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Abstract

Natural killer (NK) cell secretory lysosome exocytosis and cytotoxicity are impaired in familial hemophagocytic
lymphohistiocytosis type 4 (FHL-4), a disorder caused by mutations in the gene encoding the SNARE protein syntaxin
11. We show that syntaxin 11 binds to SNAP23 in NK cells and that this interaction is reduced by FHL-4 truncation and
frameshift mutation proteins that delete all or part of the SNARE domain of syntaxin 11. In contrast the FHL-4 mutant
proteins bound to the Sec-1/Munc18-like (SM) protein Munc18-2. We demonstrate that the C-terminal cysteine rich region
of syntaxin 11, which is deleted in the FHL-4 mutants, is S-acylated. This posttranslational modification is required for the
membrane association of syntaxin 11 and for its polarization to the immunological synapse in NK cells conjugated to target
cells. Moreover, we show that Munc18-2 is recruited by syntaxin 11 to intracellular membranes in resting NK cells and to the
immunological synapse in activated NK cells. This recruitment of Munc18-2 is abolished by deletion of the C-terminal
cysteine rich region of syntaxin 11. These results suggest a pivotal role for S-acylation in the function of syntaxin 11 in NK
cells.
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Introduction

Natural killer (NK) cells are specialized immune cells that

eliminate pathogen infected and tumorigenic cells [1]. Target cell

killing is mediated by the secretion of perforin and granzymes,

which are stored within the secretory lysosomes of NK cells [2–4].

The recognition of a target cell induces the formation of an

activating immunological synapse at the contact site of the two

cells [4,5]. Secretory lysosomes are polarized towards the

immunological synapse, where they fuse with the plasma

membrane releasing their cytotoxic contents [4–6]. The pore

forming protein perforin then facilitates the entry of pro-apoptopic

granzymes into the target cell cytoplasm resulting in cell death

[2,3].

NK cell cytotoxicity is severely impaired in the hematological

disorder familial hemophagocytic lymphohistiocytosis (FHL).

Subtypes 4 (FHL-4) and 5 (FHL-5) are caused by the mutation

of genes encoding syntaxin 11 and Munc18-2 respectively [7–16].

Analysis of NK cells isolated from subjects with FHL-4 and FHL-5

revealed a defect in secretory lysosome exocytosis [8,10–16]. In

these cells recognition of a target cell causes secretory lysosomes to

polarize to the activating immunological synapse, but they are

unable to fuse with the NK cell plasma membrane and cannot

release their contents [8,10–16].

Syntaxin 11 is a soluble N-ethylmaleimide (NEM)-sensitive

factor attachment protein receptor (SNARE), a class of proteins

that catalyse membrane fusion reactions by forming trans-SNARE

complexes that bridge opposing membranes [17,18]. It is

abundant in the immune system and is expressed by B

lymphocytes, cytotoxic T lymphocytes (CTLs), dendritic cells,

mast cells, monocytes, macrophages, NK cells and neutrophils

[19–26]. In addition to a role in secretory lysosome exocytosis in

NK cells, syntaxin 11 has been reported to be required for the

exocytosis of secretory organelles in CTLs, neutrophils and

platelets [26,27], whereas in macrophages it inhibits phagocytosis

and regulates late endosome-lysosome fusion [21,28]. Despite its

role in exocytosis of secretory lysosomes by NK cells, syntaxin 11

does not co-localize with secretory lysosomes in resting NK cells

[20,29], but it is polarized to the immunological synapse when NK

cells are activated by conjugation to target cells [29]. Furthermore,

syntaxin 11 interacts with Munc18-2 [12,13,23,30], a member of

the Sec-1/Munc18-like (SM) family of proteins whose members
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regulate SNARE-mediated membrane fusion reactions [18]. SM

proteins also chaperone syntaxins, regulating the level and

localization of these SNAREs [31–36]. This chaperone function

is evident in FHL-5, in which mutations in Munc18-2 result in a

pronounced reduction in the level of syntaxin 11 [12,13,23]. In

contrast, how mutations associated with FHL-4 result in the loss of

function of syntaxin 11 in NK cells is poorly understood.

Herein we dissect the molecular basis for FHL-4 by examining

how disease-associated mutations affect the interaction of syntaxin

11 with other proteins and cellular membranes. FHL-4 deletion

and frameshift mutations result in the abrogation of secretory

lysosome exocytosis and the consequent loss of NK cell

cytotoxicity [7–11]. We show that these FHL-4 mutations have

differential effects on SNARE binding by syntaxin 11, but the

FHL-4 mutant proteins retain a Munc18-2 binding site. More-

over, syntaxin 11 is S-acylated in NK cells and this is dependent on

the C-terminal cysteine rich region, which is deleted in all of the

FHL-4 mutants characterized. This posttranslational modification

is required for the membrane association of syntaxin 11 and for

the polarization of this protein to the immunological synapse. We

also show that syntaxin 11 recruits Munc18-2 to intracellular

membranes and that this is dependent on the cysteine rich region

of syntaxin 11. Together these findings demonstrate an important

role for S-acylation in the function of syntaxin 11 in NK cells.

Materials and Methods

Antibodies
The following antibodies were used: rabbit anti-syntaxin 11

(Proteintech Group Inc), mouse polyclonal anti-syntaxin 11

(Abcam), rabbit anti-synaptosomal-associated protein, 23 kDa

(SNAP23, Synaptic Systems), mouse anti-glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH, clone 6C5, Abcam), rabbit anti-

calreticulin (Calbiochem), mouse anti-Myc epitope tag (clone

9E10, Sigma Aldrich) and rabbit anti-calnexin (Stressgen).

