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Abstract
The human gut microbiome refers to all of the microorganisms present throug-
hout the length of the gastrointestinal tract. Gut flora influence host metabolic and 
immune processes in myriad ways. They also play an important role in 
maturation and modulation of the immune system. Dysbiosis or a pathologic 
alteration in gut flora has been implicated in a number of diseases ranging from 
metabolic, autoimmune and degenerative. Whether dysbiosis has similar implic-
ations in organ transplant has been the focus of a number of pre-clinical and 
clinical studies. Researchers have observed significant microbiome changes after 
solid organ transplantation in humans that have been associated with clinical 
outcomes such as post-transplant urinary tract infections and diarrhea. In this 
article, we will discuss the available data regarding pathologic alterations in gut 
microbiome (dysbiosis) in solid organ transplant recipients as well as some of 
challenges in this field. We will also discuss animal studies focusing on mouse 
models of transplantation that shed light on the underlying mechanisms that 
explain these findings.
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Core Tip: The human gut microbiome refers to all of the microorganisms present throughout the length of 
the gastrointestinal tract. Gut flora influence host metabolic and immune processes in myriad ways. Gut 
microbiota alterations have been described in solid organ recipients. In this review we discuss available 
human studies about changes in gut flora in solid organ transplant such as kidney, liver and small bowel.
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INTRODUCTION
The human gut microbiota refers to all of the microorganisms present throughout the length of the 
gastrointestinal tract and include bacteria, viruses, protozoa, and fungi. The term microbiome is used to 
describe these microorganisms along with their collective genetic material. In this article, the terms 
microbiome/microbiota will be used interchangeably. We now know that there are over 100 trillion 
microbes in the human gut alone, with the majority being found in the colon[1].

Most of these microorganisms consist of bacteria, along with smaller numbers of viruses, fungi, and 
protozoa. Previous studies of gut microbiota relied heavily on culture methods and could reliably detect 
only a small minority of organisms. Advances in molecular technology with methods such culture 
independent RNA and meta-genomic sequencing have revolutionized our understanding of the 
composition and function of gut flora and ways they influence host metabolism, immunity and inflam-
mation.

The importance of gut flora in maintaining a healthy physiologic state cannot be understated. 
Research studies have shed light on the fact that a multitude of host processes depend on microbial 
function. These include maintaining the integrity of gut epithelial cells and thereby the epithelial barrier, 
modulation of immune system[2], nutrient processing and regulating systemic inflammation and 
metabolism through production of chemical messengers[3,4]. One example of these messengers are 
short chain fatty acids (SCFAs) that are produced by bacterial fermentation of dietary fiber in the gut 
lumen and circulate in the bloodstream with resultant downstream organ effects[5]. Due to their 
enormous contribution to the host, researchers have referred to the gut microbiome as the “second 
human genome”. Dysbiosis is defined as a pathologic alteration in the microbiota that has adverse 
consequences for the host. This could manifest either as bloom of pathogenic organisms, loss of 
commensals or loss of diversity. Both animal and human studies have described the association between 
dysbiosis and diseases as diverse as such as coronary artery disease, chronic kidney disease[6], liver 
cirrhosis, diabetes mellitus and autoimmune conditions like systemic lupus erythematosus and 
rheumatoid arthritis[7-9].

The advent of modern immunosuppressive drugs has revolutionized transplant outcomes in the 
short term due to a dramatic reduction in the incidence of acute rejection. However long-term allograft 
survival remains sub-optimal[10]. It has been noted that allograft outcomes vary according to the type 
of organ transplanted. For instance, lung and intestine grafts that are considered colonized with 
microorganisms have poorer graft outcomes than heart and kidney grafts (not colonized)[11]. Gut 
bacteria play an important role in maturation and “setting the tone” of the host immune system[2]. 
Given their pivotal role in shaping immunologic responses, gut microbiome can possibly affect graft 
outcomes in transplantation. In this review we discuss the available data regarding pathologic 
alterations in gut microbiome (dysbiosis) in solid organ transplant recipients. We will also explore data 
from preclinical studies on mouse models of transplantation that shed light on the possible mechanisms 
behind these findings.

METHODOLOGY
Literature search was conducted on PubMed using Mesh database for papers until March 2021. We also 
cite high-quality articles in Reference Citation Analysis (https://www.referencecitationanalysis.com). 
Only studies published in English were considered. Search terms on Mesh database consisted of 
“Dysbiosis”, “Gut microbiome”, “Kidney transplantation”, “Liver transplantation”, “heart 
transplantation”, “Heart lung transplantation” and “Lung transplantation”.

