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Objective. To explore the oxidative stress and inflammatory mechanisms of resveratrol intervention in myocardial ischemia-
reperfusion injury (MIRI). Methods. ,e potential targets of resveratrol were predicted by PharmMapper. ,e MIRI genes were
collected by Online Mendelian Inheritance in Man (OMIM), GeneCards is used to collect related disease genes, and String is used
for enrichment analysis. Animal experiments were then performed to verify the systematic pharmacological results. Hematoxylin-
eosin (HE) staining was used to observe myocardial damage. ,e levels of serum interleukin-1β (IL-1β), IL-6, and tumor necrosis
factor-α (TNF-α) in each experimental group were detected. ,e protein and mRNA expressions of Toll-like receptor 4 (TLR4),
nuclear factor-kappa (NF-κB) p65, IL-1β, IL-6, and TNF-α in rat myocardial tissue were measured. Results. ,e results of
systematic pharmacology showed that insulin resistance, FoxO signaling pathway, adipocytokine signaling pathway, insulin
signaling pathway, PI3K-Akt signaling pathway, ErbB signaling pathway, T-cell receptor signaling pathway, peroxisome pro-
liferator-activated receptors (PPAR) signaling pathway, Ras signaling pathway, TNF signaling pathway, and so on were regulated
to improve MIRI. ,e results of animal experiments showed that the myocardial cells of the sham operation group were arranged
in fibrous form, and the myocardial ischemia-reperfusion injury group had obvious cell morphology disorder. Compared with the
MIRI group, the resveratrol group had a certain degree of relief. Compared with the MIRI group, serum IL-1β, TNF-α, and IL-6 in
the resveratrol group was significantly reduced (P< 0.05), and myocardial tissue TLR4, NF-κB p65, IL-1β, IL-6, and TNF-α
mRNA and protein expressions were significantly reduced (P< 0.05). Conclusion. Resveratrol can effectively improve MIRI, and
its mechanism may be related to antioxidative stress and anti-inflammatory.

1. Introduction

Coronary artery disease (CAD) refers to heart disease caused
by coronary artery atherosclerosis that causes lumen stenosis
or occlusion, leading to myocardial ischemia, hypoxia, or
necrosis, also known as ischemic heart disease [1]. When the
larger branch of the coronary artery is completely occluded
(or thrombosis), the myocardium supplied by this blood
vessel becomes necrotic due to the lack of blood nutrition,
and myocardial infarction (MI) will occur [2]. Myocardial
infarction, as a high incidence of cardiovascular disease, is
one of the diseases with the highest mortality rate in the

world [3]. With the trend of population aging in the future,
the prevalence and mortality of cardiovascular diseases will
continue to rise for a long time, and the number of patients
with cardiovascular diseases will continue to increase rapidly
in the next 10 years [4].

,e current effective strategy for the treatment of acute
MI is to perform early coronary reperfusion through pri-
mary percutaneous coronary intervention (PCI) or
thrombolysis [5, 6]. However, after the blood flow of the
ischemic myocardium is restored, the myocardial injury
does not alleviate and recover, but aggravates it, leading to
other fatal injuries. ,is pathological syndrome is called
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myocardial ischemia-reperfusion injury (MIRI) [7, 8]. ,e
factors leading to MIRI damage include inflammation,
oxidative stress, calcium overload, mitochondrial perme-
ability transition pore (mPTP) opening, and energy meta-
bolism disorders [9–11]. ,e intervention of these
pathological processes that lead to MIRI damage is a po-
tential strategy to prevent cardiomyocyte death during MIRI
[12, 13]. At present, natural plant ingredients have shown
potential advantages in the treatment of MIRI [14].
Resveratrol, as a polyphenolic oxidant (nonflavonoid
polyphenol organic compound), has been identified in the
extracts of many plants and their fruits, such as grape (red
wine), knotweed, peanut, and mulberry [15, 16]. ,e bio-
logical activity of resveratrol has antioxidative stress, anti-
inflammatory, heart protection, immune regulation, anti-
diabetic, antiaging, and anticancer properties [17–19], es-
pecially playing an important role in the protection of
myocardial damage [20, 21]. However, its molecular
mechanism is not fully understood; especially, the biological
network of resveratrol in regulating MIRI is still unknown.
,is study will first construct the biomolecular network of
resveratrol intervention in MIRI through the strategy of
systematic pharmacology and then further verify the mo-
lecular mechanism of resveratrol intervention in MIRI
animal models.