DNA constructs
(i) Syntaxin 11 green fluorescent (GFP) fusions. A

construct encoding a GFP fusion of the wild type human syntaxin

11 (pEGFP-C3-syntaxin 11) was generated by PCR through

extension of the truncated syntaxin 11 open reading frame in

pCMV-Tag3a-syntaxin 11 (a kind gift from Dr R. Prekeris) using

the oligonucleotides 59syn11 and 39Syn11, the resultant PCR

product was then inserted into pEGFP-C3 (Clontech) at the Xho I

and Eco RI sites. A GFP fusion of the syntaxin 11-Q268X mutant

was generated by PCR using pEGFP-C3-syntaxin 11 as a template

and the oligonucleotides 59Syn11 and 39Q268X, the resultant

PCR product was cloned into pEGFP-C3 at the Xho I and Eco RI

sites. The GFP fusion of the N-terminal deletion syntaxin 11DN24

was cloned by amplifying pEGFP-C3-syntaxin 11 with the

oligonucleotides 59Syn11DN24 and 39Syn11 and cloning the

resultant product into pEGFP-C3. The cysteine mutant syntaxin

11C5A was cloned by amplifying pEGFP-C3-syntaxin 11 with the

primers 59Syn11 and 39Syn11C5A and cloning the resultant

product into the Xho I and Eco RI sites of pEGFP-C3.

Oligonucleotide sequences are provided in Table 1.

(ii) Syntaxin 11 Glutathione S-transferase (GST)

fusions. A GST fusion construct of the wild type human

syntaxin 11 (pGEX4T.1-syntaxin 11) was cloned by PCR

amplification of the syntaxin 11 sequence using pEGFP-C3-

syntaxin 11 as a temple and the oligonucleotides 59Syn11GST and

39Syn11GST. The resultant PCR product was inserted into the

Xho I and Eco RI sites of pGEX4T.1 (GE Life Sciences). The

cloning of a GST fusion of syntaxin 11 Q268X was identical to

that of the wild type sequence except that the oligonucleotide

39Syn11Q268XGST was used instead of 39Syn11GST. Con-

structs encoding GST fusions of the syntaxin 11 mutants

L194fsX2, V124fsX60, T37fsX62 and E25X were generated

using the QuikChange site-directed mutagenesis kit (Stratagene) as

per the manufacturer’s instructions using pGEX4T.1-syntaxin 11

as a template and the sense oligonucleotides L194, V124, T37 and

Table 1. Oligonucleotide sequences.

Oligonucleotide Sequence

59Syn11 ATATCTCGAGACCATGAAAGACCGGCTAGCAGAACTTCTGGACTTGTCC

39Syn11 ATATGAATTCTACTTGAGGCAGGGACAGCAGAAGCAGCAGAGGGTCCGGCAGGGGTTCTTCTCCTCGTACTGCACGCCTTCCGCACCTGCGCCTTGGC

39Q268X ATATATGAATTCTCTAGACTACACGGCCTTCCGCACCTGC

59Syn11DN24 ATATCTCGAGGACTCGCCCCACGAGGACATC

Syn11C5A GGAATTCTACTTGAGGGCGGGAGCGGCGAAGGCGGCGAGGGTCCGGCAGGG

59Syn11 ATATGAATTCAAAGACCGGCTAGCAGAACTT

39Syn11GST ATATCTCGAGCTACTTGAGGCAGGGACAGCAG

39Syn11Q268XGST ATATCTCGAGTCACACGGCCTTCCGCACCTGCGC

L194 TTTCCGAGAACTTGCCGACGTGAAGGGCGC

V124 CCAGCACGGCCCGCACTCGGCTGGGCATTTCGCGGGCGCAGTACA

T37 ACATCGTGTTCGAGAGGACCACATCCTGGA

E25 CCAGACGGGGACGATTGAGTTTGACTCGCCC

Q230FsR CAGCACCGCCATCTGCCAAGAAGAGCTCGTG

39Q230GST ATATGAATTCTCATCGGACGGTATCAACTAA

Q230FsF CACGAGCTCTTCTTGGCAGATGGCGGTGCTG

Munc18NT-F1 ATTTCTGAAGAAGATCTGGCCGGCCTGGGAGGATCGGCGCCCTCGGGGCTGAAGGC

Munc18NT-F2 TCTCTCGAATTCGCCGCCACCATGGAACAA AAACTTATTTCTGAAGAAGATCTGGCCGGC

Munc18NT-R2 GAGAGAGGATCCTCAGGGCAGGGCAATGTCCTCC

doi:10.1371/journal.pone.0098900.t001
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E25 respectively; the antisense oligonucleotides were the exact

complement. The GST fusion of the mutant Q230fsX125, was

cloned using a two-step PCR procedure. The syntaxin 11 cDNA

sequence (MGC clone 5176646) was used as a template and

amplified with either 59Syn11GST and Q230FsR or with

39Q230GST and Q230FsR oligonucleotides. The two PCR

products were gel purified, mixed together and used as the

template in a second stage PCR reaction with the oligonucleotides

59Syn11GST and 39Q230GST, the resultant PCR product was

cloned into pGEX4T.1 at the Xho I and Eco RI sites.

Oligonucleotide sequences are provided in Table 1.
(iii) Munc18-2 constructs. To generate a construct encod-

ing human Munc18-2 tagged at the N-terminus with a Myc-

epitope, a two step PCR procedure was used. The primers

Munc18NT-F1 and Munc18NT R1b were used in step 1 to

amplify the Munc18-2 human cDNA clone (MGC clone 71251).

The gel purified PCR product was then used as the template in a

second PCR reaction and amplified with the primers Munc18NT-

F2 and Munc18NT R2. The resultant PCR product was then

cloned into pcDNA3.1Pac(-) using Eco R1 and Bam H1 to generate

pCDNA3.1Pac(-)-Myc-Munc18-2. To generate a mCherry fusion,

the Munc18-2 open reading frame was cut out of pcDNA3.1Pac

(-)-Myc-Munc18-2 and inserted into the pmCherry-C2 vector

(Clontech) using Eco R1 and Bam H1. Oligonucleotide sequences

are provided in Table 1.

Culture and transfection of cells
HeLa-M and YTS cells were cultured as described previously

[20,37]. 721.221 cell lines were maintained in RPMI 1640 media

supplemented with 10% (v/v) fetal bovine serum (FBS). HeLa-M

cells were transfected with Lipofectamine 2000 (Invitogen) as per

the manufacturer’s instructions. YTS NK cells were transfected by

nucleofection (Amaxa). Briefly, 56106 YTS cells were resuspended

in 100 ml nucleofector solution R, to which 5 mg plasmid DNA was

added. Cells were nucleofected using program X-01 and mixed

immediately with 500 ml RPMI 1640 supplemented with 20%

(v/v) FBS. After 5 min at 37uC, 5% CO2, cells were plated out in

2 ml of growth medium at 37uC, 5% CO2, an additional 2 ml of

growth medium was added 1 h post nucleofection.

