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Food quality and safety are strongly related to human health. Food quality varies with

variety and geographical origin, and food fraud is becoming a threat to domestic and

global markets. Visible/infrared spectroscopy and hyperspectral imaging techniques, as

rapid and non-destructive analytical methods, have been widely utilized to trace food

varieties and geographical origins. In this review, we outline recent research progress on

identifying food varieties and geographical origins using visible/infrared spectroscopy and

hyperspectral imaging with the help of machine learning techniques. The applications of

visible, near-infrared, and mid-infrared spectroscopy as well as hyperspectral imaging

techniques on crop food, beverage, fruits, nuts, meat, oil, and some other kinds of

food are reviewed. Furthermore, existing challenges and prospects are discussed. In

general, the existing machine learning techniques contribute to satisfactory classification

results. Follow-up researches of food varieties and geographical origins traceability and

development of real-time detection equipment are still in demand.

Keywords: visible/infrared spectroscopy, hyperspectral imaging, variety, geographical origin, machine learning

INTRODUCTION

Food quality and safety have aroused increasing attention. The inner quality of agricultural
food is directly related to its variety and geographical origin. Different varieties of one
agricultural product have considerable differences in their nutrition compounds and elements
(1, 2). Geographical origins always differ in climate, soil, and agricultural practices, which
have a strong influence on the chemical markers of plants (3, 4). Moreover, some products
can only grow well in certain areas, which will have higher commercial values than those
produced in other areas (5, 6). In addition to quality, the commercial price of food is strongly
related to its varieties and regions (7, 8). Some unscrupulous merchants may sell fraudulent
products at the price of the authentic ones, and some counterfeit materials will even impair
consumers’ health (9, 10). For instance, different apple varieties can be easily mixed during
harvesting and marketing. A reliable approach to discriminate different varieties of apples is
needed by apple sellers (11). In addition, waxy maize contains lots of amylopectins and is
widely used for direct consumption and for producing cans, cakes, feeds, and thickener, while
sweet maize has a high sugar content and is mainly used for direct consumption or processed
into frozen corn and canned corn (12). Except for price and nutrition, different varieties can
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cause difficulty for the food processing industry. For example,
different varieties of cocoa have diverse chemical compositions,
making it difficult for the processing industry to standardize
parameters during processing (13). Coffee beans from
geographical origins that are known to produce high-quality
beverages have a great commercial value (5). Consequently,
discrimination of varieties and regional origins will contribute to
cracking down fraud, developing a steady market, and protecting
consumers’ health.

There are some traditional methods to discriminate food
varieties and geographical origins, including detection by
experienced experts, sensory analysis (14), and wet chemistry
methods [high-performance liquid chromatography (HPLC)
(15), Gas chromatography (GC) (16), Gas Chromatography-
Mass-Spectrometry (GC-MS) (17), Proton Transfer Reaction-
Mass Spectrometry (PTR-MS) (17) and stable isotopic analysis
(18)]. Detection by experienced experts is straightforward, but it
requires expertise and experience and can be subjective. Therein,
sensory analysis is manipulated by organizing a certain number
of volunteers or panelists to evaluate a product with their sensory
system. The evaluation indexes include sensory appearance,
smell, flavor, and taste (14). These wet chemistry methods are
precise to detect almost all components in agricultural products.
However, all of them usually consume too much time and
require a large amount of reagent, and the operation process is
complicated. These methods are destructive methods.

Since spectra contain chemical information of food, it
could reflect the distinction among food spectra from different
varieties and geographical origins. Thus, spectra can be exploited
to trace varieties and regions of food. Therefore, spectroscopic
approaches, such as visible/near-infrared spectroscopy
(VIS/NIR), near-infrared (NIR), mid-infrared spectroscopy
(MIR), and hyperspectral imaging (HSI), have been widely used
in the analysis of agricultural products. HSI can provide spectral
information and spatial one simultaneously, which has been
popular for varieties and regions discrimination of food (19, 20).

To further promote the development of researches and
practical applications of traceability of food varieties and
geographical origins, a system review outlining the progress
of related studies and corresponding analytical methods is
in demand. This work is the first to provide a systematic
overview of the applications of visible/infrared spectroscopy and
hyperspectral imaging technologies in identifying food varieties
and geographical origins with machine learning methods.
Classical and novel machine learning methods for feature
selection/extraction and modeling in identifying food varieties
and geographical origins are also reviewed. Furthermore, this
review has proposed the existing problems and potential ways to
deal with them.

BRIEF INTRODUCTION OF VIS/IR AND
HYPERSPECTRAL IMAGING

VIS/IR
VIS is an electromagnetic spectrum at the spectral range of 380
to 780 nm, providing color information for food classification.
NIR and MIR spectroscopies are different regions of infrared

spectroscopy. The NIR region extends from 780 to 2,500 nm,
between the VIS and MIR (from 2,500 to 15,000 nm) (21).
In general, a typical NIR system consists of four components,
including a light source, light-isolating mechanisms, detectors,
and sampling devices., which was introduced in detail in (22).
The basic principle of NIR and MIR is that chemical bonds
such as C-H, N-H, O-H, and S-H bonds can absorb infrared
radiation at specific wavenumbers, which correspond to different
characteristic peaks or valleys (23). Consequently, the chemical
components of the samples can be verified by extracting the
relevant information from the spectral profiles with chemometric
methods. Contrast to some wet chemistry approaches, NIR is
faster, more convenient and non-destructive, and has been widely
used for qualitative and quantitative analyses (9, 24–28).

The MIR spectrum has a higher specificity than the
NIR spectrum, and it is considered to be more appropriate
for identification and characterization purposes (29, 30). A
comparison between MIR and NIR can be found in this work
(29). MIR can be used to detect compositional differences
between food samples based on vibrations of various chemical
groups at specific wavelengths in the mid-infrared range
(29). The information provided by using these fundamental
absorption bands of MIR can proffer information regarding the
chemical structure of a food sample.

Hyperspectral Imaging
Hyperspectral imaging obtains images at continuous wavebands
over a specific spectral region. This emerging spectroscopic
technology combines the advantages of spectroscopy and
imaging, which can provide both spectral and spatial
information. A typical HSI system comprises the following
components: a light source, a wavelength dispersion device
(spectrograph), an area detector (camera), a translation stage,
and a computer (31, 32). The spectral signature obtained from
HSI is unique as it results from the physical and chemical
properties of the particular material measured (33). The 3D
hyperspectral image cubes [I(x, y, λ)] can be obtained by four
approaches, including two spatial scanning methods (point
scanning and line scanning) and two spectral scanning methods
(area and plane scanning) (31). The pros and cons of different
scanning methods were introduced in (34). Among these
methods, line scanning is the most popular method to acquire
hyperspectral images for food classification.

SUMMARY OF IDENTIFICATION OF FOOD
VARIETIES AND GEOGRAPHICAL ORIGINS
WITH THE VIS/IR AND HSI

In this review, the applications of VIS/IR and HSI are
separately summarized in section Applications of VIS/IR to Trace
Food Varieties and Geographical Origins and Application of
Hyperspectral Imaging to Trace Food Varieties and Geographical
Origins, including common crop food (rice, wheat, maize, and
barley malt), beverage (tea, coffee, and chrysanthemum), fruits
(grape, apple, sugarcane, loquat, mandarin, strawberry, lychee,
and nectarine), nuts, meat, edible oil and other application (such
as honey, Auricularia auricular, Chinese quince, okra kernels,
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and mung beans). The sample preparation, the analyzed spectral
range, the signal mode, the spectral preprocessing methods,
the feature selection/extraction methods, and the classification
algorithms arefurther summarized in this section. The difference
between VIS/IR and HSI and the corresponding different data
analysis methods are discussed.

Sample Preparation and Equipment Setting
for Food Classification
Overall, there were some factors to be considered for both
two technologies when preparing samples, such as the form of
the sample and the total numbers of the samples. According
to the summarization of VIS/IR and HSI applications, the
form of crop food has an influence on the performance of
classifiers. The influence of the single seed and the flour of
seed has been investigated and compared (35–37). Besides, the
bulk mode outperformed the single seed mode to classify maize
seed varieties (38). Moreover, the harvest year influenced the
varieties and geographical origins classification as well. For the
relatively bigger size of samples like fruits, the sample size has
a noticeable effect on spectra acquisition, thus influenced the
effectiveness of classification models (39, 40). Furthermore, the
performance of classifiers could vary with the number of training
samples (19, 41). In particular, a small sample size could limit the
ability of CNN. Careful preparation and splitting of samples were
necessary to develop a more generalized model.