Organ transplantation is associated with changes in gut microbiome
Solid organ transplant recipients are exposed to a variety of factors that can affect gut flora. These 
include, but are not limited to, antibiotics used for treatment or prophylaxis of infections, immunosup-
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pressive medications as well as other classes of medications such as antihypertensives. Numerous 
studies have shed light on gut microbiome changes in hematopoietic stem cell transplant recipients. In 
regards to the setting of solid organ transplantation, these studies are still limited and consist mostly of 
cross-sectional or longitudinal observational correlation studies.

Studies in liver transplant recipients
Bajaj et al[12] looked at liver transplant recipients and noted that they have increase in microbial 
diversity and decrease in endotoxin levels compared to pre-transplant cirrhotic levels. Pathogenic 
genera such as Enterobacteriaceae (Escherichia, Shigella, Salmonella) were decreased compared to baseline 
cirrhotic state while relative abundance of potentially beneficial commensals Lachnospiraceae and 
Ruminococcaceae were increased. Kato et al[13] looked at liver transplant patients and found that 
Enterobacteriaceae, Streptococcaceae and Bifidobacteriaceae were increased whereas Enterococcaceae, Lactoba-
cillaceae, Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae were decreased in patients with 
allograft rejection. A study by Sun et al[14] showed that microbiota of cirrhotic patients awaiting liver 
transplant surgery was significantly different than controls, however in this study no significant 
difference was noted between post-transplant and control groups. A similar study showed that 
compared to healthy controls, liver transplantation was associated with decrease beneficial bacteria such 
as bifibacteria and lactobacillus and increased pathogenic bacteria such as Enterobacteriaceae[15].

Studies in kidney transplant recipients
The phylum bacteroides is dominant in normal humans as shown by the human microbiome project. In 
a study of kidney transplant recipients, Swarte et al[16] found that gut microbiome composition was 
significantly different from that of healthy controls, and had a lower diversity. Use of mycophenolate 
mofetil (MMF) correlated to a lower diversity of gut flora as well. Lee et al[17] in a study looking at 26 
kidney transplant recipients found that instead of bacteroides the dominant phylum was firmicutes. The 
same group also showed significant differences in gut bacteria between kidney transplant patients that 
had post-transplant complications such as diarrhea, acute rejection and Enterococcal urinary tract 
infections vs those that did not. Similar findings were noted in pediatric kidney transplant recipients
[18].

In a study of intestinal transplant patients, ileal microbial diversity as measured by Shannon indices 
were not different between patients with and without allograft rejection however patients with acute 
graft rejection had significantly higher relative abundance of Proteobacteria and lower abundance of 
firmicutes[19]. In a study by Yuzefpolskaya et al[20], stool samples of patients who had received a heart 
transplant within the past 6 mo showed a decrease in microbial diversity.

Metabolic changes after solid organ transplant and changes in gut microbiome: New onset diabetes 
after transplant
New onset Diabetes after transplant (NODAT) is a frequent complication in solid organ transplant 
recipients. Microbiota changes have been described in these patients that were non diabetic pre 
transplant. In a study of kidney transplant recipients, the relative abundance of Akkermansia muciniphila 
decreased significantly after transplant in NODAT and in initially diabetic patients but not in controls
[21].

Viral infections after transplant
In a study of 168 kidney transplant recipients, Lee et al[22] showed that patients with high levels of 
butyrate producing gut (BPG) bacteria in their stool had a significantly decreased risk for development 
of respiratory viral infections such as rhinoviral and coronavirus infections and influenza at 6 mo, 1 year 
and 2 years post transplantation. It was also noted in the study that the higher BPG bacteria group had a 
decreased risk for development of cytomegalovirus viremia at 1 year post kidney transplantation.

The above-described studies have a number of limitations. These include small sample size and 
patient heterogeneity. The timing of sample collection after transplant also varied between studies. 
Hence the pivotal question of whether dysbiosis is merely associated with rather than directly causing 
post-transplant adverse outcomes remains unanswered.