Immunoprecipitation
107 YTS cells per immunoprecipitation were incubated in the

presence or absence of 100 mM NEM for 30 min prior to lysis.

Cells were lysed into NET buffer [50 mM Tris pH 7.5, 150 mM

NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 0.1%

Nonidet-P40, 0.25% gelatin and complete protease inhibitors

(Roche Applied Science)] for 30 min on ice before the lysate was

centrifuged at 13,000 g for 10 min at 4uC in a microcentrifuge.

The supernatant was precleared by incubation for 1 h with protein

G sepharose (Sigma Aldrich) and centrifuged at 13,000 g for

1 min. Mouse syntaxin 11 antibody was added to the supernatant

and incubated on ice for 2 h, protein G-sepharose was then added

and the samples rotated for 2 h at 4uC. The beads were washed 4

times with NET buffer and bound proteins eluted by boiling in

Laemmli sample buffer.

GST Pulldowns
BL21(DE3) pLys was transformed with each GST expression

plasmid, cultured in 100 ml Luria-Bertani medium containing

100 mg/ml ampicillin (100 mg/ml) and grown at 37uC with

shaking at 200 rpm to an OD600 of 0.6. The culture was then

induced with 1 mM isopropyl-b-d-thiogalactopyranoside and

grown for a further 4 h. The cells were harvested by centrifugation

and resuspended into 2 ml STEP buffer [10 mM Tris pH8.0,

150 mM NaCl 1 mM EDTA, 1 mM dithiothreitol, 1 mM

phenylmethanesulfonyl fluoride] with 0.25% (w/v) sarkosyl on

ice. The bacterial suspension was then sonicated on ice and Triton

X-100 added to a final concentration of 0.5% (v/v). Cellular

debris was pelleted by centrifugation in a microcentrifuge for

10 min at 13,000 g. GST fusion proteins were purified from the

supernatant with glutathione-Sepharose 4B affinity beads as

specified by the manufacturer (Pharmacia Biotech). 56106

HeLa-M cells transfected with pcDNA3.1(-)-Myc-Munc18-2 were

used per pulldown. 48 h post transfection, the cells were lysed on

ice in STEP buffer with 0.5% Triton X-100 and centrifuged at

13,000 g in a microcentrifuge for 10 min. The supernatant was

added to 50 mg of each GST-fusion bound to beads and incubated

at 4uC with rotation for 2 h. The beads were washed 4 times with

STEP buffer, with 0.5% Triton X-100, and bound proteins eluted

by boiling in Laemmli sample buffer.

Flow cytometric analysis of syntaxin 11 expression
HeLa-M cells were transfected with GFP-syntaxin 11 expression

constructs and co-transfected with either the control plasmid

pcDNA3.1(-)Pac or pcDNA3.1(-)Pac-MycMunc18-2. Each trans-

fection was performed in triplicate. 48 h post-transfection the cells

were washed once with phosphate buffered saline 0.1% bovine

serum albumin and resuspended into PBS 0.1% BSA. The cells

were analysed on a BD-LSRFortessa flow cytometer (Becton

Dickinson), the cell population was gated to exclude debris, 10,000

gated events were analyzed and the mean fluorescence value of the

total cell population was determined.

Membrane Fractionation
107 YTS cells were resuspended into homogenization buffer

[25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

pH 7.5, 250 mM sucrose, 1 mM EDTA, complete protease

inhibitors), homogenized using a ball bearing homogeniser

(Isobiotec) with a 10 mm clearance and centrifuged at 400 g for

5 min at 4uC in a microcentrifuge. The resultant postnuclear

supernatant was centrifuged at 50,000 g for 30 min at 4uC in an

S100-AT3 rotor (Sorvall) to separate the cytosol (supernatant)

from the membrane fraction (pellet).

Live Cell Confocal Microscopy
5 h post-transfection, YTS cells were centrifuged on Lympho-

prep (Axis Shield) at 850 g for 20 min in a bench top centrifuge to

remove cellular debris, washed in cell media and allowed to

recover for 1 h by incubation in growth medium at 37uC. To

visualize secretory lysosomes the YTS cells were preloaded with

10 nM LysoTracker Red or LysoTracker Green (Molecular

Probes). Cells were washed in phenol red free RPMI 1640 media

supplemented with 10% FBS, 56105 cells were resuspended into

2 ml of the same medium and incubated in 35 mm glass bottomed

dishes (Ibidi). In order to visualize conjugated cells, 2.56105 YTS

cells were incubated in the glass bottomed dishes at 37uC for

15 min with 2.56105 721.221 target cells that had been preloaded

with 6 mM Cell Trace Far Red (Molecular Probes). Cells were

imaged using a LSM700 Zeiss Confocal microscope at 63,0006
magnification.

Identification of putative sites for S-acylation
Potential S-acylation sites in the syntaxin 11 protein sequence

were identified using the CSS-PALM 2.04 software set at a

medium threshold [38].

