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Abstract: In this review, we discuss the possibility that the glycosylation of West Nile 

(WN) virus E-protein may be associated with enhanced pathogenicity and higher 

replication of WN virus. The results indicate that E-protein glycosylation allows the virus 

to multiply in a heat-stable manner and therefore, has a critical role in enhanced viremic 

levels and virulence of WN virus in young-chick infection model. The effect of the 

glycosylation of the E protein on the pathogenicity of WN virus in young chicks was 

further investigated. The results indicate that glycosylation of the WN virus E protein is 

important for viral multiplication in peripheral organs and that it is associated with the 

strong pathogenicity of WN virus in birds. The micro-focus reduction neutralization test 

(FRNT) in which a large number of serum samples can be handled at once with a small 

volume (15 μL) of serum was useful for differential diagnosis between Japanese 
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encephalitis and WN virus infections in infected chicks. Serological investigation was 

performed among wild birds in the Far Eastern region of Russia using the FRNT. 

Antibodies specific to WN virus were detected in 21 samples of resident and migratory 

birds out of 145 wild bird samples in the region. 

Keywords: West Nile virus; Japanese encephalitis virus; flavivirus; envelope protein; 

glycosylation; pathogenicity; replication; chick; neutralizing antibody; seroprevalence 

 

1. Introduction 

The West Nile (WN) virus is a mosquito-borne flavivirus of the Japanese encephalitis (JE) 

serocomplex group that causes lethal encephalitis in humans and horses. WN virus was first isolated in 

1937 from the blood of a febrile patient in the WN district of Uganda [1]. WN virus has since been 

found to be endemic over a wide range of areas in Africa, the Middle East, Western Asia,  

and Australia [2–4]. Outbreaks of various magnitudes occurred in Israel in 1941 and 1951–1954 and in 

Africa in 1974. After that, no large outbreaks were observed for 20 years; however, from 1994 to 2000, 

WN outbreaks occurred among humans and horses [5]. Specifically, outbreaks occurred in Algeria in 

1994, in Morocco in 1996, in Romania in 1996, in Tunisia in 1997, in the Czech republic in 1997,  

in the Congo in 1998, in Italy in 1998, in Israel from 1997 to 2000, in Russia in 1999, in France in 

2000, and in the United States from 1999 to the present [6]. In the early outbreaks of the 1990s,  

the WN virus was associated only with mild pathogenicity to avian and mammalian hosts.  

However, during the latter half of the 1990s, new strains of WN virus emerged in Europe. Humans and 

horses infected with those strains frequently suffered from meningitis and encephalitis [5]. Since the 

outbreak of WN encephalitis in humans and horses in New York City (NYC) in late August 1999,  

the WN virus has spread throughout North America and has very rapidly expanded to South American 

countries. Endemic areas are still expanding. 

The WN virus endemic in North America was characterized by large-scale mortality in wild birds [7], 

particularly in corvids, a phenomenon that had not been observed before the outbreaks in New York 

City (NYC) and Israel [5]. A single nucleotide change resulting in the T249P substitution in the NS3 

helicase was reported to be associated with large-scale mortality in American crows [8]. WN virus is 

maintained in nature through an enzootic transmission cycle between avian reservoir hosts and Culex 

mosquito vectors. Viremic levels of the avian host directly affect the infection rates of vector 

mosquitoes; birds with higher viremia generate more infected mosquitoes after blood feeding [9]. 

Replication and dissemination characteristics of the virus within the mosquito vectors also affect 

transmission efficiency. 

The flavivirus envelope (E) protein is an important structural protein in virus–cell interactions,  

and it is a major target of the host-antibody responses [10]. All flaviviruses have one or two potential  

N-linked glycosylation sites on the E protein [11]. Some WN viruses contain the N-linked 

glycosylation motif (N-Y-T/S) at residues 154–156 of the E protein, whereas others lack this 

glycosylation site because of amino acid substitutions. It is interesting to note that many of the WN 

virus isolates associated with significant human outbreaks, including the recent North American 
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epidemic, possess the glycosylation site on the E protein [12]. In a previous study, we isolated four 

variants from two WN virus NYC strains using plaque purification on baby-hamster kidney (BHK) 

cells [12]. Two of the variants contained glycosylated E proteins, whereas the others contained  

non-glycosylated E proteins. To determine the relationship between E-protein glycosylation and 

pathogenicity of the WN virus, mice were inoculated subcutaneously with these four variants.  

The glycosylated variants caused higher mortality than the nonglycosylated variants in mice,  

which suggests that E-protein glycosylation is a molecular determinant of neuroinvasiveness in the NY 

strains of WN virus. Other studies also established the importance of glycosylation of flaviviruses E 

protein for viral assembly and infectivity in vitro and in vivo [12–14]. 