Since both VIS/IR and HSI were capable of collecting
spectral information, they had a common criterion to select
spectral range. In terms of the spectral range, different spectral
ranges were adopted for classification with the same purpose,
and all obtained satisfactory results. Therefore, the spectral
ranges could be selected according to the practical condition.
For example, the 833–2,500 nm, 908–1,672 nm, and 1,000–
2,500 nm were adopted by Cui et al. (38), Yu et al. (42), and
Qiu et al. (43), respectively, and all achieved the accuracy
of over 97% for maize varieties classification. There existed
differences regarding spectra information collection between
VIS/IR and HSI. Generally, VIS/IR collects spectra through
point scanning and usually measures samples several times.
Thus, spectral information was limited to a relatively small
sample area by VIS/IR, while HSI provided larger scanned areas
(44). HSI collects hyperspectral images through four approaches
mentioned in Section Hyperspectral Imaging Hyperspectral
imaging. Comparing to that VIS/IR analyzes the sample in bulk
and determines an average composition across the entire sample,
HSI has the advantage that it provided spatial distribution of
quality parameters of samples (45).

In terms of the signal mode of spectroscopic techniques,
the reflectance mode is the most frequently used signal mode
among three different spectra acquisition modes (reflectance,
transmittance, and interactance). The reason can be that the
reflectance mode effectively collects the information related to
the inner quality of samples and external physical properties
(such as shape and texture) and is easy to operate. The
transmittance mode is usually utilized to detect liquid samples
like fruit juice and relative transparent materials such as fish and

fruit. The transmittance mode has the limitation that the signal is
easily affected by the thickness of samples (31). The interactance
mode has fewer surface effects than the reflectance mode and
reduces the influence of thickness compared to transmission
mode (31). Therefore, the selection of spectral mode is not
compulsory, and it depends on the practical condition.

Regarding the implementation process (in-line, off-line), the
majority of researchers conducted an off-line classification.
Cortés et al. developed an in-line VIS/NIR spectroscopy
prototype for in-line identification of five apple varieties,
achieving the accuracy of 98% and 85% for red and yellow apple
varieties (40). This work revealed that in-line application needed
to solve the variant problem of sample shape. In this work, the
problem was solved by automatically moving the probe to keep
the same distance between the probe and the samples regardless
of their size. Therefore, when developing an in-line application, it
is essential to consider the way to obtain spectra and the rapidness
and robustness of the algorithm.

Summary of Machine Learning Methods
for Food Classification
The procedures to establish classification models with VIS/NIR,
NIR, MIR spectroscopies, and HSI are shown in Figure 1.
Overall, it was nearly the same to preprocess the spectra and
build models based on spectra with both VIS/IR and HSI. But
image features of HSI can also set as a part of features for
building discriminative models. HSI is a prevalent and promising
technique for food classification since it can offer both spectral
and spatial information. Currently, the spectral range used by
HSI is mainly in the VIS/NIR range, with few studies with HSI
in the MIR range.

Before applying models for classification, it is essential to
preprocess the spectra to eliminate the noises, scatter effect, and
baseline shift for VIS/IR and HSI. Some works compared several
different pre-processing methods before establishing classifiers
(46–48). However, we contend there is no need to write the
process of comparing the preprocessing in the paper because
these methods are already common. Therefore, the comparison
process can be removed, and optimal preprocessing can be
directly adopted. The pre-treatments contain smoothing, scatter
and baseline correction and derivation methods. Generally, there
are several smoothing approaches to eliminating noises existing
in the spectra, including Savitzky-Golay (S-G) smoothing
algorithm (the 1st and the 2nd derivative), moving smoothing,
wavelet transform (WT), and Karl Norris derivative filter
(KND). At present, the S-G smoothing is the most widely
used method to process spectra (46). Besides, MSC, SNV, OSC,
DOSC, and de-trending are commonly used to correct addictive
and multiplicative effects in the spectra. These different pre-
treatments can be used individually or in combination. The
preprocessing methods are universal regardless of the type of
spectrum. As most researches were conducted in the laboratory,
the environmental conditions were well-controlled, but there was
more uncertainty in the practical application situation. Thus, it
requires selecting a proper preprocessing method according to
the characteristic of samples and the detection environment. In a
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FIGURE 1 | The general flowchart of procedures for food varieties and geographical origins identification model establishment.

nutshell, there are no specific criteria for selecting the spectral
preprocessing method. It should be determined according to
the practical application situation, and different combinations of
these preprocessing methods may improve the performance of
the model.

Given both VIS/IR and HSI containing numerous
wavelengths, feature extraction and feature selection methods
are utilized to reduce the data dimension and develop a more
simple and accurate model. These feature extraction and feature
selection methods are common to both VIS/IR and HSI. PCA
was the most widely used feature extraction method, powerful
in reducing data dimension while maintaining the information
in original data. Besides, LDA (38), WT (49), and a newly
proposed spectral feature-extraction method based on waveform
resolution (SFEWR) (50) were also applied for feature extraction.
In addition, many effective wavelengths selection methods were
used, including weight coefficients of PCA loadings (51, 52)
and partial least-squares (PLS) (1, 53), successive projections
algorithm (SPA) (54, 55), genetic algorithm (GA) (3), the 2nd
derivative (51, 56), uninformative variables elimination based on
partial least squares (UVE-PLS) (57, 58), competitive adaptive
reweighted sampling (CARS) (58–61).

Moreover, many studies have proposed and used novel
methods for feature selection when identifying food varieties and
geographical origins. These methods included ordered predictor
selection (OPS) (62), stepwise discriminant analysis (SDA) (63),
iteratively retaining informative variables (IRIV) (64), variable
iterative space shrinkage approach (VISSA) (64), joint skewness-
based wavelength selection algorithm (JSWSA) (65) and the like.
Except for methods for selecting effective wavelengths, several
effective wavelength interval selection methods are also applied

to select feature wavelengths ranges, including interval PLS
(iPLS) (57), moving window PLS (MWPLS) (66), changeable
size moving window partial least squares (CSMWPLS) (67),
changeable size moving window PCA (CSMWPCA) (67),
backward interval PLS (biPLS) (58), synergy interval PLS
(Si-PLS) (65) and the like.

Regarding image features of HSI, texture features and
morphologic features are usually employed for varieties and
origins classification. Gray-level co-occurrence matrix (GLCM)
and gray level run-length matrix (GLRLM) are usually adopted
to extract texture features from the gray-level images in
each selected characteristic wavelength to avoid redundant
information and the computing complexity (68).

In the food classification field, the commonly adopted
supervised learning algorithms contain PLS-DA (68, 69), SVM
(43, 70), LSSVM (53), RF (71), BPNN, RBFNN (19, 52),
extreme learning machine (ELM) (54) and newly introduced
deep convolution neural network (DCNN) (72). Among these
algorithms mentioned above, PLS-DA is one of the most widely
implemented chemometric methods in VIS/IR spectroscopy
analysis for the advantage of handling data with collinearity. PLS-
DA is a linear supervised classification method based on the PLS
algorithm. The categories of samples are dummy variables with
only zero and one, and the cutoff usually be set as 0.5 (73).
Besides, SVM is also a commonly used classification method,
which can map the original data into higher dimensional spaces
with kernel function, and it optimizes a hyperplane with an
appropriate margin to classify different groups (43). Radial basis
function (RBF) is a usually used kernel within SVM. The two
parameters within SVM (RBF kernel), penalty coefficient (C) and
kernel parameter (γ), need to be optimized by a method, such
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as the commonly used grid-search procedure. In addition to a
single model, an ensemble model such as RF is also widely used
for classification. RF consists of many different decision trees that
are grown from bootstrap samples of response variables. Each
tree makes a vote to classify samples, and the final classification
result is made according to the majority vote (71). In addition,
BPNN is one of the most used neural networks for classification
with IR and HSI techniques. The structure of BPNN commonly
includes an input layer, a hidden layer, and an output layer.
The transfer function most used between different layers is the
sigmoid function. Moreover, as a deep learning method, CNN
can automatically extract abstract shallow and deep features of
the input, which is currently popular and a very promising
tool for food classification. A typical CNN comprises multiple
convolution layers (to learn abstract features) and several fully-
connected layers (to realize classification of each sample) (72).