Characterization of Syntaxin 11 FHL-4 Mutant Proteins
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Acyl-biotinyl exchange assay for S-acylation
S-acylation was assayed using an adaptation of the procedure

described by Drisdel and Green (2004) [39]. Briefly, 107 YTS cells

were sonicated in lysis buffer [500 mM NaCl, 2.7 mM KCl,

10 mM Na2HPO4, 1.8 mM KH2PO4, 5 mM EDTA, 1% (v/v)

Triton X-100, complete protease inhibitors] on ice and then

centrifuged at 13,000 g in a microcentrifuge. NEM was added to

the supernatant to a final concentration of 25 mM and the sample

incubated at 4uC for 16 h. Proteins were precipitated from the cell

lysate by chloroform methanol precipitation and centrifugation for

10 min at 13,000 g in a microcentrifuge. Protein pellets were

resuspended into resuspension buffer [50 mM Tris pH 7.5,

150 mM NaCl, 2% (v/v) sodium dodecyl sulfate, 8 M urea]. To

one half of the sample, lysis buffer with 8 mM Biotin-1-

Biotinamido-4-[4’-(maleimidomethyl) cyclohexanecarboxamido]-

butane (Biotin-BMCC, Pierce) was added whilst to the other half

lysis buffer with 8 mM Biotin-BMCC and 10% (v/v) hydroxyl-

amine was added. The samples were incubated for 2 hours at 4uC
before precipitating and resuspending the proteins as before. The

samples were then incubated with neutravidin agarose beads

(Pierce) for 2 h at 4uC. Beads were washed with 500 mM NaCl,

2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 0.1% (v/v)

Triton X-100 and bound proteins eluted by incubation in

resuspension buffer and by boiling in Laemmli sample buffer.

Results

FHL-4 mutations have differential effects on SNAP23
binding by syntaxin 11, but do not affect Munc18-2
binding

The homozygous FHL-4 truncation (Q268X and E25X) and

frameshift (Q230fsX125, L194fsX2, V124fsX60 and T37fsX62)

mutations (Figure 1) are associated with a defect in secretory

lysosome exocytosis and the corresponding loss of NK cytotoxicity

[7–11], but how these mutations impair the function of syntaxin

11 is poorly understood. We, therefore, studied the effect of these

mutations on the interaction of syntaxin 11 with other proteins.

Since the SNARE protein SNAP23 binds to syntaxin 11 in other

Figure 1. FHL-4 mutations characterised in this study. Schematic of the predicted protein domain structure of syntaxin 11 and FHL-4 mutant
proteins. Regions of the FHL-4 mutant proteins encoded as a consequence of frameshift mutations are shown with hatch shading.
doi:10.1371/journal.pone.0098900.g001

Figure 2. Analysis of the effect of FHL-4 mutations on the
interaction of syntaxin 11 with SNAP23 and Munc18-2. (A) Co-
immunopreciptation of syntaxin 11 and SNAP23. Prior to lysis, YTS NK
cells were pre-incubated in the absence or presence of NEM. Cell lysates
were then incubated in the presence or absence of a mouse syntaxin 11
specific antibody and antibody bound proteins pulled down with
protein-G sepharose. The precipitated proteins were resolved by SDS-
PAGE and immunoblots probed with SNAP23 and rabbit syntaxin 11
specific antibodies. (B) GST pulldowns with syntaxin 11 FHL-4 mutants.
GST, GST-syntaxin 11 and GST fusions of FHL-4 mutants were bound to
glutathione sepharose beads (See Figure S1 for a coomassie stained gel
of the GST fusions bound to the glutathione sepharose beads).
Pulldowns of a cell lysate prepared from HeLa-M cells transfected with
Myc-Munc18-2 were then performed with GST and the GST-fusions
immobilized on glutathione sepharose. The precipitated proteins were
resolved by SDS-PAGE and immunoblots probed with SNAP23 and Myc-
tag specific antibodies.
doi:10.1371/journal.pone.0098900.g002
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cell types and in platelets [22,27,40], we examined whether this

interaction also occurs in NK cells. In initial experiments SNAP23

did not co-immunopreciptate with syntaxin 11 from cell lsyates

prepared from the model human NK cell line YTS. Therefore,

prior to cell lysis, YTS cells were incubated with NEM to inhibit

NEM-sensitive factor mediated disassembly of SNARE complexes.

Syntaxin 11 antibodies immunoprecipitated syntaxin 11 irrespec-

tive of whether the cells were pre-treated with NEM, whereas

SNAP23 was only co-immunopreciptated in cell lysates prepared

from cells pre-treated with NEM (Figure 2A). These data are

consistent with SNAP23 being a binding partner for syntaxin 11 in

NK cells. Consequently, SNAP23 was used to determine if

SNARE binding was affected by FHL-4 mutations.

Figure 3. The N-terminal 24 residues of syntaxin 11 are
necessary for binding to Munc18-2 and for the stabilisation
of syntaxin 11 expression by Munc18-2. (A) GST pulldowns with
the syntaxin 11DN24 mutant. GST and GST-syntaxin 11DN24 were
bound to glutathione sepharose (See Figure S2 for a coomassie blue
stained gel of the proteins bound to glutathione sepharose). Pulldowns
of a cell lysate prepared from HeLa-M cells transfected with Myc-
Munc18-2 were then performed with the GST and GST-syntaxin 11DN24
immobilized on glutathione sepharose The precipitated proteins were
resolved by SDS-PAGE and analysed by immunoblotting with SNAP23
and Myc-tag specific antibodies. (B) Flow cytometric analysis of the
effect of Munc18-2 on the expression of syntaxin 11. Constructs
encoding GFP-syntaxin 11 or GFP-syntaxin 11DN24 were transfected
into HeLa-M cells with either a control plasmid construct or a construct
encoding Myc-Munc18-2. The mean fluorescence value for the cells was
quantified by flow cytometry. Statistical analysis was performed using
the Student’s t-test. * P = 0.032. Error bars represent standard error of
the mean for triplicate samples from 3 independent experiments. AU
(arbitrary units). (C) Immunoblot analysis of the effect of Munc18-2 on

the expression of syntaxin 11. Cell lysates prepared from the HeLa-M
transfectants were analysed by immunoblotting with syntaxin 11, Myc-
tag and GAPDH specific antibodies.
doi:10.1371/journal.pone.0098900.g003

