetic data under unbiased forecasts model

Under this setting, we set p = 05,62 = 00l,u =
—z(f—_‘z_p) and generate

2
Y e
1—p 1—p2

Yi = pYi1 + Zi, Zi ~ N(u,02),i =2, ..., 100
Aio,
exp(Y}), F; = —,i=1,..,100,

1

Y ~

I

where ~ represents “distributed according to”, so that
E(I;) = 1 which satisfies the assumptions in the
“unbiased forecasts model”. The 95% prediction intervals
for ACU({A;}), ICU({B;}) of the two examples are shown
in Figs. 8 and 9. The fractions of observations for which
95% plug-in prediction intervals covered the observed
bed count are 100%, 92% for ACU, ICU respectively in
Example 1, and the fractions for Example 2 are 93%
and 93%; the ones for 95% bootstrap prediction intervals
are 100% and 97% in Example 1, and 93%, 95% in
Example 2.

8.2.3 Synthetic data under biased forecasts model

Under this setting, we set p = 0.5,0% = 0.01,u = 0.
The generation method is the same as that in unbiased
model setting. The 95% prediction intervals for ACU({A;}),
ICU({B;}) are shown in Figs. 10 and 11. The fractions of

Table 3 Coverage rate of 95% prediction intervals, synthetic data,
Example 2

Model Plug-in,  Bootstrap,  Plug-in,  Bootstrap,
ACU ACU Icu ICu
Perfect Model 92% 98% 92% 97%
Unbiased Model  93% 93% 93% 95%
Biased Model 90% 98% 93% 98%

observations for which plug-in prediction intervals covered
the observed bed count are 98%, 95% for ACU, ICU
respectively in Example 1, and the fractions for Example
2 are 90% and 93%; the ones for bootstrap prediction
intervals are 100%, 97% in Example 1, and 98%, 98% in
Example 2.

All the plots show that with n increasing, the bootstrap
prediction intervals are getting closer to the plugin intervals.
The coverage rates of 95% prediction intervals on the two
examples are shown in Tables 2 and 3. The results with
90% prediction intervals (Figs. 16, 17, 18 and Table 6 for
Example 1, Figs. 19, 20, 21 and Table 7 for Example 2)
and 80% prediction intervals (Figs. 22, 23, 24 and Table 8
for Example 1, Figs. 25, 26, 27 and Table 9 for Example
2) on both sets of synthetic data can be found in the
Appendix.

9 Conclusions

In this work we introduce, DICE (Demand Intervals from
Consistent Estimators), a model to forecast prediction inter-
vals for the fraction of regional patient demand arriving to
an institution based on the historical fraction of demand
served by the institution and, potentially biased, forecasts of
demand as a Poisson random variable. We show that our
model is consistent, computationally tractable, and well-
calibrated on real-world data as well as synthetic data.
Unlike other flu-specific or general forecasting models in
the literature, our model produces integral prediction, prin-
cipled intervals around these estimates even for small values
of the estimate and does so using only three data sources.
The use of regional-level forecasts, that are commonly avail-
able and incorporate numerous population-specific consid-
erations, allows the model to take advantage of rich contex-
tual data without increasing the complexity of its implemen-
tation or reducing its generalizability. The calibration of the
model is evidenced by evaluation on real-world and syn-
thetic data as the intervals generated narrow as uncertainty is
removed from the inputs and cover the observations approx-
imately the percentage of the time that they are expected to.
To illustrate its potential usefulness, we discuss the manage-
rial COVID-19 decisions that prompted the development of
the models as well as how they were used to inform these
decisions at an academic medical center. The demand inter-
val forecasts suggested that the “second wave” influx of
COVID-19 patients would be unlikely to exceed available
hospital capacity. The information provided by the model
contributed to, the ultimately correct, decision that COVID-
19 patients could be accommodated without the cancellation
of elective admissions.
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Over the course of the pandemic, numerous hospitals
went from seeing relatively few patients to being overwhel-
med with new arrivals relatively quickly. Even relatively
large confidence intervals, such as when relatively little
historical data are available, may reassure hospital decision
makers compared to the alternative of potentially unboun-
ded exponential growth in arrivals. The extended evaluation
of the model with synthetic data shows that it is well calib-
rated, i.e. when sufficient data are available the prediction
intervals are appropriately sized.