2. Materials and Methods

2.1. Resveratrol Target Prediction and MIRI Disease Gene
Acquisition. ,e structure of resveratrol was retrieved in
PubChem (https://pubchem.ncbi.nlm.nih.gov/) and saved
in sdf format. Resveratrol’s sdf format file is imported into
PharmMapper using reverse molecular docking technology
to obtain predicted targets [22, 23]. GeneCards (http://www.
genecards.org) [24] and OMIM database (http://omim.org/)
[25] were utilized to obtain the MIRI genes [22]. Relevance
score> 1 was used as the criterion to include MIRI-related
genes when searching GeneCards. MIRI gene and resvera-
trol target protein were imported into UniProt (https://
www.uniprot.org/) to get their official gene symbol
(Table S1 and Table S2) [22].

2.2. Network Construction and Analysis Methods. ,e pro-
tein-protein interaction (PPI) data of resveratrol target and
MIRI gene was collected from String (https://string-db.org/)
[22, 26]. ,e String database was used to construct and
analyze the PPI network. Database for Annotation, Visu-
alization and Integrated Discovery (David) ver. 6.8 (https://
david.ncifcrf.gov/) was used for Gene Ontology (GO) en-
richment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis [22, 27]. String is used
for Reactome pathway enrichment analysis.

2.3. Experimental Materials

2.3.1. Experimental Animal. Ninety (90) clean-grade male
Sprague Dawley (SD) rats were purchased fromHunan Slack

Jingda Experimental Animal Co., Ltd., animal certificate
number, Sheng Chan Xu Ke (SCX) (Xiang): 2017–0013).,e
rats weigh 290∼330 g, and they are kept in separate cages in a
sterile animal breeding room after purchase. ,e temper-
ature is controlled at 22∼26°C, the light and darkness are
each 12 h, and the humidity is 40∼60%. All experiments were
carried out in accordance with the “Guidelines for the Care
and Use of Laboratory Animals” (National Institutes of
Health Publication, No. 86–23, revised in 1996) and were
approved by the Animal Ethics Committee of Hunan
University of Chinese Medicine.

2.3.2. Reagents and Instruments. Resveratrol
(34092–100MG) was purchased from Sigma Company in
the United States. 3% sodium pentobarbital was obtained
from China Pharmaceuticals Shanghai Chemical Reagent
Company. Rat interleukin 1-beta (IL-1β) enzyme-linked
immunoassay kit (ELISA) (bsk00027), tumor necrosis fac-
tor-α (TNF-α) kit (bsk00163), and IL-6 kit (bsk 0411) were
purchased from Beijing Boaosen Biotechnology Co., Ltd.
Creatine Kinase Isoenzyme-MB Isozyme (CK-MB) Assay
Kit (E006-1-1), Lactate Dehydrogenase (LDH) Assay Kit
(A020-2-2), Malondialdehyde (MDA) Assay Kit (A003-1-2),
and Superoxide Dismutase (SOD) Assay Kit (A001-3-2)
were purchased from Nanjing Jiancheng Institute of Bio-
technology. Bicinchoninic acid (BCA) whole protein ex-
traction kit (Cat. no.: 20170613) and BCA protein content
detection kit (Cat. no.: 20170528) were purchased from
Jiangsu Keygen Biotechnology Co., Ltd. Rabbit anti-Toll-like
receptors (TLR)_4 polyclonal antibody (catalog number:
ab13867), rabbit anti-β-actin antibody (catalog number:
ab8227), and anti-histone H3 (methyl K37) antibody (cat-
alog number: ab215728) were purchased from Abcam Inc.
Rabbit anti-nuclear factor-kappa (NF-κB) p65 monoclonal
antibody was purchased from Cell Signaling Technology.
Horseradish enzyme-labeled secondary antibody was pur-
chased from Beijing Zhongshanjinqiao Biotechnology
Company (catalog number: ZB2306). Polyvinylidene fluo-
ride (PVDF) membrane (0.45 μm, product number: 101123-
1) was purchased from Shanghai Yantuo Biotechnology Co.,
Ltd.; primers were obtained from Shanghai Biotech; RNA
extraction kit was purchased from Tiangen Biochemical
Technology (Beijing) Co., Ltd., (DP419). TransScript One-
Step gDNA Removal and cDNA Synthesis SuperMix Kit
(Cat. no.: J21201), 2 x EcoTaq PCR SuperMix Kit (Cat. no.:
L20719), TransStart Tip Green qPCR SuperMix Kit (Cat. no.:
K31213), and Gelstain staining solution (Cat. no.: GS101)
were purchased from TransGen Biotech Inc.