When an outbreak of WN virus occurred in and around NYC in 1999, many wild and exotic birds 

died, and encephalitis in humans and horses was reported [15,16]. Recently, highly pathogenic WN 

virus has been reported in Africa, America, Europe, and Russia, and it has become a public health 

concern [17]. Birds play an important role in the transmission of WN virus; thus, knowledge of the 

pathogenicity of WN virus in birds is vital for the control and prevention of infections with this virus. 

Susceptibility to WN virus varies by bird species. During the 1999 NYC outbreak, various species of 

birds died, including crows, flamingos, and eagles [18–21]. Most deaths in wild birds have been in the 

order Passeriformes (crows and jays). American crows (Corvus brachyrhynchos) [22] and young 

domestic geese (Anser anser domesticus) [23] subsequently showed high susceptibility and mortality 

with a high level of viremia when infected with NYC isolates. WN virus infection in wild birds causes 

depression, weight loss, and occasionally neurologic signs such as ataxia, tremors, and torticollis in 

highly susceptible species [21,23]. WN virus has been isolated from multiple organs, such as the brain, 

heart, spleen, liver, and kidney, and encephalitis and myocarditis have been reported [21,23–25]. 

Sequence analysis of various WN virus strains has shown that recent highly pathogenic WN virus 

isolates, such as the NYC isolate, have a glycosylation site in the E protein. Since young domestic 

chick is susceptible to WN virus [26], it is important to evaluate the pathogenicity of glycosylated and 

nonglycosylated WN virus variants in chicks in detail. 

After the outbreak of WN encephalitis in humans and horses in NYC in 1999, WN virus has spread 

throughout North America very rapidly [5]. In European Russia, WN virus was first isolated from 

humans and ticks in 1963. In 1999, 318 confirmed cases of human infection with WN virus were 

reported in the Volgograd Region, resulting in 40 deaths [27,28]. In 2004, WN virus was reported in 

patients in Novosibirsk in the southwest region of Siberia [29]. West Nile virus has shown a tendency 

to spread eastward through Russia. It is possible that migratory birds have carried the virus from Far 

East Russia to East Asian countries during migration. The JE virus is endemic to East Asia.  

Although pigs are the amplifier hosts of the JE virus, wild birds may serve as the reservoir host. JE and 

WN viruses are closely related and often display serological cross-reactivity [30,31]. The geographical 

distributions of JE and WN viruses rarely overlap; however, as WN virus continues to spread,  

both viruses may infect wild birds, which are a common host. Therefore, a diagnostic test that can 

distinguish between WN and JE virus infections is required. Plaque reduction neutralization test 

(PRNT) is the golden standard for the specific antibody detection in flavivirus infections.  

However, PRNT requires certain amount of serum and is not suitable for serological survey. The micro 

focus reduction neutralization test (FRNT) method has several advantages over the PRNT; a large 

number of serum samples can be handled at once and the test can be performed on a small volume  
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(15 μL) of serum. To investigate cross-reactivity to heterologous virus infection in micro FRNT, an 

infection experiment was performed by inoculation of WN or JE virus to chicks. The seroprevalence of 

WN virus among wild birds in the Far Eastern region of Russia was investigated using the FRNT. 

2. Increased Pathogenicity of West Nile Virus by Glycosylation of Envelope Protein in Chicks 

Previously, we plaque-purified four WN virus variants that had different amino acid sequences at 

the N-linked glycosylation site in the E-protein sequence [12]. The E protein was glycosylated in two 

of these strain variants. The glycosylated variants produce large plaques (LP), and the nonglycosylated 

variants produce small plaques (SP) in BHK cells. The LP variants are more pathogenic in mice than 

are the SP variants [12]. Most of the strains occurring before the 1990s and some of the low pathogenic 

strains do not have the N-glycosylation site, whereas many of the highly pathogenic strains that 

emerged recently have the N-glycosylation site [12]. A rare WN virus isolated in Mexico lacks the 

glycosylation site on the E protein, and it was shown to have reduced pathogenicity in mice [32].  

N-linked glycosylation of the WN virus E protein was previously shown to be responsible for 

enhanced neuroinvasiveness of the virus in a mouse model [12,14,33]. However, few studies [34] have 

been conducted to determine the role of glycosylation of the E protein in WN virus dynamics in birds 

and mosquitoes, both natural hosts of the virus. We found that young chicks can serve as a model to 

study the pathogenicity of WN virus in avian hosts [26]. Subcutaneously injected LP variants resulted 

in a much higher mortality rate (LD50 < 0.1 PFU) than SP variants (Figure 1), suggesting that 

glycosylation of the E protein of WN virus is a determinant of pathogenicity in chicks that have been 

peripherally inoculated.  