This work has several limitations and opportunities for
subsequent research. The present model does not account
for scenarios in which the total demand for hospital beds
approaches the available capacity of the region. Subsequent
work is necessary to expand the model to capture the
fixed total capacity of hospitals in a region and the routing
of patients from hospitals at capacity to hospitals with
capacity available. The present model does not examine how
demand forecasts and uncertainty intervals are translated
into operational decision making. Subsequent work should
examine how, for example, the forecast can be used to
estimate patient load in the next few days, if the staff that
is scheduled is sufficient, and options for cancelling or
rescheduling procedures more dynamically than at a fixed
cadence of 14 days. Another area for further research is the
use of DICE for patient demand unrelated to COVID-19.
Other areas of urgent and non-urgent surgical and medical
demand that change as the standard of care or composition
of the population changes may be subject to this type
of forecasting if relatively reliable regional forecasts are
available.

As hospitals the world over prepare for a third wave
of COVID-19, this model may find similar applications at
institutions planning their response to an influx of patients.
Beyond COVID-19, patient demand for a variety of medical
conditions is forecast as a Poisson random variable. DICE
may be of use to the numerous decision to make which
hospital managers project demand for their services by
combining their historical share of regional demand with
forecasts of total regional demand.

Appendix

We establish here that the “method of moments” estimators
of Sections 4 and 5 will be consistent in great generality.
This will follow if we can prove that

~ P
M; 5 mi(wo, g, po) (1)

. p .
asn — oo, for 1 <i < 3, where — denotes “converge in
probability”.
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Note that ]EMi = m; (o, 602, po) for 1 < i < 3. Hence,
Eq. 1 follows from Chebyshev’s inequality if we can show
that

VarA;I,- -0

asn — 00. But
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N 1 N;
VarM| = — Var —
1 n2 (Z Fi )

Of course,
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Table 4 Coverage rate of 90% prediction intervals, AMC Table 5 Coverage rate of 80% prediction intervals, AMC

Model Plug-in,  Bootstrap,  Plug-in,  Bootstrap, Model Plug-in,  Bootstrap,  Plug-in,  Bootstrap,
ACU ACU ICU ICU ACU ACU ICU ICU

Perfect Model 60% 60% 100% 100% Perfect Model 60% 60% 90% 90%

Unbiased Model ~ 60% 60% 100% 100% Unbiased Model ~ 60% 70% 100% 100%

Biased Model 70% 90% 100% 100% Biased Model 60% 70% 90% 90%

where O(a;) denotes a quantity that is bounded by a
multiple of |a;|. Similar calculations can be found in, for
example, [41]. Consequently,

-1
. 1 1
VarM| = — § Varl'_; + —EI'2
i=—n
-1

n% DD 00

i=—n j=i+1
1
ol-]1—-0
n
as n — oo if we assume that the infimum of the A;’s is
bounded away from zero. Similarly, VarM; — 0 fori = 2

and i = 3 under this very moderate hypothesis on the A;’s,
thereby establishing the consistency.

Projections for AMC ACU COVID-19 Hospitalizations

Table 6 Coverage rate of 90% prediction
Example 1

intervals, synthetic data,

Model Plug-in,  Bootstrap,  Plug-in, = Bootstrap,
ACU ACU Icu ICU
Perfect Model 95% 95% 90% 92%
Unbiased Model ~ 97% 98% 90% 92%
Biased Model 95% 98% 92% 97%

Table 7 Coverage rate of 90% prediction intervals, synthetic data,

Example 2

Model Plug-in,  Bootstrap,  Plug-in,  Bootstrap,
ACU ACU ICU ICU

Perfect Model 92% 92% 87% 92%

Unbiased Model ~ 90% 93% 93% 93%

Biased Model 87% 90% 88% 90%

=7, 90% prediction intervals (plug-in prediction intervals) and 90% prediction intervals at a confidence level of 90% (bootstrap prediction intervals)

#ACU cases prediction interval

_____

_______

model ——— biased model

plug-in prediction

type

Week

perfect model unbiased model

intervals ===---- bootstrap prediction intervals

Fig. 12 AMC ACU projections, r = 7, 90% prediction intervals, with black dots representing actual values
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Projections for AMC ICU COVID-19 Hospitalizations
r=7, 90% prediction intervals (plug-in prediction intervals) and 90% prediction intervals at a confidence level of 90% (bootstrap prediction intervals)
20 sepeedo
18 :

S 16 S
g —_
£ 14
c -y
o :
5 12 T
5 : — . S
= 10 < -r -
: ¢ 'S ;
2 8 o
8 ¢
o> 6 — ol y
% R SR —1

4 L

2 ' .