HX-300 animal ventilator and BL-420 biological signal
acquisition system were purchased from Chengdu Taimeng
Technology Co., Ltd. Visible fluorescence imager was pur-
chased from Azure Biosystems, USA; SDS-PAGE electro-
phoresis instrument, Quantity One 4.6.2 image analyzer, and
electromembrane transfer instrument were obtained from
Bio-Rad Inc.; SW-CJ2-1F ultraclean table was purchased
from Suzhou Antai Bioscience and Technology Company;
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and EASYCYCLER 96 PCR instrument was obtained from
Jena Company.

2.4. Experimental Methods

2.4.1. Animal Modeling Methods. ,e rats were fasted for 12
hours before the operation, and the rats were anesthetized by
intraperitoneal injection of 3% pentobarbital sodium 30mg/
kg. ,e rat was fixed on the operating table in the supine
position and connected to the BL-420 biological function
system, electrocardiograph (ECG) standard II lead, tracheal
intubation, and ventilator-assisted breathing were recorded,
the third and fourth ribs on the left side of the sternum were
incised, and the pericardium was separated. ,en the left
anterior descending coronary artery (LAD) was ligated with
6.0 silk thread, and both ends of the thread were threaded
into the PE tube, and the polyethylene (PE) tube was
clamped with a needle holder and pushed forward to cause
cardiac compression ischemia. If ECG monitoring shows
that the ST segment is significantly elevated, it is considered
to be successful. After 30 minutes of ischemia, the PE tube
was released and the PE tube was reperfused for 3 hours.,e
rat’s ECG showed significant elevation of the ST segment,
that is, the MIRI model was successfully constructed, and
then blood was taken from the abdominal aorta; the left
ventricular tissue of the heart was taken.

2.4.2. Animal Grouping and Intervention. First, resveratrol
was dissolved in dimethyl sulfoxide and diluted with saline.
After 1 week of adaptive feeding, the rats were divided into
five groups according to the random number method, with
18 rats in each group: sham group: the LAD coronary artery
of the heart is only threaded and not ligated. MIRI group:
myocardial ischemia is 45 minutes and reperfusion is 3
hours. Low-resveratrol, high-dose preconditioning +MIRI
group: resveratrol 40mg/kg or 80mg/kg was injected in-
traperitoneally before myocardial ischemia-reperfusion in-
jury. ,e sham operation group and MIRI group were
pretreated with the same dose of normal saline for intra-
peritoneal injection. Rats of different groups were raised in
separate cages, and each rat was labeled with picric acid
serial number on the limbs.