Figure 1. Survival curves of young chicks subcutaneously inoculated with WN virus  

6-LP (A) and 6-SP (B) variants. Two days old male chicks were inoculated with 10−1 (○),  
100 △( ), 101 (☐), 102 (●), 103 (▲) and 104 (■) PFU of 6-LP, and 102 (●), 103 (▲), 104 (■) 

and 105 (×) PFU of 6-SP. Chicks were observed daily for health conditions. The number of 

chicks used was 5 for each variants. 

 

Histopathological findings in dead chicks included necrosis in hepatocytes and necrotic 

myocarditis, and cardiovascular failure was the suspected cause of death in these birds (Figure 2). 

These histopathological changes were also seen in birds that had been naturally infected with WN 

virus [35]. Efficient viral propagation both in avian and mosquito hosts is an important determinant of 

active viral circulation in the natural transmission cycle. The viremic levels of chicks inoculated with 

LP variants were higher than those inoculated with SP variants (Figure 3). The viremic titers of chicks 
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inoculated with LP variants exceeded 105 plaque forming unit (PFU)/mL blood during 2–4 days post 

inoculation. Previous studies showed that avian viremic levels higher than 105 PFU/mL are crucial for 

the efficient infection of vector Culex tritaeniorhynchus mosquitoes [9]. These results showed that  

N-linked glycosylation of WN virus E protein is a determinant of high viremic levels in young chicks 

and suggest that glycosylated WN-virus variants may be more efficiently transmitted to vector 

mosquitoes than non-glycosylated variants because of higher viremia in infected birds. 

Figure 2. Histopathological and immunohistochemical findings of the 6-LP infected young 

chicks. (A) Photomicrograph of marked necrosis of myocytes of heart from a young chick 

with WN virus infection. HE stain. (B) Myocytes of heart are positively stained for WN 

virus antigen. 

 

Figure 3. Viremic levels of young chicks subcutaneously inoculated with WN virus 

variants. Young chicks were inoculated with WN virus variants, 6-LP (▲) and 6-SP (●) in 
experiment (A), and B-LP (△)and B-SP (○) in experiment (B). Two days old chicks were 

inoculated with 100 PFU of all variants (n = 4). The virus titers in sera were measured by 

plaque assay on BHK cells. Mean (±SD) titers are from triplicate cultures. 

 

2.1. Increased Replication of Glycosylated WN Virus Variant in Vitro 

To explain the differences in viremic titers of chicks inoculated with the two variants,  

growth characteristics of the LP variant, which is glycosylated, and the SP variant, which is not 
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glycosylated, were examined in tissue culture cells at different temperatures. The results suggest that 

glycosylation of the E protein imparted heat stability to WN virus during propagation in cells at high 

temperature (data not shown). We tested three kinds of cultured cells, namely BHK cells from a 

mammalian host, QT6 cells from an avian host, and C6/36 cells from mosquitoes, each representing an 

important host in the natural transmission cycle of WN virus. Viral growth characteristics were examined 

by culturing the cells at different temperatures. Compared with LP variants, SP variants showed a 

remarkable reduction in viral growth in BHK cells at 37 °C and 40 °C and in QT6 cells at 40 °C and  

42 °C [26]. Reduction rates of viral titers in the culture media without cells were not significantly different 

between SP and LP variants. Collectively, differences in the heat-stable characteristics of the LP variants 

and the heat-labile characteristics of the SP variants in BHK cells and QT-6 cells at high temperatures 

depended on the glycosylation status of the E protein of the variants, which affected the viral-replication 

steps within the cells. In contrast, no significant differences in viral titers were observed between the 

LP and SP variants when Culex pipiens mosquitoes were inoculated intrathoracically with each variant 

(Figure 4) [26]. The disseminated infection rates of mosquitoes orally infected with the variants did not 

show any difference between the LP and SP variants (Table 1). Moreover, there were no differences in 

the propagation of the two variants in C6/36 cells at various temperatures. The results suggest that the 

glycosylation status of the E protein may not affect viral propagation and dissemination in mosquitoes. 

The similar in vitro replication properties were also observed in WN virus NYC strains with 

glycosylated and nonglycosylated E protein generated by reverse genetic technology [36]. 

Figure 4. Virus titer of WN virus variants in Culex pipiens pallens. Seven days old female 

mosquitoes (n = 4) were inoculated intrathoracically with 100 PFU of all variants.  