Among the unsupervised learning methods, PCA is the
most popular algorithm in this field with the advantages
of dimensionality reduction and visualization. PCA aims
to maximize the internal information of the data after
transformation and to measure the importance of the direction
by measuring the variance of the data in the direction of
the projection (74). The first few principal components (PCs)
resulting from PCA contain the majority of information of
original data and are commonly used for classification (50).
Besides, there were some other unsupervised methods that
were less used for classification, including hierarchical cluster
analysis (HCA) (75), and some useful clustering methods
such as Gustafson–Kessel (GK) clustering (76), fuzzy c-means
clustering (FCM) (76, 77), fuzzy discriminant c-means clustering
(FDCM)(76) and possibilistic c-means (PCM) clustering (76).

To handle the task of classifying the varieties or geographical
origins of the food, it is common to train a model to classify
samples directly. However, some strategies can be used to
obtain more precise classification results. The two-step analysis
can be used for classification, as shown in Figure 2. The
second identification stage is applied to further classify the
incorrectly identified and unidentified samples at the first
identification stage.

In contrast to VIS/IR, HSI can provide both spectral
and image information localized in the image domain.
Therefore, a proper data fusion strategy can be considered
to improve classification accuracy when applying supervised
and unsupervised algorithms for classification when using HSI.
According to most researches using the HSI technique, there
exist three different levels of data fusion (Figure 3), low-level
fusion (also known as pixel-level fusion, simply integrating two
kinds of variables as inputs), mid-level data fusion (also known as
feature level fusion, combining them after selecting characteristic
variables, respectively), and high-level data fusion (also known
as decision level fusion, considering the results of models built
on each source of data to make the final decision) (78). Besides,
when applying HSI for food classification, two approaches
(pixel-wise and objective-wise) were frequently adopted to
classify the varieties and origins of food (47, 52). Since HSI
provides spatial information, it is easy to map the corresponding
classification results into the image for visualization (72). That

is a more intuitive method to display the difference of samples
from different varieties or geographical origins. In a nutshell,
visualization helps present the inner quality distribution of
spatially non-homogeneous properties of interest in a sample.

APPLICATIONS OF VIS/IR TO TRACE
FOOD VARIETIES AND GEOGRAPHICAL
ORIGINS

Crop Food
Rice is one of the most vital foods and serves as the primary
energy source for the most global population. Chen et al.
(8) proposed an untargeted identification method combining
NIR (4,000–10,000 cm−1) to classify three rice varieties. The
work selected the ten most informative variables by a joint
mutual information variable selection method to construct a
one-class model obtaining the specificity and sensitivity of
100%. Regarding the identification of rice from two geographical
origins, Lee et al. (79) constructed the random forest (RF) model
based on NIR (4,000–9,000 cm−1) data to discriminate rice from
two countries with a discrimination rate of 100%.

It was common that the spectra of wheat samples were
collected from laboratory spectrometers. However, the difference
between models based on industrial spectrometers and
laboratory spectrometers was rarely investigated. Ziegler
et al. (35) sed the two kinds of NIR spectrometer to discriminate
five species of wheat kernels (298 kernels in total harvested
in the same year) and established a five-class classifier for
each spectrometer, respectively. In addition, this work also
established a five-class classifier for flour samples (292 flour
samples in total) collected by laboratory spectrometer and
compared the performance with the model based on wheat
kernels collected by laboratory spectrometer. The results showed
the PLS-DA model based on kernels spectra collected from
industrial spectrometer obtained 4% more accuracy than that
with laboratory spectrometer, with accuracy over 80%. Moreover,
models based on wheat flour data have better performance than
models based on wheat kernels for varieties classification with
laboratory NIR spectrometer. Wadood et al. (37) also compared
the performance of models based on wheat kernels and flour
for its geographical origins discrimination. The results revealed
that LDA models based on flour had overall better performance
than those based on whole kernels regarding three geographical
origins classification. A three-class classifier was established for
wheat flour harvested in each year (4 years in total), respectively.
The accuracy based on flour from four different harvest years
differed from each other.

Maize kernel was one of the most studied crop food as
well. Considering the bulk kernels mode helps obtain sufficient
information from different parts of different kernels, Cui et al.
(38) compared these two modes (the bulk kernels and the single
kernel) to discriminate the varieties of maize kernels with NIR
in the range of 833–2,500 nm. The results indicated that the
(biomimetic pattern recognition) BPR models based on spectra
of bulk kernels obtained an average accuracy of over 99%,
which was higher than models based on spectra of the single
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FIGURE 2 | The strategy for food varieties and geographical regions classification tasks.

FIGURE 3 | The different types of data fusion with hyperspectral imaging for food varieties and geographical origins identification.

kernel (the average accuracy of 97.2%). Furthermore, unlike most
researches used bare maize kernels as samples, Jia et al. (80)
tried to discriminate cultivars of coated maize kernels rather
than bare kernels with NIR in the range of 1,110–2,500 nm,
given that kernels usually were coated with coating agents in
practice. The result indicated that the coat agents increased

the difficulty of the classification task. As for the progress of
the classification algorithm for maize discrimination, Yu et al.
(42) introduced manifold learning to distinguish haploid maize
kernels from hybrid kernels with NIR in the range of 908–
1,672 nm. It obtained the classification accuracy as high as
97.1%, which indicated that manifold learning was a suitable
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method to solve non-linear problems. Qiu et al. (43) applied a
genetic algorithm (GA) to select feature wavelengths from FT-
NIR (1,110–2,500 nm) to analyze sweet maize kernels from two
cultivars. The results indicated that SIMCA and PLS-DA based
on feature wavelengths obtained the same prediction accuracies
as the best model based on full spectra. However, building
classifier based on feature wavelengths saved computing time
compared with building the model based on full spectra.

Porker et al. (81) employed Attenuated total reflectance
(ATR) mid-infrared (MIR) spectroscopy (375–4,000 cm−1)
combined with chemometric techniques (SIMCA, LDA, PLS-
DA) to discriminate eight varieties of barley malt. It turned
out that the accuracy was only 60–76% to classify six barley
varieties when mixing single variety barley collected at different
regions. However, a six-class classifier could obtain the accuracy
of 83–100% to classify six varieties of barley collected from the
same location.

The details of the references mentioned above related to crop
food varieties and geographical origins are listed in Table 1.

Beverage
Green tea, black tea, oolong tea, white tea, and albino tea have
been widely analyzed during the past few years. Chen et al.
(46) compared the effectiveness of six different preprocessing
methods and their combination to classify white tea and
albino tea with NIR (4,000–12,400 cm−1). The results showed
that the (discriminant analysis) DA model with standard
normal transformation (SNV) and Karl Norris derivative
filter (KND) pre-treatments obtained the highest accuracy
of 100%. Furthermore, the gene expression programming
projection discriminant analysis algorithm (83), boosting partial
least-squares discriminant analysis (BPLS-DA) (66) and allied
Gustafson-Kessel clustering (77) were proposed to discriminate
tea varieties with NIR, which all could obtain decent results.

As for geographical origins classification of tea, Diniz et al.
(84) constructed LDA based on effective wavelengths selected
by SPA to classify five classes of tea from different geographical
origins and varieties, including Argentinean green tea, Brazilian
green tea, Argentinean black tea, Brazilian black tea, and Sri
Lankan black tea. This five-class classifier obtained the accuracy
of 100% with NIR spectra (3,800–14,000 cm−1). Given that
the imbalanced datasets are easily occurring during sample
preparation, Hong et al. (4) set macro average recall (MAR) as
the criterion to evaluate the performances of classifiers based
on NIR (4,000–12,000 cm−1). All classifiers, including LDA,
SVM, SGD, DT, RF, AdaBoost, and (multilayer perceptron) MLP,
obtained MAR value over 80%, and LDA and MLP achieved
MAR over 93% for discriminating tea from two geographical
origins. Besides, He et al. (7) proposed a two-step identification
to discriminate tea from four regions. The final accuracy for
the calibration set and the validation set was 98.43 and 96.84%,
respectively. Fu et al. (85) proposed PLS-DA-softmax with
Gaussian kernel transformation, which obtained the accuracy of
92.99% for classifying tea from 25 regions. Besides, the proposed
ensemble strategy (ES)-PLS-DA achieved the highest accuracy
of 93.77%. Both PLS-DA-softmax and ES-PLS-DA were superior
to one-over-rest and one-over-one strategies. Zhuang et al. (86)

proposed multi-wavelength statistical discriminant analysis for
tea regional origins discrimination (two regions) based on NIR
(1,050–2,500 nm), with the classification accuracy of 100 and
98.33% for the calibration set and the validation set.