Figure 4. The Q268X mutation abolishes membrane associa-
tion of syntaxin 11 in YTS NK cells. (A) Analysis of the membrane
association of syntaxin 11 expressed endogenously in YTS NK cells.
Postnuclear supernatants from YTS NK cells were fractionated by
centrifugation into pellet (membrane) and supernatant (cytosolic)
fractions. The fractions were resolved by SDS-PAGE and immunoblots
probed with antibodies specific for syntaxin 11, SNAP23, calnexin and
GAPDH. (B) Analysis of the membrane association of GFP-syntaxin 11
and GFP-syntaxin 11 Q268X in YTS NK cells. Postnuclear supernatants of
YTS cells transfected with either GFP-syntaxin 11 or GFP syntaxin 11
Q268X were fractionated by centrifugation into membrane and
cytosolic fractions. The fractions were resolved by SDS-PAGE and GFP-
syntaxin 11 fusion proteins detected by probing immunoblots with a
rabbit syntaxin 11 specific antibody.
doi:10.1371/journal.pone.0098900.g004
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The effect of FHL-4 mutations on the interaction of syntaxin 11

with its binding partners were then examined using GST

pulldowns of cell lysates prepared from HeLa-M cells transfected

with a construct encoding Myc-Munc18-2 (Figure 2B). Whilst a

GST fusion of full-length syntaxin 11 bound SNAP23 from cell

lysates, no binding was observed for GST alone (Figure 2B). The

Q268X truncation mutant protein has an intact SNARE domain

(Figure 1) and bound to SNAP23, whereas the Q230fsX125,

L194fsX2, V124fsX60, T37fsX62 and E25X mutant proteins,

which lack part or all of the SNARE domain (Figure 1) had

substantially reduced binding to SNAP23 (Figure 2B). In contrast,

all of the syntaxin 11 FHL-4 mutant proteins bound to Myc-

Munc18-2 (Figure 2B and S1). This suggests that all of the mutant

proteins characterized in this study retain the ability to bind to

Munc18-2, due to the presence of a Munc18-2 binding site in the

N-terminal 24 residues of syntaxin 11. By contrast, with the

exception of Q268X, FHL-4 mutations abrogate binding to

SNAP23.

Intriguingly, in FHL-5 the level of the syntaxin 11 protein is also

reduced [12,13], consistent with a role for Munc18-2 in stabilizing

syntaxin 11 expression. We therefore investigated whether

interaction with the N-terminal 24 residues of syntaxin 11 is

required for the stabilization of syntaxin 11 expression by

Munc18-2. As anticipated a de novo mutant of syntaxin 11 that

lacked the N-terminal 24 residues (syntaxin 11DN24) did not bind

to Munc18-2 in a GST pulldown experiment (Figure 3A and S2).

We then performed a flow cytometric assay to quantify the effect

of Munc18-2 on the expression of syntaxin 11. There was a

significant increase in fluorescence of cells when cells transfected

with a GFP fusion of syntaxin 11 (GFP-syntaxin 11) were also

transfected with Myc-Munc18-2 (Figure 3B). In marked contrast

Myc-Munc18-2 did not increase the level of GFP-syntaxin

11DN24 (Figure 3B). Immuoblotting confirmed that this increase

in cell-associated GFP fluorescence in cells co-expressing Myc-

Munc18-2 was due to elevated expression of GFP-syntaxin 11,

whereas the level of GFP-syntaxin 11DN24 was unaffected by

Myc-Munc18-2 (Figure 3C). Thus, the Munc18-2 dependent

stabilisation of the expression of syntaxin 11 is dependent on the

N-terminal 24 residues of syntaxin 11.

Membrane association of syntaxin 11 and its polarization
to the activating immunological synapse are impaired by
the FHL-4 Q268X mutation

The membrane association of SNAREs is critical for their

function in membrane fusion reactions [17,18]. Syntaxin 11 is an

atypical SNARE in that it lacks a transmembrane domain, but it

has a C-terminal cysteine-rich region that has been suggested as a

site for S-acylation (Figure 1) [19]. However, in many cell types

this region is not essential for membrane association [19,22,41].

Figure 5. Syntaxin 11 Q268X displays a diffuse cytosolic localisation in resting YTS NK cells and is not recruited to the activating
immunological synapse. Analysis of the localization of wild type (A) syntaxin 11 and the Q268X mutant (B) in YTS NK cells. YTS cells transfected
with either GFP-syntaxin 11 or GFP-syntaxin 11 Q268X were stained with LysoTracker Red to visualize secretory lysosomes and either imaged
immediately (Resting) or conjugated to 721.221 target cells pre-stained with Cell Trace Far Red (blue in the merge image panels). Live cells were
imaged using a Zeiss LSM700 laser scanning confocal microscope. Scale bars 5 mm.
doi:10.1371/journal.pone.0098900.g005
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We therefore examined the role of the C-terminal cysteine-rich

region, which is absent in the FHL-4 mutant protein syntaxin 11

Q268X, in the membrane association and localization of syntaxin

11 in NK cells. Centrifugation of postnuclear supernatants

revealed that syntaxin 11, expressed endogenously by the YTS

NK cells, fractionated into the membrane enriched fraction, as did

the S-acylated protein SNAP23 and the integral membrane

protein calnexin, whereas the cytosolic enzyme GAPDH was

present in the cytosolic fraction (Figure 4A). Likewise for

transfected YTS cells, GFP-syntaxin 11 was present in the

membrane fraction (Figure 4B). In contrast the GFP-syntaxin 11

Q268X was in the cytosolic fraction (Figure 4B). The level of GFP-

syntaxin 11 Q268X did not exceed that of the endogenous wild

type protein, indicating that the presence of the mutant protein in

the cytosolic fraction was not due to overexpression (Figure 4B).

The localization of these proteins was also examined by live cell

confocal microscopy. Consistent with previous reports [20,29],

GFP-syntaxin 11 was localized predominantly to cytoplasmic

punta in resting YTS NK cells that were distinct from acidic

compartments labelled with LysoTracker dye (secretory lysosomes)

(Figure 5A). In YTS NK cells activated by conjugation to the

721.221 target cells, GFP-syntaxin 11 associated with the

cytoplasmic punta was concentrated in the region of the

immunological synapse (Figure 5A and S3). In resting YTS NK

cells, GFP-syntaxin 11 Q268X displayed a more diffuse cytoplas-

mic localisation than that of the wild type protein and although in

some of the conjugated cells there was an increased concentration

of GFP-syntaxin 11 Q268X in proximity to the immunological

synapse, a diffuse cytoplasmic distribution of this protein was still

evident (Figure 5B and S4). These data demonstrate a critical role

for the C-terminal 21 residues in determining the localization of

syntaxin 11 in both resting and activated NK cells.