The virus titers in mosquito bodies were measured by plaque assay on BHK cells. The virus 
titers of 6-LP (▲) and 6-SP (●) were shown in (A) and those of B-LP (△) and B-SP (○) were 

shown in (B). 

 

Table 1. Disseminated infection rates of Culex pipiens during peroral infection 

experiments with WN virus. 

WN virus 
variant 

Virus dose (PFU) 

107 106 105 
6-LP 10/10 * 9/9 5/6 
6-SP 6/6 11/11 4/10 

Note: * Number of virus positive mosquitoes; / Number of inoculated mosquitoes, Mosquitoes were fed upon blood-virus 

mixture and kept at 28  for 13 days, harvested and titrated for virus on BHK cell plaque assay. 
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We previously examined the role of the N-linked glycans of E protein in tick-borne encephalitis 

(TBE) virus particle secretion using subviral particles [13]. Secretion of virus particles was greatly 

reduced in culture cells transfected with mutant vectors that have an amino acid substitution of T156A 

in the E protein, and the study also suggested that the reduced particle secretion is caused by glycan 

loss rather than to the amino acid substitution per se. The amino acid substitution of T156A in TBE 

virus is similar to that of S156P in WN virus in terms of amino acid characteristics, and both mutations 

altered the protein such that it would not be recognized by oligosaccharyl-transferase [37]. 

Collectively, the observed differences between LP and SP variants are most likely caused by glycan 

loss on the E protein rather than to the amino acid substitutions. Our previous study [13] using a 

subviral system of tick-borne encephalitis virus showed that a mutant lacking E-protein glycosylation 

has a large reduction in the level of secretion of the E protein; the E protein is retained at the 

endoplasmic reticulum and is rarely present in the Golgi complex. In the dengue virus,  

this glycosylation at aa154 occurs in E-protein domain I, close to the center of the fusion peptide of  

E-protein domain II, and glycosylation of the E protein is considered to increase the stability of the 

protein [38,39]. Glycosylation of the E protein of WN virus may also be important for the folding and 

stability of the viral protein at high temperatures. 

Mutations of NS3 or NS4B of the NY strain of WN virus were reported to be responsible  

for the increased pathogenicity and viremic level in avian or mammalian hosts [8,40]. Importantly,  

the introduction of a T249P amino acid in NS3 helicase was shown to be crucial for the above-mentioned 

viral characteristics. We showed that N-glycosylation of the E protein facilitated efficient 

multiplication of the NY strain of WN virus at high temperatures in an avian cell culture, and it was 

responsible for the higher viremic level in an avian host. The observation that most recent isolates of 

lineage I WN virus carry the N-glycosylation site on the E protein [12] suggests that glycosylation of the 

E protein is a pre-requisite for the stable circulation of WN virus in the avian–mosquito transmission 

cycle, and it may be one of the multiple determinants for efficient transmission. However, there may be 

other factors for efficient WN virus transmission in nature. In the 1980s, Kunjin (KUN) viruses, which 

are an Australian variant of WN virus, were not glycosylated in E protein [41], while in the 1990s 

glycosylated KUN virus isolates were found [42,43]. Russian WN virus isolated in 1999 at Volgograd 

was also nonglycosylated [28]. The circulating virus strains may be influenced by environmental factors 

such as vectors and host species as well as the existence of other WN virus strains. 

2.2. Replication of WN Virus and Cytokine Responses in Infected Chicks 

Birds play an important role in the transmission of WN virus in nature; however, the pathogenicity 

of this virus in birds remains unclear. Thus, understanding the transmission and pathogenicity of WN 

virus in birds is vital for the establishment of efficient preventive measures. Young domestic chicks 

were infected with WN virus, and the effect of E protein glycosylation on pathogenicity was 

determined. The glycosylated variant caused high viremia (>105 PFU/mL) in 2-day-old chicks,  

and high levels of virus were detected in the hearts, spleens, and kidneys (Figure 5) [44]. In contrast, 

lower viremia and low levels of virus in organs were observed in chicks infected with the 

nonglycosylated variant (Figure 5). These data indicated that the glycosylation of the E protein is 

important for multiplication in peripheral organs. High levels of viremia were also reported in American 
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crows [9,22]. Previous studies [45] have shown that avian viremic levels exceeding 105 PFU/mL are 

crucial for efficient infection of the insect vector, Culex pipiens mosquitoes. Therefore, these data 

indicate that young domestic chicks may contribute to the transmission of WN virus in nature. 