Esteban-Diez et al. (87) employed NIR (1,110–2,500 nm)
to discriminate Arabica and Robusta coffee. The results
showed potential functions method with orthogonal signal
correction (OSC) or direct orthogonal signal correction (DOSC)
preprocessing method could obtain the accuracy of 100%.
Esteban-Diez et al. (88) designed a three-class model to classify
the two coffee varieties and their blends and a five-class model
to classify the two pure varieties and three different blend
levels of robust contents. The results indicated combining NIR
(1,100–2,500 nm) with an orthogonal signal correction (OSC)
pre-treatment could achieve the accuracy higher than 98% using
the potential functions method.

Unlike most researches focusing on roasted coffee rather than
raw coffee beans, Bona et al. (6) and Okubo et al. (89) focused
on the discrimination of the geographical origin of green coffee
beans. In particular, the results in Bona et al. (6) indicated NIR
was superior to MIR for the geographic identification of tea.

Fruits
Grapevine varietal classification has aroused much interest
because it offers new trends in vineyard monitoring and grape
quality control. Gutiérrez et al. (82) adopted an integrated
portable NIR spectral analyzer (1,600–2,400 nm) to measure
grapevine leaves under field conditions directly. This research
compared the models based on leaves (20 leaves per variety)
from 20 varieties (called a site-specific model) and the models
based on leaves (total sample size 144, six varieties per vineyards,
eight leaves per variety) from three different vineyards (called a
global model). The results showed that the highest accuracy of
the site-specific model was 87.25%, while that of the global model
was 77.08%.

NIR combined with chemometric methods was successfully
applied for varieties discrimination of grape products such as
grape juice (90) and grape wine (91). Cozzolino et al. (90)
compared the performance with MIR (375–4,000 cm−1) and
VIS/NIR (400–2,500 nm) for discriminate two varieties of grape
juice, and LDA achieved the accuracy of 86 and 80% using MIR
and VIS/NIR, respectively. Besides, FI-MIR (400–4,000 cm−1)
outperformed the FT-NIR (12,800–4,000 cm−1) for classifying
the geographical origins of Cabernet Sauvignon wines (92).

As for the varieties discrimination of apples, both back
propagation neural network (BPNN) with the preprocessing of
WT (49) and moving window partial least squares discriminate
analysis (MWPLSDA) (93) achieved accuracy over 96% for
classifying three varieties and four varieties of apple, respectively.
Wu et al. (76) proposed a novel fuzzy clustering model called
fuzzy discriminant c-means clustering (FDCM clustering) to
discriminate four apple varieties with NIR (3,856–4,000 cm−1)
with the accuracy of 97%. Furthermore, the influence of variable
selection algorithms on models’ performance was investigated. Li
et al. (94) compared the performances of PCA and SPA variable
selection methods in three apple varieties discrimination with
NIR (400–1,021 nm). The results indicated that ELM based on
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TABLE 1 | Summary of selected references for crop food classification with visible/infrared spectroscopy.

Sample Variety/

Region

classification

Technique Spectral range Mode Varieties/

Total sample

numbers

Extraction/

Selection method

Model References

Rice Variety NIR 4,000–10,000

cm−1

Reflectance 6/144 The joint mutual

information-based

algorithm

One-class

model

(82)

Rice Region NIR 9,000–4,000

cm−1.

Reflectance 2/60 No PCA-LDA,

PLS-DA, RF

(79)

Wheat Variety Industrial NIR,

a laboratory

FT-NIR

1,200–

2,400 nm, 650-

2,500 nm

Reflectance 15/1,523 No PLS-DA (35)

Wheat Region NIR 950–1,650 nm Reflectance 3/278 No LDA (37)

Maize Variety FT-NIR 833–2,500 nm Diffuse

reflectance

42/6,769 No BPR (38)

Maize Variety FT-NIR 1,000–2,500 nm Diffuse

reflectance

2/760 GA KNN, SIMCA,

PLS-DA, SVM

(43)

Maize haploid

kernels

Variety NIR 9,08.1–

1,672.2 nm

Diffuse

transmission

2/200 PCA, OLDA,

PCA-OLDA, LPP,

SVSLPP, SVSKLPP,

KLPP, Isomap, LLE,

LE, LTSA

SVM (42)

Coated maize

kernels

Variety NIR 1,110–2,500 nm Diffuse

reflectance

4/160 PCA SIMCA, BPR (80)

Barely malt Variety MIR 375–4,000 cm−1 Reflectance 8/162 No LDA, PLS-DA,

SIMCA

(81)

both PCA (the accuracy of 92.05%) was superior to ELM based
on SPA (the accuracy of 96.67%). Apple juice as a product of
apples has also been investigated. Reid et al. (95) employed
MIR (800–4,000 cm−1) and NIR (400–2,498 nm) to analyze
apple juice made of four varieties of apples, and the results
showed PLS based on MIR and PLS based on NIR had a
similar result.

Compared with apple variety discrimination, there exists
relatively less work for apple origins discrimination. Li et al.
(94) employed NIR (400–2,498 nm) for two apple geographical
origins discrimination. The results showed that the ELM model
had the best performance, followed by SVM and BPNN.

Sugarcane contains a large amount of sugar and is a renewable
energy source of biofuel, and the classification of sugarcane
varieties contributes to the sugarcane breeding program. Steidle
et al. (96) used the VIS/NIR spectroscopy (450–1,000 nm) to
measure spectral reflectance in the center of each sugarcane stalk
divided area for four sugarcane varieties discrimination. PLS-
DA, FDA, and SFDA using full spectra obtained the classification
accuracy of 82, 81, and 74%, respectively.

Considering the effect of variation of cultivar or origin
on the model performance, Fu et al. (97) separately
constructed seven different models for the classification
of loquat samples from four different origins with the
same variety, samples from four different varieties with the
same geographical origin, etc. Probabilistic neural networks
(PNN) for discriminating the variety of samples from the
same region outperformed PNN for discriminating the
variety of all samples. In addition, PNN discriminating
the geographical region of samples from the same variety

outperformed PNN for discriminating the region of
all samples.

Mandarin is a pretty popular fruit, which is widely sold
in international markets. Zhang et al. (67) developed the
CSMWPCA to classifymandarin from seven geographical origins
with NIR (1,000–1,800 nm). The results revealed that the second
derivative was the best preprocessing method. The CSMWPCA
could effectively select optimal sub-spectral regions and obtain a
prediction rate of 96.61% in an independent test set.

Kim et al. (98) developed PCA and LDA models with NIR
(400–4,000 cm−1) to discriminate five strawberry cultivars. The
results based on spectra data from leaves were the same as the
results based on fruits, with the accuracy of 100%.

The details (including techniques, spectral range, mode,
sample numbers, feature selection/extraction methods,
classification models.) of the aforementioned references
related to fruits are listed in Table 2.

Nuts
Varieties of nuts, including almonds, pine nuts, hazelnut, and
walnuts, have been studied due to their nutritional and economic
value in recent years. Cortés et al. (73) compared NIR and
attenuated total reflectance Fourier-transform infrared (ATR-
FTIR) spectroscopy (1,000–1,700 nm) in discrimination of intact
almond kernels from four Spanish varieties. Loewe et al. (36)
developed discriminant partial least square (DPLS) models based
on VIS/NIR (400–2,500 nm) andNIR region (1,100–2,500 nm) to
classify Mediterranean pine nut from three geographical origins.
The results showed that VIS/NIR contributed to achieving better
performance for all cases (in-shell pine nuts, shelled pine nuts,
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TABLE 2 | Summary of selected references for fruits classification with visible/infrared spectroscopy.