Wild type syntaxin 11, but not the FHL-4 mutant Q268X,
promotes Munc18-2 recruitment to the activating
immunological synapse

Since syntaxin 11 binds to Munc18-2 and these proteins co-

localize in NK cells [12,13,23], we examined whether this

interaction recruits Munc18-2 to cellular membranes. In the

absence of co-transfected GFP-syntaxin 11, a mCherry fusion of

Munc18-2 (mCherry-Munc18-2) exhibited a diffuse cytoplasmic

localisation in resting YTS NK cells that was unaltered when the

YTS cells were activated by conjugation to target cells (Figure 6A

and S5). In marked contrast, when co-expressed with GFP-

syntaxin 11, both mCherry-Munc18-2 and GFP-syntaxin 11 were

localized to cytoplasmic punta in resting YTS NK cells and were

polarized to activating immunological synapse in conjugated cells

(Figure 6B and S6). Taken together these data suggest that the

endogenous syntaxin 11 in YTS NK cells is unable to recruit

mCherry-Munc18-2 to cellular membranes, potentially because

syntaxin 11 is already bound to the endogenous Munc18-2.

Figure 6. Syntaxin 11 recruits Munc18-2 to cytoplasmic membranes and to the activating immunological synapse. Analysis of the
localization of Munc18-2 in YTS NK cells. (A) YTS cells were transfected with mCherry-Munc18-2, stained with LysoTracker Green to visualize secretory
lysosomes and either imaged immediately (Resting) or conjugated with 721.221 target cells pre-stained with Cell Trace Far Red (blue in the merge
image panels). (B) YTS cells were co-transfected with mCherry-Munc18-2 and GFP-syntaxin 11 and either imaged alone or after incubation with
721.221 cells pre-stained with Cell Trace Far Red. Cells were imaged using a Zeiss LSM700 laser scanning confocal microscope. Scale bars 5 mm.
doi:10.1371/journal.pone.0098900.g006
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Conversely, expression of GFP-syntaxin 11 increases the overall

pool of syntaxin 11, enabling mCherry-Munc18-2 to be recruited

to membranes. However, although GFP-syntaxin 11DN24 was

localized to cytoplasmic puncta in resting YTS NK cells and

polarized to the activating immunological synapse, co-expressed

mCherry-Munc18-2 exhibited a diffuse cytoplasmic localization

(Figure 7A and S7). Likewise mCherry-Munc18-2 exhibited a

diffuse cytoplasmic localization in cells when co-expressed with

GFP-syntaxin 11 Q268X (Figure 7B and S8). Thus, both the N-

terminal and C-terminal regions of syntaxin 11 are required for

the recruitment Munc18-2 to cytoplasmic membranes and to the

activating immunological synapse.

Syntaxin 11, but not the FHL-4 Q268X mutant, is
S-acylated in NK cells

S-acylation involves the covalent addition of long chain fatty

acids to the thiols of cysteine residues and is often termed

palmitoylation because the predominant fatty acid used is

palmitate [42]. The C-terminal cysteine rich region of syntaxin

11 has been suggested as a site for S-acylation [19]. Correspond-

ingly analysis of the syntaxin 11 protein sequence, using the CSS-

PALM software [38], revealed that 5 cysteines within the C-

terminal cysteine rich region of syntaxin 11 are potential sites for

S-acylation (Figure 8A). Since these cysteines are absent in the

syntaxin 11 Q268X mutant protein we examined whether these

residues are required for membrane association. The cysteine

residues were mutated to alanine (syntaxin 11C5A) (Figure 8A)

and the membrane association of this de novo mutant protein

examined. GFP-syntaxin 11C5A was present in the cytosolic

fraction after centrifugation of the postnuclear supernatant

(Figure 8B), and displayed a diffuse cytosolic localisation in both

resting and conjugated YTS NK cells (Figure 8C and S9),

demonstrating that these 5 cysteine residues are required for

membrane association.

To confirm that syntaxin 11 is S-acylated in NK cells acyl-

biotinyl exchange was used [39]. In this procedure hydroxylamine

cleaves long chain fatty acids from proteins to reveal free cysteines

that can be biotinylated, enabling these proteins to be pulled down

using avidin beads (Figure 9A). Syntaxin 11 expressed endoge-

nously by YTS NK cells was pulled down from cell lysates treated

with hydroxylamine (Figure 9B), demonstrating that syntaxin 11 is

S-acylated in YTS NK cells (Figure 9B). GFP-syntaxin 11 was also

pulled down from hydroxylamine treated cell lysates prepared

from transfected YTS cells (Figure 9C). In contrast, neither GFP-

syntaxin 11C5A nor GFP-syntaxin 11 Q268X were pulled down

(Figure 9C). These data demonstrate that cysteine residues in the

C-terminal region of the protein, absent in all of the FHL-4

mutants characterised herein, are required for S-acylation of

syntaxin 11. Thus, S-acylation is required for the membrane

association of syntaxin 11 in NK cells and FHL-4 mutations that

delete the C-terminal cysteine rich region correspondingly abolish

this posttranslational modification.

Figure 7. Recruitment of Munc18-2 to cytoplasmic membranes and to the activating immunological synapse is dependent on the
N- and C-terminal regions of syntaxin 11. Analysis of the effect of expression of the syntaxin 11DN24 and Q268X mutant proteins on the
localization of Munc18-2 in YTS NK cells. mCherry-Munc18-2 was co-transfected with either GFP-syntaxin 11DN24 (A) or GFP-syntaxin 11 Q268X (B).
YTS cells were then imaged in the absence of target cells (Resting) or conjugated to 721.221 target cells pre-stained with Cell Trace Far Red (blue in
the merge image panels). Cells were imaged using a Zeiss LSM700 laser scanning confocal microscope. Scale bars 5 mm.
doi:10.1371/journal.pone.0098900.g007
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Discussion

In this study we used disease-associated mutations to dissect the

sequence requirements for the interaction of syntaxin 11 with

SNAP23, Munc18-2 and cellular membranes (Figure 10) and

hence determine how FHL-4 frameshift and truncation mutations

result in the loss of function of syntaxin 11 in NK cells.