2.4.3. Echocardiography. Before and 3 hours after making
the model, the rats were intraperitoneally anesthetized with
3% sodium pentobarbital (30mg/kg), and the two-dimen-
sional ultrasound system was used to detect the cardiac
function of the rats. A probe with a frequency of 10MHz and
a depth of 2 cm is placed on the animal’s left chest.,e short-
axis papillary muscles are recorded on 2D ultrasound, and
the left ventricle and tissue Doppler imaging is recorded
from the level of the papillary muscles with M-mode ul-
trasound. Left ventricular ejection fraction (LVEF) and left
ventricular fractional shortening (LVFS) were measured.

2.4.4. Animal Specimen Collection and Processing. After the
completion of the perfusion, blood was drawn from the

abdominal aortic artery. After collection, the blood was
centrifuged in a low-temperature high-speed centrifuge at
4°C and 3000 g for 15 minutes, and the serum was separated.
After the serum was collected, it was placed in a −20°C low-
temperature refrigerator for the detection of biochemical
indicators. After blood collection, the rats were sacrificed by
neck dislocation, and the myocardial tissue was quickly
taken out, washed with normal saline, partly fixed with 4%
paraformaldehyde, and partly stored in an ultralow-tem-
perature refrigerator (−80°C) for testing.

2.4.5. Pathological Observation. ,e heart was uniformly cut
about a quarter of the apex and placed in 4% neutral for-
malin solution for fixation. After 48 hours, it was taken out
for dehydration and paraffin-embedded section. ,en, the
slices were soaked in xylene I and xylene II for 5 minutes,
soaked in absolute ethanol I and absolute ethanol II for 2
minutes each, and soaked in 95% ethanol, 85% ethanol, and
75% ethanol for 3 minutes. After the sections were immersed
in distilled water, they were stained with hematoxylin for
5min, differentiated with 1% hydrochloric acid for 30 s,
soaked in warm water for 10min and eosin for 2min,
washed with three distilled water, dehydrated, transparent,
mounted with neutral gum, and dried overnight. ,e sec-
tions were observed under an optical microscope and filmed.

2.4.6. Detection of Serum LDH and CK-MB. ,e inflam-
matory factors IL-1β, IL-6, and TNF-α are determined by
ELISA double-antibody sandwich method. All operations
are carried out in strict accordance with the instructions
provided by the kit. ,e blood collected from the abdominal
aorta was centrifuged at 3000 r/min for 10min, and the
serum was collected and stored at −20°C.,e detection steps
were performed in strict accordance with the ELISA kit
instructions, using double-well determination, measuring
the absorbance (OD) value of each well, and calculating the
concentration of IL-1β, IL-6, and TNF-α according to the
standard curve.

2.4.7. Detection of Myocardial Tissue Glutathione Peroxidase
(GSH-Px), MDA, and SOD. ,e myocardial tissue was
ground into a homogenate with a glass homogenizer, and
then the protein concentration of each group of cells was
measured according to the instructions of the BCA kit. ,e
working fluid is then configured according to the kit in-
structions. ,en, the reaction initiation solution in the kit is
melted and mixed, and diluted according to the ratio of the
reaction initiation solution of each kit to the detection buffer
of each sample solution, and the mixed liquid is the reaction
initiation working solution. ,en, the sample measurement
is performed: the sample wells and control wells are set up in
a 96-well plate, the sample and working solution are added,
and finally, the reaction starter solution is added.,e sample
was incubated at 37°C for 30 minutes. Finally, the absor-
bance at 532 nm and 560 nm was measured with a micro-
plate reader, and the GSH-Px, SOD, and MDA values were
calculated.
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2.4.8. Detection of TLR4, NF-κB p65, IL-1β, TNF-α, and IL-6
mRNA Expression in Myocardial Tissue. 50mg of the infarct
area of the heart tissue was selected, and the total RNA was
extracted with the total RNA kit. After extraction, it was
quantified and leveled, and then each group took 20 μg for
reverse transcription. After the reverse transcription is
completed, the amplification reaction can be carried out.,e
amplification conditions are as follows: 95°C predenatura-
tion for 2min; 95°C denaturation for 10 s, 56°C annealing for
30 s, 72°C extension for 35 s, repeated cycles of 38 times, and
finally 72°C extension for 5min. ,e results were calculated
according to (2−ΔΔCt): ΔCt value�Ct value target gen-
e−Ct value GAPDH; ΔΔCt�ΔCt value of experimental
group−ΔCt value of the sham group; ratio� 2−ΔΔCt. ,e
primer is shown in Table 1.