Sample Variety/Region

classification

Technique Spectral range Mode Varieties/Total

sample

numbers

Extraction/Selection

method

Model References

Grapevine Variety NIR 1,600–2,400 nm Reflectance 20/544 PLS-DA PLS-DA, ANN,

SVM

(82)

Grape Variety NIR, ATR-MIR 400–2,500 nm

375–4,000 cm−1

Reflectance 2/212 PCA LDA, PLS-DA (90)

Grape wine Variety NIR 800–2,500 nm Transmittance 2/191 No RBFNN,

LSSVM

(91)

Grape wine Region MIR, NIR 400–4,000

cm−1,

4,000–1,2800

cm−1

Transmission 3/540 No PCA, SIMCA,

DA

(92)

Apple Variety VNIR 325–1,075 nm Reflectance 3/90 WT BP-ANN (49)

Apple Variety NIR 4,000–10,000

cm−1

Reflectance 4/600 MWPLSDA KNN, PLS-DA,

MWPLSDA

(93)

Apple Variety NIR 400–1,021 nm Diffuse

reflectance

3/300 SPA BPNN, ELM,

SVM

(94)

Apple Variety NIR 4,000–10,000

cm−1

Reflectance 4/200 PCA FCM, PCM,

GKclustering,

FDCM

(76)

Apple juice Variety NIR

MIR

400–2,498 nm

800–4,000 cm−1

Reflectance 4/200 No PLS (95)

Sugarcane Variety VIS/NIR 450–1,000 nm Reflectance 4/48 No SVM, RBFNN,

KNN

(96)

Loquats Variety& Region NIR 800–2,500 nm Diffuse

reflectance

4/400 PCA PNN, SIMCA (97)

Mandarin Region NIR 1,000–1,800 nm Diffuse

reflectance

7/583 CSMWPCA PCA (67)

Strawberry Variety NIR 400–4,000 cm−1 Reflectance 5/50 LDA PCA (98)

humid flour, and dried flour) than NIR. Besides, Gu et al. (16)
found the results obtained by NIR (4,000–12,000 cm−1) data
(the mean accuracy of 99.6%) were superior to those obtained
by MIR (400–4,000 cm−1) data (the mean accuracy of 86.6%) for
discrimination of walnuts from three geographical regions.

Meat
Alamprese et al. (99) paid attention to identifying beef meat
adulteration with turkey meat in three statuses with NIR (800–
2,667 nm), including fresh, frozen-thawed, and cooked. All PLS-
DA models offered a high discrimination ability with the area
under the curve for prediction (AUCP) over 0.920 regardless of
meat in fresh, frozen-thawed, and cooked states. Besides, a binary
(beef and pork) and a ternary (beef, pork, and duck) classification
task was also studied with NIR (5,400–12,500 cm−1) (48).
Furthermore, López-Maestresalas et al. (10) evaluated different
adulteration levels of meat from different species (lamb, beef,
pork, chicken, Lidia breed cattle and foal) with NIR (1,100–
2,300 nm). The accuracy ranging from 78.95 to 100% was
achieved for all the validation sets with PLS-DA. In addition
to common meats, South African game meat was also studied.
Dumalisile et al. (100) paid attention to game meat classification
from six different species with NIR (908–1,680 nm). PLS-DA
with SNV + Detrend + S-G 2nd derivative obtained the best
performance, with the accuracy ranging from 70 to 96%.

Discriminating the geographical origins of meat is also
important, which helps protect the international meat trade and
reject the meat from the diseased area. Liu et al. (101) developed
the SIMCA models with NIR (4,000–10,000 cm−1) to classify
tilapia filets products from four geographical origins, achieving
an average misclassification rate of 12.7%.

Edible Oil
Soybean oil is one of the most important edible oil, and some
genetically modified soybeans have higher oil yields and are
widely accepted in the global market. However, many countries
have restrictive laws regarding transgenic food importation, and
they must be labeled as transgenic crops. Esteve et al. (102)
employed NIR (868–1,667 nm) to discriminate conventional and
genetically modified soybeans. The results indicated PLS-DA
could obtain the accuracy of 98% for the classification of two
soybean classes, and genetically modified soybeans trend have the
moisture content than conventional soybeans.

Olive oil is widely and increasingly consumed for its nutrition
and health benefits, and the quality of that strongly depends
on its growing condition. Lin et al. (3) used VIS/NIR at the
spectral range of 325–1,075 nm to classify olive oil from three
geographical origins. The results showed that both DOSC-PLS
model and DOSC-GA-PLS model had the accuracy of 97% for
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the external validation set, which was much higher than the PLS
and GA-PLS models without DOSC.

Sesame, a significant edible oil crop, serves as an essential
seasoning and material of the food industry. Choi et al. (103)
measured the NIR absorbance spectrum (4,000–10,000 cm−1)
of unprocessed sesame kernels from three different countries.
The DA model obtained a total accuracy of 89.4% using the
full spectra.

Other Applications
Apart from using VIS/IR to trace the varieties and regional
origins of food mentioned above, many other food products
were being successfully classified with VIS/IR in recent years,
including Auricularia auricular (104), West Lake lotus root
powder (105), honey (17, 106), Chinese quince (Chaenomeles
speciosa Nakai) (107) and sea cucumber (62). It was worth noting
that Ballabio (17) employed different data fusion strategies for
identification, providing a new aspect for classification tasks with
NIR (4,000–7,780 cm−1). Guo et al. (62) developed a two-step
model for classification with the second step model to further
identify the wrongly classified samples or unidentified samples in
the first step model, obtaining the classification accuracy of 100%
for the identification of sea cucumber from nine geographical
origins with NIR (800–2,500 nm). Besides, Xu et al. (105) applied
the robust principal component analysis (rPCA) to detect outliers
within NIR spectra (4,000-12,000 cm−1), which contributed
to obtaining better classification results. Outliers easily occur
in samples, which will lead to bias, even breakdown of the
training model. Thus, applying proper algorithms to detect and
expel outliers is of help for modeling. In addition to rPCA,
isolation forest, on-class SVM, and elliptic envelope were also
employed to detect and remove outliers within NIR spectra
(4,000–12,000 cm−1) (4).

APPLICATION OF HYPERSPECTRAL
IMAGING TO TRACE FOOD VARIETIES
AND GEOGRAPHICAL ORIGINS

Crop Food
Using the spectral information offered by HSI for rice
varieties discrimination was widely studied and obtained pretty
satisfactory results (41, 108). Kong et al. (108) found that models
based on full spectra outperformed corresponding models based
on optimal wavelengths for classifying four cultivars of rice with
HSI (874–1,734 nm), with all accuracy over 90%. Qiu et al.
(41) investigated the influence of the number (training set size
100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,500, 2,000,
2,500, and 3,000) of rice samples on the performance of CNN.
The results indicated that the performance of CNN improved
with the increasing number of training samples. Besides, two
spectral ranges (380–1,030 nm and 874–1,734 nm) were used and
compared in the work.

In contrast to NIR, data fusion strategies have been studied for
rice classification when using HSI for rice identification because
HSI has both spectral and image information. Both Wang et al.
(50) and Fabiyi et al. (20) found that the established model based

on spectral-image data fusion outperformed those only based
on spectral data and image data. In particular, Fabiyi et al. (20)
further compared the performance of the RF model based on
a combination of full spectral features and spatial features and
a combination of LDA components extracted from the spectral
data fused with spatial features. The results indicated integrating
LDA features extracted from the spectral data and spatial features
obtained better classification results on a large dataset (90 rice
seed species, 96 samples per species).

Comparing to varieties and geographical origins classification
of wheat with NIR spectroscopy, there were relatively fewer
works focusing on wheat classification using HSI. Vresak et al.
(109) and Bao et al. (110) employed HSI to discriminate twenty-
seven varieties of winter wheat and five varieties of wheat seeds,
respectively. Vresak et al. (109) found that the KNNmodel based
onHSI (375–970 nm) only obtained the accuracy below 30%with
the majority varieties. The reason might be the influence of a
common genetic background and large surface similarity. Bao
et al. (110) found that ELM based on full spectra (974–1,734 nm)
was superior to ELM based on feature wavelengths, and models
based on feature wavelengths extracted by RF outperformed the
corresponding models based on feature wavelengths extracted by
PCA loadings and SPA.