We show that SNAP23 is a binding partner of syntaxin 11 in

NK cells. This interaction has also been reported in B cells, as well

as for syntaxin 11 transfected into J774 macrophages and HeLa

cells [22]. By contrast, in RAW 264.7 macrophages transfected

with syntaxin 11, SNAP23 binding was not observed and instead

syntaxin 11 forms a non-classical SNARE complex that sequesters

Vti1b [41]. The SNARE binding partners, and functions, of

syntaxin 11 may therefore be cell type specific. Notably, syntaxin

11 also binds to SNAP23 in platelets, in which both proteins are

required for granule secretion [27]. FHL-4 mutant proteins, in

which there is a partial or complete deletion of the SNARE

domain, had reduced binding to SNAP23. Conversely the syntaxin

11 Q268X mutant protein retains an intact SNARE domain and

was able to bind to SNAP23 in GST pulldowns. This suggests, that

in many cases of FHL-4, reduced binding to SNAP23 may be a

factor in the inability of secretory lysosomes to fuse with the

plasma membrane in NK cells.

Syntaxin 11 also binds Munc18-2, an interaction that is

dependent on an acidic region and the hydrophobic pocket of

the SM protein [12,13,23,30]. Whereas the recently identified

FHL-4 mutant protein syntaxin 11 L58P is unable to bind to

Munc18-2 [16], GST-fusions of the FHL-4 mutant proteins

characterised herein, bound to Munc18-2. These data are

consistent with the retention of an accessible Munc18-2 binding

site by FHL-4 frameshift and truncation mutant proteins. This

region in syntaxins is known as the N-peptide and is a key site for

interaction with cognate SM proteins [43–48]. During the

preparation of this manuscript the crystal structure of Munc18-2

was reported and consistent with our data the N-peptide of

syntaxin 11 was shown to be critically important for the interaction

between this SNARE and Munc18-2 [30].

SM protein binding has multiple functions, including the

chaperoning of syntaxins [31–36]. Indeed, the chaperone function

for Munc18-2 is highlighted in FHL-5, in which mutations in

Munc18-2 result in reduced levels of syntaxin 11 [12,13]. Our data

demonstrate that the N-terminal 24 residues of syntaxin 11 are

required for the stabilization of the expression of this SNARE by

Munc18-2. In addition to stabilizing the expression of cognate

SNAREs, the chaperone function of SM proteins can also facilitate

the trafficking of SNAREs to specific intracellular compartments

[43–48]. Indeed, Munc18-2 expression redistributes syntaxin 3 to

the plasma membrane in syntaxin 11 deficient murine CTLs [30].

However, we observed that the deletion of the N-terminal region

of syntaxin 11 prevented the recruitment of Munc18-2, but not of

Figure 8. Cysteines in the C-terminal region of syntaxin 11 are required for membrane association. (A) C279, C280, C282, C283 and C285
(shown in red) were predicted by the CSS-PALM 2.04 software [38] to be potential S-acylation sites in syntaxin 11. The corresponding 5 cysteine
residues were mutated to alanine to generate the de novo mutant syntaxin 11C5A. (B) Analysis of the membrane association of syntaxin 11C5A in YTS
NK cells. Postnuclear supernatants from YTS NK cells were fractionated by centrifugation into pellet (membrane) and supernatant (cytosolic) fractions.
The fractions were resolved by SDS-PAGE and GFP-syntaxin 11C5A was detected by probing immunoblots with a syntaxin 11 specific antibody. (C)
Analysis of the localization of the syntaxin 11C5A mutant in YTS NK cells. YTS cells expressing GFP-syntaxin 11C5A were then imaged in the absence
of target cells (Resting) or conjugated to 721.221 cells pre-stained with Cell Trace (blue in the merge image panels). Cells were imaged using a Zeiss
LSM700 laser scanning confocal microscope. Scale bars 5 mm.
doi:10.1371/journal.pone.0098900.g008
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syntaxin 11, to intracellular membranes in resting NK cells and to

the immunological synapse in conjugated NK cells. Furthermore,

Munc18-2 exhibited a diffuse cytoplasmic distribution in NK cells

that co-express the cytosolic syntaxin 11 Q268X mutant. Thus,

our data suggest that syntaxin 11 determines the intracellular

localization of Munc18-2 in NK cells.

Despite having no transmembrane domain, syntaxin 11 is

membrane associated in NK cells, which we show is dependent on

the cysteine-rich C-terminal region. This implies that FHL-4

truncation and frameshift mutant proteins are non-functional in

NK cells, at least in part, because they cannot associate with

membranes, a prerequisite for SNARE proteins to promote

membrane fusion reactions [17,18]. The C-terminal cysteine rich

region is not required for membrane association in all cell types, as

deletion of this region does not prevent membrane association in

macrophages, NRK cells and HeLa cells [19,22,41]. Membrane

association in the absence of the C-terminal region in other cell

types may be due to interactions with membrane proteins, such as

other SNAREs, and may reflect cell-type specific behaviour not

observed in NK cells. In addition, we show that syntaxin 11 is

S-acylated in NK cells and that this is dependent on cysteine

residues in the C-terminal region of the protein. Based on these

observations we predict that S-acylation will not only be abolished

in the Q268X mutant protein, but in all other FHL-4 truncation

Figure 9. Syntaxin 11 is S-acylated and this is dependent on cysteines in the C-terminal region. (A) Acyl-biotinyl exchange. Free cysteines
are blocked with the alkylating agent NEM, long chain fatty acid groups are cleaved from proteins using hydroxylamine revealing free cysteines,
which are biotinoylated, enabling proteins to be pulled down with avidin beads. Non-transfected YTS cells (B) and YTS cells transfected with either
GFP-syntaxin 11, GFP-syntaxin 11 Q268X or GFP-syntaxin 11C5A (C) were analysed with acyl-biotinyl exchange. Precipitated proteins from samples
that had been incubated in the absence (negative control) or presence of hydroxylamine (S-acylated fraction) were resolved by SDS-PAGE. Syntaxin
11 and GFP-syntaxin 11 fusions were detected by probing immunoblots with syntaxin 11 specific antibodies. The non-S-acylated protein calreticulin
served as a negative control and was detected with a rabbit anti-calreticulin antibody.
doi:10.1371/journal.pone.0098900.g009