2.4.9. Detection of TLR4, NF-κB p65, IL-1β, TNF-α, and IL-6
Protein Expression in Myocardial Tissue. 500mg of myo-
cardial tissue was extracted with a tissue total protein ex-
traction kit. After completion, it was quantified and leveled.
After that, 60 μg of each group was heated and denatured.
,en SDS-PAGE was performed. After the electrophoresis is
completed, the required strips are cut and transferred to the
PVDF membrane, and the PVDF membrane is sealed with
skim milk for 2 hours. After washing three times, the PVDF
membrane was placed in the primary antibody diluent
(TLR4, NF-κB p65, beta-actin, and histone H3 were diluted
at a ratio of 1 : 500, and IL-1β, IL-6, and TNF-α were all 1 :
200), shaken at room temperature for 1 h, and put in 4°C
environment overnight. After the primary antibody was
recovered, the PVDF membrane was washed 4 times with
Tris-buffered saline with Tween (TBST) (1 time in 15
minutes and 3 times in 5 minutes). ,e PVDF membrane
was then placed in the secondary antibody diluent on a
horizontal shaker at room temperature for 2 h, and the
membrane was washed 4 times. Finally, the PVDF film was
completely immersed in the luminescent liquid for about
30 s (protected from light), and then the film was placed in a
UVP gel imaging exposure instrument for development.
ImageJ software is used to analyze the ratio of the gray value
of the target protein band to the β-actin band, which reflects
the protein expression level.

2.5. Statistical Analysis. Statistical analysis was performed
using SPSS 20.0 software package, GraphPad prism software
7.0 was used for graphing, and the measured results were
expressed by mean + SEM.,e data of multiple groups were
compared by one-way analysis of variance, and the pairwise
comparison between groups was mostly by the SKN-q
method, and P< 0.05 was considered statistically significant.

3. Results

3.1. Resveratrol-MIRI PPI Network Analysis

3.1.1. Resveratrol-MIRI PPI Network Construction. A total of
171 resveratrol targets and 93 MIRI genes were obtained.
,ey were input into String to construct Resveratrol-MIRI

PPI Network (Figure 1). In this network, the top 30 nodes in
degree are as follows: ALB (127 edges), TNF (110 edges),
MAPK1 (99 edges), EGFR (96 edges), SRC (95 edges), FN1
(93 edges), STAT3 (92 edges), MAPK8 (84 edges), IGF1 (84
edges), MMP9 (81 edges), ESR1 (77 edges), HSP90AA1 (76
edges), IL10 (72 edges), NOS3 (72 edges), MAPK14 (72
edges), TLR4 (71 edges), CAT (70 edges), ICAM1 (60 edges),
IL2 (58 edges), RELA (57 edges), STAT1 (57 edges), KDR (57
edges), PPARG (55 edges), MMP2 (54 edges), MPO (53
edges), PIK3R1 (53 edges), JAK2 (50 edges), AR (50 edges),
IFNG (48 edges), and NR3C1 (48 edges).