O ealae

~ v e W © © A LS o Q
Week
model biased model perfect model unbiased model
type plug-in prediction intervals ===---- bootstrap prediction intervals

Fig. 13 AMC ICU projections, r = 7, 90% prediction intervals, with black dots representing actual values

Projections for AMC ACU COVID-19 Hospitalizations

r=7, 80% prediction intervals (plug-in prediction intervals) and 80% prediction intervals at a confidence level of 80% (bootstrap prediction intervals)
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Fig. 14 AMC ACU projections, r = 7, 80% prediction intervals, with black dots representing actual values
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Projections for AMC ICU COVID-19 Hospitalizations

r=7, 80% prediction intervals (plug-in prediction intervals) and 80% prediction intervals at a confidence level of 90% (bootstrap prediction intervals)
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Fig. 15 AMC ICU projections, r = 7, 80% prediction intervals, with black dots representing actual values

Projections for Synthetic ACU COVID-19 Hospitalizations, Example 1
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 1
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Fig. 16 Projections on synthetic data, Example 1, 90% prediction intervals, perfect model, with black dots representing actual values
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Projections for Synthetic ACU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Unbiased Model, 90% prediction intervals
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 1
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Fig. 17 Projections on synthetic data, Example 1, 90% prediction intervals, biased model, with black dots representing actual values

Projections for Synthetic ACU COVID-19 Hospitalizations, Example 1

Last 60 Observations, Biased Model, 80% prediction intervals
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 1
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Fig. 18 Projections on synthetic data, Example 1, 90% prediction intervals, biased model, with black dots representing actual values
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Projections for Synthetic ACU COVID-19 Hospitalizations, Example 2
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Projections for Synthetic ICU COVID-19 Hospitalizations, Example 2
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Fig. 19 Projections on synthetic data, Example 2, 90% prediction intervals, perfect model, with black dots representing actual values
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Fig.20 Projections on synthetic data, Example 2, 90% prediction intervals, biased model, with black dots representing actual values
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Projections for Synthetic ACU COVID-19 Hospitalizations, Example 2
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Fig.21 Projections on synthetic data, Example 2, 90% prediction intervals, biased model, with black dots representing actual values
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Fig.22 Projections on synthetic data, Example 1, 80% prediction intervals, perfect model, with black dots representing actual values
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Projections for Synthetic ACU COVID-19 Hospitalizations, Example 1
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Fig. 23 Projections on synthetic data, Example 1, 80% prediction intervals, unbiased model, with black dots representing actual values
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Fig. 24 Projections on synthetic data, Example 1, 80% prediction intervals, biased model, with black dots representing actual values
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Projections for Synthetic ACU COVID-19 Hospitalizations, Example 2
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Fig. 25 Projections on synthetic data, Example 2, 80% prediction intervals, perfect model, with black dots representing actual values
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Fig. 26 Projections on synthetic data, Example 2, 80% prediction intervals, unbiased model, with black dots representing actual values
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Table 8 Coverage rate of 80%
prediction intervals, synthetic Model Plug-in, ACU Bootstrap, ACU Plug-in, ICU Bootstrap, ICU
data, Example 1
Perfect Model 87% 88% 87% 88%
Unbiased Model 87% 87% 85% 85%
Biased Model 95% 97% 87% 87%
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Fig. 27 Projections on synthetic data, Example 2, 80% prediction intervals, biased model, with black dots representing actual values
Table 9 Coverage rate of 80%
prediction intervals, synthetic Model Plug-in, ACU Bootstrap, ACU Plug-in, ICU Bootstrap, ICU
data, Example 2
Perfect Model 78% 85% 82% 82%
Unbiased Model 77% 80% 72% 75%
Biased Model T7% 83% 78% 87%
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