The integrated data of image features (texture features and
morphological features) and spectral features within HSI (380–
1,030 nm, 924–1,657 nm, and 400–1,000 nm used in different
research, respectively) were utilized to discriminate varieties
and origins of maize kernels in several research. All results
showed a trend that the performance of the model based on
data fusion was superior to that based on spectral or image
features alone (1, 12, 51). To deal with increased features by
integrating the spectral and image features, Huang et al. (74)
adopted PCA and multidimensional scaling (MDS) to reduce
fused spectral-image features to classify seventeen varieties of
maize kernels. The results showed the effectiveness of feature
reduction. Bai et al. (111) applied HSI (874–1,734 nm) to classify
four varieties of common maize seed and four varieties of silage
maize seeds. This work visualized hyperspectral images of the
first six PCs of eight varieties of maize seed, which indicated
that there were differences among different varieties of maize
seeds. Moreover, both radial basis function neural network
(RBFNN) and SVM achieved the accuracy of over 97% for
both the classification of four varieties of common and silage
maize seed.

Instead of establishing several different single models, Yang
et al. (65) proposed a multi-model approach to discriminate 14
varieties of maize kernels with HSI (924–1,657 nm). This strategy
consisted of a switch model and multiple sub-models. A switch
model firstly achieved switch between different sub-models,
then multiple sub-model completely identified partial categories.
The results showed that the multi-model outperformed the
single model. Besides, Miao et al. (55) introduced a manifold
learning algorithm called t-distributed stochastic neighborhood
embedding (t-SNE) into the field of hyperspectral imaging (386–
1,017 nm) for four waxy maize kernels varieties discrimination.
The results showed that the t-SNEmodel with Procrustes analysis
pre-treatment obtained the accuracy of 97.5%.
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The influence of calibration set size has also been investigated
when using HSI (975–1,646 nm) to classify three maize varieties
(19). Zhao et al. (19) evaluated the performance of RBFNN
models with different calibration set sizes (sample size of 100,
200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300,
1,400, 1,500, 2,000, 2,500, 3,000). The results showed that the
prediction accuracy improved with the increase of the number
of calibration samples, and after the number of samples reached
1,100, the prediction accuracy tended to remain stable.

Discrimination of the geographical origin of maize kernels
is rarely studied. As for maize kernels, the germ side contains
important information to identify different maize varieties.
Conversely, the back of maize kernels is endosperm composed of
starch, which is of less help to identify kernel varieties (80). The
identification accuracy reached 98.2% on the germ-up dataset
and 96.3% on the germ-down dataset with SVM based on HSI
(1,110–2,500 nm) (1). Therefore, when collecting the spectra of
maize kernels, the placement should be carefully considered.

The details of the references mentioned above related to crop
food with HSI are summarized in Table 3.

Beverage
Some algorithms have been introduced for the identification
of tea varieties. Sun et al. (64) adopted iteratively retaining
informative variables (IRIV) and variable iterative space
shrinkage approach (VISSA) for five green tea varieties
identification with HSI (431–963 nm). The two variables
selection methods contributed to the improvement of
classification accuracy and simplicity of the model. Wu
et al. (72) introduced a deep convolutional neural network
(DCNN) model to discriminate seven Chrysanthemum varieties
using HSI (874–1,734 nm). The results showed that DCNN was
superior to SVM and LR models, and DCNN based on full
wavelengths obtained the best classification accuracy of 99.98%
on the testing set, which was higher than 94.27% based on
selected wavelengths.

When dealing with tea samples, a data distribution problem
that can drift over time should be paid attention to. The
harvesting time, storage time, stir-frying methods, and origin
factor can influence the chemical composition of tea samples,
which can cause a data distribution problem. Hong et al.
(4) prepared tea samples of two regions from two different
harvesting years, and it found both the “harvest year” and
“geographical origin” factors had an impact on NIR responses.
The “harvest year” factor had a higher weight on most of the
original spectral variables. Therefore, when establishing a region-
tracing model, eliminating the influence of the time factor will
help avoid the case that the model based on samples from
a specific year could not be successfully applied to predict
samples from next year. Moreover, Hong et al. (112) used
HSI systems covering the two spectral ranges of 380–1,030 nm
(VIS/NIR) and 874–1,734 nm (NIR) to classify Longjing tea from
six geographical origins. The results indicated that the PLS-
DA model had better performance with VIS/NIR (accuracy of
91.98%) than PLS-DA with NIR (accuracy of 84.89%). Besides,
the class value of each tea leaf was visualized, which could not be
obtained through VIS/IR system.

To evaluate the feasibility of sparse methods for classification,
Calvini et al. (113) used sparse variants of PCA (sPCA) and a
sparse version of PLS (sPLS) to classify two cultivars of coffee
with HSI (955–1,700 nm), which obtained similar results as
classical PCA and PLS but with fewer variables. Themodels based
on sparse methods were more interpretable and parsimonious.
Except for new classification methods, the comparison between
models based on pixel-wise spectra and object-wise spectra
was discussed when using HSI. Zhang et al. (47) applied HSI
(874–1,734 nm) and compared pixel-wise model and object-wise
model to identify four varieties of coffee beans. Specifically, this
work compared the prediction results of pixel-wise spectra by
sample average-spectra-based models and prediction of sample
average spectra by pixel-wise spectra based models. The result
indicated the former condition achieved with the accuracy lower
than 50%, but the latter achieved the accuracy of over 80%.
The results suggested the preprocessing of WT and empirical
mode decomposition (EMD) were suitable for pixel-wise spectra
preprocessing. It should be noted that the comparison between
object-wise spectra and pixel-wise spectra could be operated with
an HSI system but not VIS/IR system.

Fruits
Grape kernels or raisins have been widely studied in recent
years. Zhao et al. (114) selected characteristic wavelengths from
HSI (874–1,734 nm) according to the first six PCs loadings,
which was helpful to obtain the accuracy of 94.3 and 88.7%
for the calibration set and the prediction set with SVM for
classifying grape kernels of three varieties, respectively. In
addition to PCA, Zhao et al. (115) proposed the spectral feature
extraction based on the waveform resolution method (SFEWR)
to reduce data and extract features, which was superior to
that feature reduction based on PCA in eight raisin varieties
classification with HSI (900–1,700 nm). Furthermore, Feng et al.
(52) evaluated the influence of raisins grade on SVM model
performance for two varieties of raisins classification with HSI
(874–1,734 nm). The results showed that using the object-wise
spectra to predict object-wise spectra, the SVM model obtained
the highest accuracy of 93.81%, and the SVM based on different
raisin grades had significantly different prediction accuracy.

Except for spectral information in HSI, the feasibility of
spectral indices calculated based on the spectral wavelengths for
the classification of grapevine varieties was exploited. Mohsen
et al. (116) extracted 32 spectral indices from the wavelengths
(350–2,500 nm) to discriminate grapevine varieties with SVM
and LDA. Combined with two feature selection methods (PLSR
andANOVA-PCA), all spectral indices-basedmodels obtained an
overall accuracy of 100% for both leaf level and canopy level. The
results based on spectral indices were superior to the results based
on optimal spectral wavelengths.

Lychee is a tasteful and nutritive subtropical to tropical fruit,
and over 95% of world lychee production origin from Asia (117).
Liu et al. (117) implementedHSI (400–1,000 nm) to identify three
varieties of this regional fruit. The results revealed that SVM,
BPNN, PLS-DA, and SIMCA obtained classification accuracy
of 87.81%, 85.37%, 78.05 %, and 60.98 % for the prediction
set, respectively.
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TABLE 3 | Summary of selected references for crop food classification with hyperspectral imaging.