Figure 10. FHL-4 mutations highlight important functional regions of syntaxin 11. The N-terminal 24 residues of syntaxin 11 are required
for binding to Munc18-2, the stabilization of syntaxin 11 expression by Munc18-2 and for the membrane recruitment of Munc18-2. The SNARE
domain of syntaxin 11 is required for the interaction with the SNARE SNAP23. Cysteine residues within the C-terminal region are required for the S-
acylation, membrane association and polarisation of syntaxin 11 to the activating immunological synapse in activated NK cells. The sites of each the
FHL-4 mutations studied are indicated.
doi:10.1371/journal.pone.0098900.g010
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and frameshift mutants of syntaxin 11. A number of other

SNAREs are S-acylated [49–52], both SNAP23 and its neuronal

homologue SNAP25, which lack transmembrane domains, use this

posttranslational modification for membrane association [49].

Intriguingly, syntaxins 1a, 1b, 6, 7, 8 and 12, all of which have

transmembrane domains, are S-acylated [50–52]. Removal of the

S-acylation site reduced the cycling of syntaxin 7 between the

plasma membrane and endosomes [50]. Thus, S-acylation of

syntaxin 11 may not only be important for its interaction with

membranes, but also for the trafficking of the protein in the cell.

Indeed, deletion or mutation of the cysteine rich domain prevents

polarization of syntaxin 11 to the immunological synapse,

although this is most likely secondary to the inability of these

mutant proteins to associate with membranes.

In summary the loss of syntaxin 11 function in FHL-4 frameshift

and deletion mutants is associated with the inability of the mutant

proteins to associate with membranes, precluding not only the

polarization of syntaxin 11 to the activating immunological

synapse, but also that of Munc18-2.

Supporting Information

Figure S1 Coomassie blue stained gel of GST fusions of
wild type syntaxin 11 and FHL-4 mutant proteins bound
to glutathione sepharose beads. GST, GST-syntaxin 11 or

GST fusions of FHL-4 mutants were bound to glutathione

sepharose. Bound proteins were eluted, resolved by SDS-PAGE

and stained with coomassie blue.

(TIF)

Figure S2 Coomassie blue stained gel of GST fusions of
syntaxin 11DN24 mutant bound to glutathione sepharose
beads. GST or GST-syntaxin 11DN24 were bound to glutathi-

one sepharose. Bound proteins were eluted, resolved by SDS-

PAGE and stained with coomassie blue.

(TIF)

Figure S3 Additional images of the localization of GFP-
syntaxin 11 in resting and conjugated YTS NK cells. YTS

cells transfected with GFP-syntaxin 11 were stained with

LysoTracker Red to visualize secretory lysosomes and either

imaged immediately (resting) or conjugated to 721.221 target cells

pre-stained with Cell Trace Far Red (blue in the merge image

panels). Live cells were imaged using a Zeiss LSM700 laser

scanning confocal microscope. Scale bars 5 mm.

(TIF)

Figure S4 Additional images of the localization of GFP-
syntaxin 11 Q268X in resting and conjugated YTS NK
cells. YTS cells transfected with GFP-syntaxin 11 Q268X were

stained with LysoTracker Red to visualize secretory lysosomes and

either imaged immediately (Resting) or conjugated to 721.221

target cells pre-stained with Cell Trace Far Red (blue in the merge

image panels). Live cells were imaged using a Zeiss LSM700 laser

scanning confocal microscope. Scale bars 5 mm.

(TIF)

Figure S5 Additional images of the localization of
mCherry-Munc18-2 in YTS NK cells. YTS cells were

transfected with mCherry-Munc18-2, stained with LysoTracker

Green to visualize secretory lysosomes and either imaged

immediately (Resting) or conjugated with 721.221 target cells

pre-stained with Cell Trace Far Red (blue in the merge image

panels). Cells were imaged using a Zeiss LSM700 laser scanning

confocal microscope. Scale bars 5 mm.

(TIF)

Figure S6 Additional images of the localization of
mCherry-Munc18-2 in YTS NK cells co-transfected with
GFP-syntaxin 11. YTS cells were co-transfected with mCherry-

Munc18-2 and GFP-syntaxin 11 and either imaged alone (Resting)

or after incubation with 721.221 cells pre-stained with Cell Trace

Far Red. Cells were imaged using a Zeiss LSM700 laser scanning

confocal microscope. Scale bars 5 mm.

(TIF)

Figure S7 Additional images of the localization of
mCherry-Munc18-2 in YTS NK cells co-transfected with
either GFP-syntaxin 11DN24. mCherry-Munc18-2 was co-

transfected with GFP-syntaxin 11DN24. YTS cells were then

imaged in the absence of target cells (Resting) or conjugated to

721.221 target cells pre-stained with Cell Trace Far Red (blue in

the merge image panels). Cells were imaged using a Zeiss LSM700

laser scanning confocal microscope. Scale bars 5 mm.

(TIF)

Figure S8 Additional images of the localization of
mCherry-Munc18-2 in YTS NK cells co-transfected with
GFP-syntaxin 11 Q268X. mCherry-Munc18-2 was co-trans-

fected with GFP-syntaxin 11 Q268X. YTS cells were then imaged

in the absence of target cells (Resting) or conjugated to 721.221

target cells pre-stained with Cell Trace Far Red (blue in the merge

image panels). Cells were imaged using a Zeiss LSM700 laser

scanning confocal microscope. Scale bars 5 m mm.

(TIF)

Figure S9 Additional images of the localization of GFP-
syntaxin 11 C5A in YTS NK cells. YTS cells expressing GFP-

syntaxin 11C5A were then imaged in the absence of target cells

(resting) or conjugated to 721.221 cells pre-stained with Cell Trace

(blue in the merge image panels). Cells were imaged using a Zeiss

LSM700 laser scanning confocal microscope. Scale bars 5 mm.

(TIF)
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