3.1.2. Enrichment Analysis of Resveratrol-MIRI PPI Network.
,e targets and genes in Resveratrol-MIRI PPI Network are
imported into DAVID and String for enrichment analysis. A
total of 89 MIRI-related biological processes, 25 MIRI-re-
lated cell components, 24 MIRI-related molecular functions,
31 MIRI-related signaling pathways, and 37 MIRI-related
Reactome pathways were returned (Table S3 and Table S4
and Figure 2). ,e biological processes include steroid
hormone-mediated signaling pathway, cellular response to
lipopolysaccharide, negative regulation of the apoptotic
process, positive regulation of ERK1 and ERK2 cascade,
positive regulation of cell proliferation, aging, leukocyte
migration, peptidyl-tyrosine phosphorylation, intracellular
receptor signaling pathway, positive regulation of gene ex-
pression, positive regulation of nitric oxide (NO) biosyn-
thetic process, positive regulation of PI3K signaling,
response to hypoxia, activation of mitogen-activated protein
kinase (MAPK) activity, positive regulation of vasodilation,
and so on.,e cell components include cytosol, extracellular
space, extracellular region, extracellular exosome,

Table 1: ,e primer.

Gene Direction Sequence

TLR4

Forward
primer

5′-GCCTTTCAGGGAATTAAGCTCC-
3′

Reverse
primer

5′-
GATCAACCGATGGACGTGTAAA-3′

NF-κB
p65

Forward
primer

5′-ATGGCAGACGATGATCCCTAC-
3′

Reverse
primer

5′-CGGAATCGAAATCCCCTCTGTT-
3′

IL-1β

Forward
primer 5′-TTGGGCTGTCCAGATGAGAG-3′

Reverse
primer

5′-CACACTAGCAGGTCGTCATCAT-
3′

TNF-α

Forward
primer 5′-GTGCCTCAGCCTCTTCTCATT-3′

Reverse
primer

5′-
CCAGTTGGTTGTCTTTGAGATCC-3′

IL-6

Forward
primer

5′-GTATGAACAGCGATGATGCACT-
3′

Reverse
primer

5′-AACTCCAGAAGACCAGAGCAG-
3′

β-Actin

Forward
primer

5′-GACTATGACTTGAATGCGGTCC-
3′

Reverse
primer

5′-TCAGCACCCAAAGTCACCAAGT-
3′
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nucleoplasm, cell surface, extrinsic component of cyto-
plasmic side of plasma membrane, membrane raft, mito-
chondrion, cytoplasm, platelet alpha granule lumen,
nuclear chromatin, plasma membrane, focal adhesion, and
so on. ,e molecular functions include steroid hormone
receptor activity, protein tyrosine kinase activity, protein
binding, receptor binding, drug binding, enzyme binding,
ATP binding, zinc ion binding, protein kinase activity,
steroid binding, and so on. ,e signaling pathways include
insulin resistance, FoxO signaling pathway, adipocytokine
signaling pathway, insulin signaling pathway, PI3K-Akt
signaling pathway, ErbB signaling pathway, T-cell receptor
signaling pathway, PPAR signaling pathway, Ras signaling
pathway, estrogen signaling pathway, TNF signaling

pathway, and so on. ,e Reactome pathways include signal
transduction, nuclear receptor transcription pathway,
immune system, signaling by interleukins, metabolism,
hemostasis, innate immune system, cytokine signaling in
the immune system, signaling by receptor tyrosine kinases,
diseases of signal transduction, SUMOylation of intracel-
lular receptors, generic transcription pathway, metabolism
of lipids, and so on. ,e fold enrichment, count, and false
discovery rate (FDR) of the biological processes, cell
components, molecular functions, and signaling pathways
are shown in Figure 2. ,e strength, FDR, and count of the
Reactome pathway are shown in Figure 3. ,e targets and
genes in Toll-like receptor signaling pathway are shown in
Figure 4 as an example.