Sample Variety/

Region

classification

Technique Spectral range Mode Varieties/

Total sample

numbers

Features Model References

Spectral/

Image

Extraction/

Selection method

Rice Variety HSI 874–1,734 nm Reflectance 4/225 Spectral PLS PLS-DA, KNN,

SIMCA, SVM,

RF

(108)

Rice Variety HSI 400–1,000 nm Reflectance 3/90 Spectral and image PLS-DA PCA, BPNN (50)

Rice Variety HSI 380–1,030 nm and

874–1,734 nm

Reflectance 4/20,907 Spectral No CNN, KNN, SVM (41)

Wheat Variety HSI 375–970 nm Reflectance 36/1,080 Spectral No KNN, PCA (109)

Wheat Variety HSI 874–1,734 nm Reflectance 5/7,388 Spectra PCA, SPA, RF LDA, SVM, ELM (110)

Maize Variety HSI 380–1,030 nm Reflectance 6/330 Spectral and image GLCM PCA,

PCA+GLCM,

KPCA,

KPCA+GLCM,

LSSVM, BPNN

(51)

Maize Variety HSI 400–1,000 nm. Reflectance 3/378 Spectral and image GLRLM LSSVM (12)

Waxy maize Variety HSI 400–1,000 nm Reflectance 4/600 Spectral and image SPA, GLCM SVM, PLS-DA (1)

Maize Variety HSI 400–1,000 nm Reflectance 17/1,632 Spectral and image SPA, PCA, MDS LSSVM (74)

Waxy maize Variety HSI 386.7–1,016.7 nm Reflectance 8/800 Spectral SPA, PCA, KPCA,

LLE, t-SNE

Procrustes

analysis, FDA

(55)

Maize Variety HSI 874–,1734 nm Reflectance 3/12,900 Spectral PCA RBFNN, SVM (19)

Maize Variety HSI 924–1,657 nm Diffuse

reflectance

14/1,120 Spectral JSWSA LSSVM (65)

Maize Variety HSI 874–1,734 nm Reflectance 8/40,800 Spectral PCA RBFNN, SVM (111)
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To distinguish two cultivars of nectarines with a very similar
appearance, Munera et al. (2) adopted HSI (450-1,040 nm) to
develop the PLS-DA model. The results revealed that the average
spectra of the fruits were superior to the pixel-wise spectra for the
classification task. Moreover, the mean spectrum helped obtain
the accuracy of 94%, and the accuracy was improved to 96% with
14 optimal wavelengths.

The feature selection/extraction methods and classification
models of the aforementioned references related to fruits with
HSI are summarized in Table 4.

Meat
Authentication of meat from different species is of significant
importance for meat safety and quality control. Kamruzzaman
et al. (118) implemented HSI (890–1,750 nm) to classify minced
meat of pork, beef, and lamb with PLS-DA, which achieved the
overall accuracy of 98.67% combined with optimal wavelengths.
Jiang et al. (119) utilized two wavelength selection methods,
including two-dimensional correlation spectroscopy (2D-COS)
and PCA loadings, to select optimal wavelengths to detect
beef adulteration with duck meat. The PLSR model based
on optimal wavelengths selected from PCA loadings obtained
better performance. Except for utilizing spectra information,
integration of spectral and spatial information within HSI was
also investigated. Garrido et al. (120) combined spectral and
textural information to discriminate poultry, porcine, and fish
samples. In this work, spectral and textural information was
integrated using classification trees. The classification trees based
on the predictions of the spectral and textural PLS-DA models
were developed. Meanwhile, after projecting the spectral and
textural traces of the PLS-DAmodels onto the latent variables, the
classification trees based on the latent variables were constructed
as well. Overall, the classification trees based on the predictions
were much more sensitive and specific.

In general, it is a common fraudmethod tomix premiummeat
with cheaper meat, which requires the model is more specific and
stable. Moreover, the degree of freshness and degree of freezing
of meat may influence the performance of species identification,
which are rarely studied.

Edible Oil
Liu et al. (121) introduced the fuzzy rough set theory into the
discrimination of three soybean varieties. Gaussian membership
functions and triangular membership functions were proposed to
select effective bands under various parameters. A post-pruning
design was used to reduce the size of the subset further. The
results showed that the information measure (IM) based band
selection algorithm could still offer satisfactory and stable results
under perturbations.

Xie et al. (59) adopted HSI to discriminate four sesame
oil varieties. Based on full-spectrum and effective wavelengths
selected by competitive adaptive reweighted sampling (CARS),
SPA, and x-loading weights, all LDA and least-squares support
vector machine (LSSVM) models have obtained the accuracy of
over 80%. Themodels based on CARS achieved a recognition rate
of 100%. T

A
B
L
E
4
|
S
u
m
m
a
ry

o
f
se

le
c
te
d
re
fe
re
n
c
e
s
fo
r
fr
u
its

c
la
ss
ifi
c
a
tio

n
w
ith

h
yp

e
rs
p
e
c
tr
a
li
m
a
g
in
g
.

S
a
m
p
le

V
a
ri
e
ty
/

R
e
g
io
n

c
la
s
s
ifi
c
a
ti
o
n

Te
c
h
n
iq
u
e

S
p
e
c
tr
a
l
ra
n
g
e

M
o
d
e

V
a
ri
e
ti
e
s
/

To
ta
l
s
a
m
p
le

n
u
m
b
e
rs

F
e
a
tu
re
s

M
o
d
e
l

R
e
fe
re
n
c
e
s

S
p
e
c
tr
a
l/

Im
a
g
e

E
x
tr
a
c
ti
o
n
/

S
e
le
c
ti
o
n
m
e
th
o
d

G
ra
p
e

V
a
rie

ty
H
S
I

8
7
4
–1

,7
3
4
n
m

R
e
fle
c
ta
n
c
e

3
/4
3
,3
5
7

S
p
e
c
tr
a
l

P
C
A
lo
a
d
in
g
s

S
V
M

(1
1
4
)

G
ra
p
e

V
a
rie

ty
H
S
I

9
0
0
–1

,7
0
0
n
m

R
e
fle
c
ta
n
c
e

8
/1
,2
0
0

S
p
e
c
tr
a
l

S
F
E
W
R
,
P
C
A

N
e
u
ra
ln

e
tw

o
rk

( 1
1
5
)

G
ra
p
e

V
a
rie

ty
H
S
I

9
7
5
–1

,6
4
6
n
m

R
e
fle
c
ta
n
c
e

3
/9
0

S
p
e
c
tr
a
l

P
C
A
,
IC
A

S
V
M
,
R
B
F
N
N
,

K
N
N

( 5
2
)

Ly
c
h
e
e

V
a
rie

ty
H
S
I

4
0
0
–1

,0
0
0
n
m

R
e
fle
c
ta
n
c
e

3
/1
2
2

S
p
e
c
tr
a
l

P
C
A

S
V
M
,
B
P
N
N
,

N
P
L
S
D
A
,

S
IM

C
A

( 1
1
7
)

N
e
c
ta
rin

e
V
a
rie

ty
H
S
I

4
5
0
–1

,0
4
0
n
m

R
e
fle
c
ta
n
c
e

2
/2
5
0

S
p
e
c
tr
a
l

P
L
S
c
o
e
ffi
c
ie
n
ts

P
L
S
-D

A
(2
)

To
m
a
to

V
a
rie

ty
&
R
e
g
io
n

H
S
I

9
5
0
–2

,5
0
0
n
m

R
e
fle
c
ta
n
c
e

4
/1
,3
6
6

S
p
e
c
tr
a
l

N
o

P
L
S
-D

A
( 3
3
)

Frontiers in Nutrition | www.frontiersin.org 13 June 2021 | Volume 8 | Article 680357

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Feng et al. Infrared Spectroscopy for Food Traceability

Other Applications
Based on the spectral and spatial information, HSI could be
exploited as a powerful tool for the traceability of black bean (78),
honey (122), okra kernels (61), and mung beans (123). It was
worth noting that Sun et al. (78) combined spectral and image
features, and the optimal PLS-DAmodel obtained the accuracy of
98.33% for classifying black beans from three provinces. Also, Xie
et al. (123) proposed the Modified gram-Schmidt (MGS) method
to select effective wavelengths for classification of fourmung bean
varieties, based on which both ELM and LDA models obtained
the prediction accuracy over 98%.

CHALLENGES AND FUTURE
PERSPECTIVES

Visible infrared spectroscopy and hyperspectral imaging, which
can be applied to analyze rice, maize kernels, fruits, vegetables,
honey, meats, nuts, and edible oil, have been powerful tools
in the field of variety and geographical origin identification for
agricultural products and food. There was a trend that many
works that the models based on a data fusion have better results
than those based on spectra or image alone (1, 50, 51, 74, 78). That
could benefit from integrated features generated by combining
spectral feature and spatial feature.

Challenges
However, there are some challenges to make full use of these
techniques for variety and geographical origin identification
of food at present: (i) Environment factors such as humidity
and temperature affect spectra information collection, which
put forward higher requirements for the classification under
out-of-laboratory conditions. (ii) The spectra collected with
NIR, MIR, and HSI contain hundreds of wavelengths, which
tend to be collinear. Therefore, skills and time are required
in processing the data. (iii) The calibration model based on
a specified kind of sample has limited power to discriminant
the different kinds of samples. To develop a more robust
model, the sample preparation is supposed to include many
more samples and cover more variations, including varieties,
geographical origins, growth conditions, harvest years, even
production processes. (iv) Models at the current stage often
tend to be local, only suitable for samples from the same
experiment, while for unknown samples, the results may be
poor. Therefore, the universality and stability of the model
should be improved, such as model transfer, and further
research is in demand. (v) Large-class-number classification
is more complex than traditional multi-classification for the
increased data complexity and class overlapping. (vi) There were
considerable researches just proposing a method and verifying
its feasibility without conducting further research. This situation
limits the development of practical applications.