Evidence from animal models of transplantation
Mice with allogenic skin grafts have been studied to understand immune processes during 
transplantation. It has been shown that considerable immune defects are detectable in germ-free mice 
that lack gut flora[23]. In these mice, smaller Peyer’s patches are noted and the number of CD4+ T cells 
and immunoglobulin A producing plasma cells are found to be reduced. This highlights the important 
role that gut microorganisms play in maturation and development of host immunity. In a landmark 
study, Lei et al[24] found that both germ-free and antibiotic-pre-treated mice exhibit decreased allo-
immunity and had increase in survival of skin grafts. This phenomenon was associated with reduction 
in type I interferon and nuclear factor-κB pathway activation in dendritic cells. In the same study when 
these germ-free mice had gastric inoculation of gut bacteria from conventional mice, accelerated skin 
graft rejection occurred.
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Pre-clinical studies show that both innate and adaptive immune responses are affected by gut flora
[25,26]. Intestinal epithelial cells express surface toll-like receptors on their surface and these are 
activated by binding to microbial ligands also called microbe associated molecular patterns MAMP. This 
binding suppresses the inflammatory response and promotes tolerance to normal microbiota 
components by the host immune cells. Gut flora also stimulates Treg cells which are known to play a 
role in graft tolerance. Depending on whether gut flora prime or quiesce the immune system of a mouse 
model, changes in allograft outcomes can be seen. If gut bacteria activate inflammatory pathways, this 
can hasten allograft rejection. On the other hand, induction of inhibitory pathways can dampen the 
immune response and induce tolerance. A study by Emal et al[27] showed that microbiome inflam-
mation and acute kidney injury after ischemia-reperfusion via maturation of macrophages. Conversely, 
depletion of the microbes significantly attenuated renal damage, dysfunction, and remote organ injury 
and maintained tubular integrity after ischemia-reperfusion.

A number of chemical messengers are produced in the gut lumen by microbial activity. These include 
SCFAs comprising butyrate, acetate, and propionate. Butyrate has been found to induce Tregs and 
increase interleukin-10 production and decrease proinflammatory cytokine production by colonic 
macrophages[28]. In a mouse study, antibiotics to alter gut microbiota increased rate of acute rejection of 
skin grafts[29]. This indicates that disruption of the gut microbiota during early life development may 
have persistent effects on immune regulation.

The concept of molecular mimicry
Infections occurring prior to transplant can result in several T cell receptors (TCRs) that can cross-react 
with donor self-peptides/allo-major histocompatibility complex. In other words, microbial antigens can 
mimic allo-antigens from the graft. These have the potential to generate memory T cells that can 
subsequently cause injury to the transplanted organ. Infections contracted after transplantation can 
influence ongoing allo-immunity by influencing both native and memory alloreactive T cells 
independently of TCR cross-reactivity. This can lead to Th1 differentiation and heralds the onset of 
acute rejection[30].

Therapeutic trials of modifying microbiome in a mouse model seem promising. Supplementation 
with the SCFAs sodium acetate or sodium butyrate decreased dysbiosis and afforded protection against 
allograft rejection. This protection was dependent on the G protein-coupled receptor GPR43 and T 
regulatory cells. This study could prompt future clinical trials exploring prebiotic and dietary modific-
ations in solid organ transplant recipients as a means to facilitate better long-term graft survival[31].

Microbiome and immunosuppressive drugs: A bidirectional relationship
The gut microbiome can influence pharmacokinetics of immunosuppressive medications causing either 
activation or inactivation of the drug[32,33]. Drug elimination can also be impacted by interference in 
the enterohepatic circulation by de-conjugation of liver-produced drug metabolites. Studies have shown 
that human gut bacteria are capable of metabolizing tacrolimus and MMF, the two most commonly 
used medications in solid organ transplantation. Additionally, Guo et al[34] showed that bacterial 
species belonging to the Clostridiales order convert tacrolimus into a less active metabolite. The same 
research group found that Faecalibacterium prausnitzii, a member of the Clostridiales order, was found in 
greater levels in the gut of 5 kidney transplant patients in need of higher tacrolimus doses. Gut microbes 
can also alter the expression of metabolic liver enzymes (e.g., cytochrome P450s). It is a commonly seen 
phenomenon that diarrhea in transplant patients can elevate tacrolimus levels. This effect is thought to 
be related to downregulation of intestinal cytochrome P4503A4 and P-glycoprotein activity.

Discussion
Both animal and human studies conducted thus far indicate an association between gut microbiome 
changes and distinct clinical consequences in solid organ transplant recipients. However, association 
does not imply causation and further studies are needed in this direction. The complex crosstalk 
between gut flora and immune cells of solid organ transplant recipients needs to be better elucidated in 
order to develop newer and better therapeutic strategies to improve long term graft outcomes. There 
remain challenges in designing and executing methodologically rigorous microbiome studies including 
patient heterogeneity, financial cost and distinguishing between cause, effect, and coincidental 
association.

CONCLUSION
It is clear from both animal and human studies conducted thus far that gut microbiome changes are 
associated with distinct clinical consequences in solid organ transplant recipients. The complex crosstalk 
between gut flora and immune cells of solid organ transplant recipients needs to be better elucidated in 
order to develop newer and better therapeutic strategies to improve long term graft outcomes. There 
remain significant challenges in designing and executing methodologically rigorous microbiome studies 
due to patient heterogeneity, financial cost and distinguishing between cause, effect, and coincidental 
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association.
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