Figure 5. Viral titers in the serum (A), hearts (B), spleens (C), kidneys (D), brains (E),  
and livers (F) of 2-day-old chicks infected with 6-LP (○) or 6-SP (◆). Chicks were infected 

with 102 PFU subcutaneously (s.c.) in the femoral region, and blood and tissues were 

collected at 2 and 6 days post infection (d.p.i.). Virus titers were determined by plaque assay 

using BHK-21 cells (n = 5 or 6). Individual and mean PFU values are represented by 

symbols and bars, respectively. When mean values were calculated, the titers of samples 

below the detection limit (103 PFU/mL) were considered to be 3.0. Error bars indicate 

standard deviations. p-values were calculated using unpaired Student t-tests. 
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The highest virus titers were detected in the heart of chicks infected with 6-LP (Figure 5),  

and severe necrotic myocarditis in the hearts of 2-day-old chicks infected with 6-LP were observed [26]. 

WN virus multiplication and various degrees of cardiac lesions have been reported in dead wild  

birds [21,25]. These data indicate that the heart is one of the major targets of WN virus in birds.  

Virus was also detected in the spleens and kidneys of dead wild birds and in young chicks 

experimentally infected with WN virus. Thus, viral multiplication in peripheral organs, particularly the 

heart, contributes to the pathogenicity of WN virus in birds. 

No virus was detected in the brains, and no neurologic signs were observed in 2-day-old chicks 

infected with WN virus. Encephalitis has been reported in WN virus-infected mammals [46,47] and 

several species of birds (e.g., American crows [22] and young domestic geese [23]. These differences 

indicate that the neuroinvasiveness of WN virus varies depending on the species. 

Higher levels of virus were detected in the blood and peripheral organs of 2-day-old chicks infected 

with the glycosylated WN virus variant. Glycosylation of the E protein has been reported to enhance 

viral multiplication in mammalian and avian cells [12,14,26,34] and to be involved in the stability  

of the virion at mildly acidic pH [14]. In a mouse model, glycosylated WN virus caused stronger  

viremia and higher neuroinvasiveness than did nonglycosylated WNV, resulting in the enhanced  

virulence [12,14]. Glycosylation of the E proteins was shown to increase mortality in young domestic 

chicks [26]. In addition, Mexican WN virus strain lacking the glycosylation site in E protein exhibited 

lower level of viremia and an attenuated phenotype [48]. The Mexican WN virus mutated by reverse 

genetics having the glycosylation site in E protein together with a mutation in pre-membrane gene 

showed higher viremic level and higher pathogenicity in wild birds. Therefore, glycosylation of the E 

protein of WN virus enhanced viral multiplication in peripheral organs, leading to the strong 

pathogenicity of the virus in birds. 

Host immune responses were not significantly different in 2-day-old and 3-week-old chicks after 

infection with either 6-LP or 6-SP. No difference was observed in induction of neutralizing antibodies 

in chicks infected with glycosylated and nonglycosylated WN viruses (Figure 6). In addition,  

mRNA levels of cytokines and transcription factors such as IFN-α, LITAF, TNFSF15, IL-1β, IL-6,  

and IFN- were equivalent between chicks infected with glycosylated and nonglycosylated viruses  

(Figures 7–9). In several mouse model studies, the involvement of various proinflammatory cytokines 

in pathogenicity has been reported, such as immune-mediated tissue damage caused by the expression 

of TNF-α [49] and the protection against WN virus by TNF-α [50], IFN-γ [51], and IFN-α/β [52]. 

However, our data indicate that the immune response may not affect the pathogenicity of, or protection 

against, WN virus infection in birds. Since the cytokine response to viral infection in birds is not  

well understood, it is possible that other cytokines or chemokines are involved in the response to  

WN virus infection. 

No virus was detected in the blood and organs of 3-week-old chicks, although neutralizing 

antibodies and cytokine responses were induced. These data indicate that the virus was cleared at an 

early stage of infection, prior to multiplication in organs. A similar low susceptibility to WN virus was 

reported in older chicks and adult chickens [17,53,54]. It is thus possible that susceptibility to WN 

virus changed as the chicks grew, leading to lower viral multiplication. 
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Figure 6. Primary neutralizing antibody responses in chicks inoculated with WNV  

6-LP or 6-SP. Two-day-old (A) and 3-week-old (B) chicks (n = 3–6) were inoculated with 
102 PFU of WNV 6-LP (○) or 6-SP (◆). WNV neutralizing antibody titers were then 

measured by PRNT80. Individual and mean PRNT80 titers are represented by symbols and 

bars, respectively. When mean values were calculated, the titers of samples under the 

detection limit were considered to be 20. 

 

Figure 7. Cytokine and transcription factor mRNA levels in the hearts of 2-day-old chicks 

inoculated with WNV 6-LP or 6-SP. Chicks were infected with 102 PFU of virus 

administered subcutaneously in the femoral region, and tissues were collected at 2 and 6 d.p.i. 