It was found that path-variance between the probe and
samples has a significant influence on the spectrum, which
restricted the development of an in-line detection system of
food (40). Samples from the same tree have different shapes and
sizes. Consequently, distance variance always occurs because the

probe of detection equipment is usually fixed. Therefore, how
to prepare representative samples deserves careful consideration.
Besides, spectroscopy techniques contain lots of wavelengths,
and the collected data tend to be non-linear. Therefore, non-
linear data processing is a challenging problem that has drawn
increasing attention. Available solutions can be divided into two
categories: kernel-based and manifold learning methods (55).

More samples covering more variations mentioned above
are required and demanded to develop a more reliable and
robust model. Sample preparation should be taken into account
carefully according to what product we are about to analyse.
For instance, the position of the fruits harvested from the
mother plant was found to add variation to the quality (33).
Different degrees of fruit maturity, non-uniform colors, and
different sample zones all raise challenges for fruit classifications.
Furthermore, the number of samples and the sample splitting
methods are also significant for developing an effective method.
It has been studied that the method to split samples into the
calibration set and the validation set has an influence on the
performance of the model (54). It revealed that Kennard–Stone
method outperformed randomly splitting (54). Furthermore,
the increase in the number of samples will empower big data
processing and deep learning for tracing food varieties and
geographical origins.

Multivariate calibration models are essential for classification
and quantifying specific contents in food. Nevertheless, there
exists a variety of specific agricultural products because of
different regions and manufacturing processes. Samples from
new geographical origins or varieties that are not provided in the
training set tend to be unrecognized by the established model.
Thus, a calibration model based on a specified kind of sample
may have limited power to different samples. Besides, though
there were various methods for classification tasks, some research
just verified the approach’s feasibility but did not conduct further
research. Therefore, it is still far from practical application.

Furthermore, the large-class-number classification brings
new challenges to pattern recognition due to increased data
complexity and class overlapping (85). Fu et al. (85) clearly
illustrated three difficulties of LCNC. They proposed that the
influence of a large class number on traditional multi-class
classification strategies such as one-over-one and one-over-rest
needs to be investigated. Further, new approaches are in demand
to overcome the difficulties in LCNC.

Future Perspectives
Current studies showed good performances for identifying food
varieties and geographical origins. Great potential for real-
world applications could be foreseen. However, the studies
mentioned above were mainly to explore the feasibility of the
research objectives. Most of the studies lacked consistency, and
further investigations lacked. Moreover, the researches covered
a wide range of food types. More efforts should be made to
conduct the follow-up studies to bring the researches from theory
to applications.

In future studies, more attention should be paid to data
analysis. For each type of food, a general data analysis flowchart
could be introduced. Data analysis methods that could obtain
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robust and good results could be summarized and used for
further studies. New data analysis strategies could also be
introduced for better classification performances. The recently
booming data analysis techniques, such as big data and deep
learning, will significantly improve the accuracy of identifying
food varieties and geographical origins. Model transfer, transfer
learning, reinforcement learning, and other methods will
enhance the universality and stability of models. Deep learning-
based artificial intelligence will have many applications in the
field of food identification. Conducting transfer learning between
different applications will reduce the cost of building models for
a specific application.

On the other hand, the miniaturization and portable
development of spectroscopy instruments will be major trends
for identifying food varieties and geographical origins as
well as other food properties with the development of
the microelectromechanical system (MEMS) and computer
technology. At that time, computing power will increase
significantly. More computing will be handed over to cloud
computing. The portable device will be mainly responsible for
collecting and transmitting information more efficiently. In
general, advancements in processing speed of algorithms and
data analysis, enhancement in image processing techniques for
real-time applications for food identification, and development of
low-cost imaging equipment are still of importance. Enhancing
the continuity of research and achieving transfer learning
between different instruments is necessary to attain food
identification applications.

CONCLUSION

This review summarized the application of infrared spectroscopy
and hyperspectral imaging to identify food varieties and
geographical origins. Various food types were studied, including
common crop food, beverage, fruits, nuts, meat, edible oil,
and other food types. The applications of various studies were
introduced with the research objectives, analytical techniques,

and results. We summarized the sample preparation, equipment
settings, and data analysis strategies of the presented researches.
Challenges and future perspectives of identifying food varieties
and geographical origins were also discussed in detail. The
presented research results illustrated the feasibility of using
infrared spectroscopy and hyperspectral imaging to identify food
varieties and geographical origins. However, the consistency of
the researches of a specific food type should be kept. As for future
studies, more efforts should bemade to conduct follow-up studies
to bring the researches from theory to applications. The ultimate
goal for identifying food varieties and geographical origins was
to bring these techniques into real-world applications. Thus,
the miniaturization and portable development of spectroscopy
and spectral imaging instruments should be developed for
online detection at a low cost. Moreover, the utilization and
development of reliable and high-performance data analysis
strategies should also be conducted to establish robust models
with good performances. According to this review, more work
needs to be done.
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GLOSSARY

BPNN, Back propagation neural network; BPR, Biomimetic
Pattern Recognition; CARS, Competitive adaptive reweighted
sampling; CNN, Convolutional neural network; CSMWPLS,
Changeable size moving window partial least squares; DA,
Discriminant analysis; DCNN, Deep convolution neural
network; DOSC, Direct orthogonal signal correction; DPLS,
Discriminant partial least squares; ELM, Extreme learning
machine; EMD, Empirical mode decomposition; FCM, Fuzzy
c-means clustering; FDA, Factorial discriminant analysis;
FDCM clustering, Fuzzy discriminant c-means clustering; GA,
Genetic algorithm; GC, Gas chromatography; GC–MS, Gas
chromatography–mass-spectrometry; GK clustering, Gustafson–
Kessel clustering; GLRLM, Gray-level run-length matrix
analysis; HPLC, High-performance liquid chromatography;
HSI, Hyperspectral imaging; ICA, Independent component
analysis; IR, Infrared spectroscopy; IRIV, Iteratively retaining
informative variables; iPLS, Interval partial least squares
algorithm; KNN, K-nearest neighbor algorithm; KND,
Karl Norris derivative filter; LE, Laplacian eigenmaps;
LLE, Locally linear embedding; LPP, Locality Preserving
Projection; LSSVM, Least-squares support vector machine;
LTSA, Local Tangent Space Alignment; MIR, Mid-infrared
spectroscopy; MSC, Multiplicative scatter correction; MLP,
Multilayer perceptron; MWPLS, Moving window partial

least squares; MWPLS-DA, Moving window partial least
squares discriminate analysis; NIR, Near infrared spectroscopy;
OLDA, Orthogonal linear discriminant analysis; OPS, The
ordered predictor selection algorithm; OSC, Orthogonal signal
correction; OVO, One-versus-one; OVR, One-versus-rest;
PCA, Principle component analysis; PCM, Possibilistic c-means
clustering; PLSCM, Partial least squares class model; PLS-DA,
Partial least squares discriminate analysis; PNN, Probabilistic
neural networks; PTR-MS, Proton transfer reaction-mass
spectrometry; QDA, Quadratic discriminant analysis; RBFNN,
Radial basis function neural network; RF, Random forest;
rPCA, Robust principal component analysis; SDA, Stepwise
discriminant analysis; SFDA, Stepwise forward discriminant
analysis; SFEWR, Spectral feature-extraction method based
on waveform resolution; S-G, Savitzky-Golay algorithm;
SNV, Standard normal transformation; SPA, Successive
projections algorithm; Si-PLS, Synergy interval partial least
squares algorithm; SIMCA, Soft independent modeling of
class analogy; SVM, Support vector machine; SVDD, Support
vector data description; SVSKLPP, Supervised Virtual Sample
Kernel Locality Preserving Projection; SVSLPP, Supervised
Virtual Sample Locality Preserving Projection; t-SNE, T-
distributed stochastic neighborhood embedding; UVE-PLS,
Uninformative variable elimination based on partial least
squares; VISSA, Variable iterative space shrinkage approach; WT,
Wavelet transform.
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