Total RNA was then extracted and cDNA synthesized. SYBR Green-based quantitative 

real-time PCR was performed using the synthesized cDNA. Relative quantification of 

cytokine gene expression was done using the CT method. The CT data for each cytokine 

were normalized against the b-actin levels in the same sample. * and ** indicate 

statistically significant differences (* p, 0.01; ** p, 0.05) in cytokine and transcription 

factor mRNA levels compared with mock-infected chicks. 
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Figure 7. Cont. 

 

Figure 8. Cytokine and transcription factor mRNA levels in the spleens of 2-day-old chicks 

inoculated with WNV 6-LP or 6-SP. Chicks were infected with 102 PFU of virus administered 

subcutaneously in the femoral region, and tissues were collected at 2 and 6 days post infection 

(d.p.i.). Total RNA was then extracted and cDNA synthesized. SYBR Green-based 

quantitative real-time PCR was performed using the synthesized cDNA. Relative 

quantification of cytokine gene expression was done using the CT method. The CT data for 

each cytokine were normalized against the b-actin levels in the same sample. * and ** 

indicate statistically significant differences (* p, 0.01; ** p, 0.05) in cytokine and 

transcription factor mRNA levels compared with mock-infected chicks. 
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Figure 9. Cytokine and transcription factor mRNA levels in the spleens of 3-week-old 

chicks inoculated with WNV 6-LP or 6-SP. Chicks were infected with 102 PFU 

subcutaneously (s.c.) in the femoral region, and tissues were collected at 2 and 6 days post 

infection (d.p.i.). Total RNA was extracted and cDNA synthesized. SYBR Green-based 

quantitative real-time PCR was performed using the synthesized cDNA. Relative 

quantification of cytokine gene expression was done using the CT method. The CT data for 

each cytokine were normalized against the b-actin levels in the same sample. * Statistically 

significant differences (p < 0.01) in cytokine and transcription factor mRNA levels 

compared with mock-infected chicks. 

 

 

In summary, the glycosylated variant of WN virus was highly pathogenic in 2 day-old chick, 

indicating the utility of the young chick model of WN virus infection. Glycosylation of the E protein 

was shown to enhance viral multiplication in the blood and peripheral organs, which is itself associated 

with high pathogenicity. These findings will contribute to a greater understanding of WNV 

pathogenicity in birds and will facilitate more effective control measures and the prevention of WN 

virus infection. 

2.3. Establishment of Micro-Focus Reduction Neutralization Test to Detect Antibodies to WN Virus 

In recent years, the geographic distribution of WN virus has expanded rapidly to various parts of the 

world [5]. When WN virus spreads to a non-endemic area, a differential diagnosis with a closely 

related flavivirus is required. The JE virus, which belongs to the same serocomplex as WN virus,  
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is distributed throughout East Asian countries, and the viruses are serologically cross-reactive [30,31]. 

Therefore, micro focus reduction neutralization test (FRNT) was evaluated for effective differential 

sero-diagnosis of JE and WN virus infection in birds. 

Young chicks were used for the WN virus infection experiment, as a model of wild birds [9,17,53,54]. 

Although wild birds are natural hosts of JE virus, similar to WN virus, few instances of JE virus 

infection in birds have been reported [55,56]. Two-day-old chicks were inoculated with WN or JE 

virus and blood were collected. Viremia was measurable in all inoculated chicks with the maximum 

viremia titer reached 104 PFU/mL. These results suggest that the young chicks infected with JE virus 

or WN virus were an effective animal model for infection by both viruses. 

Next, we inoculated 2-day-old and 3-week-old chicks with JE or WN virus and measured the 

antibody response. After single-virus infection, only neutralizing antibodies specific to the homologous 

virus were detected in the chicks (Figure 10). In 3-week-old chicks, the antibody responses were low 

compared with those of the 2-day-old chicks. Adult galliformes have a low susceptibility to WN virus, 

and viremia titers in these birds have been reported to be lower than those of young birds [57,58]. 

Because the 3-week-old chicks were older, the immunological response to JE virus infection in these 

birds was weaker than in 2-day-old chicks, but in this study, antibody titers sufficient for evaluation of 

the FRNT were obtained. Most sera from the infected chicks showed 4-hold or greater FRNT titers to 

the homologous viruses. We, therefore, adopted 4-hold or greater difference in FRNT titer as the 

standard for the specific antibody to either to WN or JE virus. To study the effect of heterologous virus 

infection, a double-infection experiment was conducted. Two-day-old chicks were inoculated with JE 

or WN virus, and challenged with the other virus after 3 weeks.  

Figure 10. Primary neutralizing antibody responses in chicks inoculated with Japanese 

encephalitis (JE) and West Nile (WN) viruses. Two-day-old chicks (n = 4) were inoculated 

with 100 plaque forming units (PFU) of (A) JE virus and (B) WN virus,  

and 3-week-old chicks (n = 4) were inoculated with 1,000 PFU of (C) JE virus and  
(D) WN virus. Anti-JE virus (◇) and -WN virus (●) neutralizing antibody titers were 

measured by FRNT80 and are expressed as the mean ± SD. 

 
Days post inoculation (age of clicks in day). 
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Regardless of which virus was inoculated first, booster immune responses to both homologous and 

heterologous virus were observed after challenge inoculation (Figure 11). However, it was difficult to 

judge which virus had infected first, or how many times the chicks were exposed to the viruses,  

based on the NT. 

Figure 11. Neutralizing antibody responses in chicks after a secondary challenge with 

heterologous viruses. Two-day-old chicks (n = 4) were inoculated with 100 plaque forming 

units (PFU) of primary viruses: (A) Japanese encephalitis (JE) virus, (B) West Nile (WN) 

virus. After 3 weeks, the chicks (23 days old) were inoculated again with 1,000 PFU of 
heterologous virus: (A) WN virus, (B) JE virus. Anti-JE virus (◇) and -WN virus (●) 

neutralizing antibody titers were measured by FRNT80 and are expressed as the mean ± SD. 

 

These results are in agreement with a previous report of combined infections with WN virus and  

St. Louis encephalitis (SLE) virus [59–61], in which the differential diagnosis of those closely related 

viruses was demonstrated to be very difficult. Fang and Reisen [60] reported that infection with SLE 

virus after recovery from WN virus infection in house finches elicited a consistent and significant rise 

in WN virus PRNT titers, but not SLE virus PRNT titers, perhaps because protective immunity 

prevented the immunologic response associated with a second viremia episode (“original antigenic 

sin”). This description fits well with our results for infection with JE virus after recovery from WN 

virus infection.  

Although it is difficult to distinguish the specific flavivirus neutralizing antibodies in multiple 

infections with heterologous viruses, micro FRNT is able to differentiate antibodies against WN virus 

and JE virus in single infection. Therefore, micro FRNT is a quite useful method to conduct 

serological survey in the area where WN and JE viruses are both prevalent. 

3. Seroprevalence of WN Virus in Wild Birds in Far Eastern Russia 

Field surveys were conducted in Far East Russia in 2005 and 2006 to know the seroprevalence of 

WN virus in wild birds using micro FRNT. Neutralizing antibody to WN virus was identified in 21 

serum samples taken from 145 wild birds (14.5%) (Table 2) [62]. Birds that were positive for 

antibodies to WN virus were in the orders Anseriformes, Charadriiformes, Columbiformes,  

and Pelecaniformes. Birds in these orders are known to support WN virus propagation with high levels 

of viremia, and to serve as efficient amplifying hosts for the transmission of WN virus to mosquitoes [9]. 

The JE virus is endemic to East Asia, and is closely related to WN virus. These viruses often show 
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antigenic cross-reactivity in serological tests [30,31]. Therefore, WN virus-positive samples were 

further tested for the neutralizing antibody to JE virus. The majority of WN virus-positive sera were 

negative for neutralizing antibody against the JE virus. These data indicate that the positive results of 

the FRNT for WN virus were caused by antibodies specific to WN virus infection and not because of 

cross-reactivity with antibodies produced by JE virus infection.  

Table 2. Seroprevalence of wild birds collected in Far Eastern Russia (2005–2006) with 
WNV and/or JEV neutralizing antibodies. 

Area/Year Bird Species (Order) 

No. of 

WNV-

Positive/Tested 

Sera 

Positive 

for Anti-WNV

Antibodies % 

FRNT80 Titer * Range 

WNV JEV 

Khanka 

Lake/2005 
Anas poecilorhyncha (Anseriformes) 1/1 100 160 40 

Larus ridibundus (Charadriiformes) 1/1 100 160 80 

Streptopelia orientalis (Columbiformes) 1/1 100 1,280 <40 

Five other species 0/23 0 <160 NT † 

Anyui 

River/2005 

Histrionicus histrionicus 

(Anseriformes) 
3/13 23.1 160–320 40 

Four other species 0/11 0 <160 NT 

Khanka 

Lake/2006 
Anas poecilorhyncha (Anseriformes) 1/2 50.0 160 40 

Mergus serrator (Anseriformes) 1/8 12.5 160 <40 

Sterna hirundo (Charadriiformes) 2/13 15.4 160–320 40–320 

Columba livia (Columbiformes) 1/1 100 320 80 

Streptopelia orientalis (Columbiformes) 4/9 44.4 1,280–2,560 80 

Three other species 0/8 0 <160 NT 

Chor 

River/2006 
Anas poecilorhyncha (Anseriformes) 2/9 22.2 160 40–80 

Mergus serrator (Anseriformes) 2/22 9.1 160–640 40–80 

Phalacrocorax carbo (Pelecaniformes) 2/9 22.2 160 40 

Twelve other species 0/14 0 <160 NT 

Total 21/145 14.5 <160–2,560 <40–320

Note: * FRNT80, 80% focus reduction neutralization test; WNV, West Nile virus; JEV, Japanese encephalitis virus; † NT, Not tested. 

All of the rock doves ( Columba livia ) tested and some eastern turtle doves (Streptopelia orientalis), 

which are resident birds, had WN virus antibodies and were probably infected with the virus near 
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Khanka Lake. Because Khanka Lake lies far to the east of where WN was first isolated in Russia,  

the WN virus appears to have been transmitted among wild birds in Far Eastern Russia. The other WN 

virus-positive birds identified in this study were spotbills (Anas poecilorhyncha), harlequin ducks 

(Histrionicus histrionicus), red-breasted mergansers (Mergus serrator), black-headed gulls  

(Larus ridibundus), and common terns (Sterna hirundo), which are all migratory birds, therefore it is 

possible that these birds were infected with the WN virus in Far Eastern Russia and carried the virus 

into other regions of East Asia. In the Asia-Pacific region, migratory water birds typically display 

north-south flying patterns [63]. Long-distance migratory birds use three flyways, the Central  

Asian-Indian, East Asian-Australasian, and West Pacific flyways. Among the WN virus  

antibody-positive bird species, the common tern (Sterna hirundo) is a long-distance migratory species 

that may migrate between Far East Russia and Australasia. The possibility that the WN virus-positive 

antibodies in common tern might be the result of the Kunjin virus infection could not be excluded 

because of the limitation of the neutralization test. Recent studies of migration routes of mallard  

(Anas platryhynchos) determined by satellite telemetry have shown that besides the northward flyway 

from Japan to Russia, a northwestward flyway also exists in Far East Russia [64]. In Japan, WN virus 

activity has not yet been detected. In the metropolitan area of Tokyo from 2002 to 2006, a total of 

7,281 mosquitoes and 139 crow samples (blood, brain, kidney, and spleen) were tested for WN virus 

RNA, and none of them were positive [65]. In Hokkaido, we also collected about 100 individual wild 

birds, including crows and sparrows, which were found dead. Kidneys and brains of these birds were 

tested for WN virus RNA using real-time PCR and none of them were positive [66]. 

The results of this study suggest that WN virus is distributed throughout Far Eastern Russia and that 

it may spread to East Asian countries with the migration of wild birds. To prepare for the introduction 

of WN virus to East Asia, the development of a diagnostic test that can accurately differentiate 

between WN and JE virus infection is needed. In addition, continued epizootiological evaluation of 

WN virus infection among birds and humans in Far Eastern Russia and East Asia will be important for 

monitoring the spread of the disease. 

4. Conclusions 

WN virus causes serious problems in public health since a large numbers of patients with  

severe encephalitis are reported in various regions of the World. The distribution of the virus is still  

expanding [67] and the epidemic sometimes upsurges in endemic countries. From 1999 through 2012, 

a total of 16,196 patients with WN virus neuroinvasive disease were reported and 1,549 patients died 

in the United States [68]. There is no vaccine for humans and the distribution of WN virus may expand 

to the area where JE virus is prevalent. Therefore, surveillance using appropriate methods is quite 

important to know the risk of WN virus infection. Micro FRNT may be a quite useful method to detect 

WN virus infection in birds and humans in the regions where JE virus is prevalent, especially in 

eastern Asian countries. 

The highly pathogenic WN virus appeared to emerge in the late 1990s and the glycosylation in  

E protein may be one of the factors of increased pathogenicity of WN virus. The virus replication in 

birds is enhanced by the glycosylation of E protein and it may result in the increased transmissibility 
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among bird population and higher pathogenicity in birds. It is quite important to know that only one 

amino acid substitution of the virus may influence the distribution and pathogenicity of WN virus. 

Apparently, there is a strong need for vaccine and specific treatments to WN virus infection.  

To develop these specific measures to WN virus infection, basic research for understanding the 

replication and pathogenicity of West Nile virus should be further encouraged. 
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