Figure 1: Resveratrol-MIRI PPI Network.
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Figure 2: Continued.
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Figure 2: Bubble chart of enrichment analysis. (a) Biological processes; (b) cell components; (c) molecular function; (d) signaling pathways;
X-axis is fold enrichment.
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3.2. Effects of Resveratrol on Heart Function. Before opera-
tion and 24 hours after operation, echocardiography showed
that the heart function of rats in each group did not change
significantly before operation, and there was no statistical
difference. Echocardiogram at 24 hours after operation
showed that LVFS and LVEF were lower in the sham group
than in the MIRI group. LVFS and LVEF increased sig-
nificantly after treatment with resveratrol (P< 0.05). ,e
above results indicate that resveratrol improves heart dys-
function caused by MIRI (Figure 5).

3.3. Histopathological Changes. In the sham operation
group, the morphology of the cells was tightly arranged in a
fibrous shape without inflammatory factors. In the MIRI
group, there was an obvious disorder of cell morphology, the
horizontal stripes disappeared, and there was some in-
flammatory cell infiltration. Compared with theMIRI group,
the other groups have a certain degree of relief; especially,
the resveratrol high-dose group has the most obvious im-
provement, but there is still a certain difference compared
with the sham operation group (Figure 6).

3.4. Effects of Resveratrol on Myocardial Injury Markers.
,e CK-MB and LDH values in the sham group were lower,
and the CK-MB and LDH values in the MIRI group were
significantly increased. Compared with the model group,
resveratrol was significantly reversed after pretreatment, and
the resveratrol high-dose group was significantly lower than
the low-dose group (Figure 7).

3.5.Effects ofResveratrol onMyocardialTissueMDA,GSH-Px,
and SOD. ,e level of MDA in the myocardial tissue of rats
in the MIRI group increased significantly (P< 0.05), and the
activities of GSH-Px and SOD decreased significantly
(P< 0.05). ,e MDA level of the resveratrol group was
significantly lower than that of the MIRI group (P< 0.05),
and the activities of GSH-Px and SOD were significantly
increased (P< 0.05) (Figure 8).

3.6. Effects of Resveratrol on Serum IL-1β, TNF-α, and IL-6.
Compared with the sham group, the levels of IL-1β, TNF-α,
and IL-6 in the MIRI group increased significantly
(P< 0.05). Compared with the MIRI group, the levels of IL-
1β, TNF-α, and IL-6 in the high and low doses of resveratrol
decreased significantly (P< 0.05). Among them, compared
with the low-dose group, the high-dose group was also
significantly reduced (P< 0.05), indicating that resveratrol
has the anti-inflammatory ability (Figure 9).

3.7. Effects of Resveratrol on the Expression of Myocardial
Tissue TLR4, NF-κB p65, IL-1β, TNF-α, and IL-6 mRNA
and Protein

3.7.1. Effects of Resveratrol on Myocardial Tissue TLR4 and
NF-κB p65 mRNA. Compared with the sham operation
group, the expression of TLR4 and NF-κB P65 mRNA in the
MIRI group increased (P< 0.05). Compared with the MIRI

group, the expression of TLR4 and NF-κB P65 mRNA in the
resveratrol low-dose and high-dose groups was significantly
reduced (P< 0.05). In addition, the TLR4 and NF-κB P65
mRNA in the resveratrol high-dose group were lower than
those in the resveratrol low-dose group (P< 0.05)
(Figure 10).

3.7.2. Effects of Resveratrol on Myocardial Tissue IL-1β, TNF-
α, and IL-6 mRNA. Compared with the sham group, the
expression levels of IL-1β, TNF-α, and IL-6 mRNA in the
MIRI group increased (P< 0.05). Compared with the MIRI
group, the levels of IL-1β, TNF-α, and IL-6 mRNA in the
resveratrol group were decreased (P< 0.05) (Figure 10).

3.7.3. Effects of Resveratrol on Myocardial Tissue TLR4 and
NF-κB p65 Protein. Compared with the sham operation
group, the expression of TLR4 and NF-κB P65 protein in the
MIRI group increased (P< 0.05). Compared with the MIRI
group, the expression of TLR4 and NF-κB P65 protein in the
resveratrol low-dose and high-dose groups was significantly
reduced (P< 0.05) (Figure 11).

3.7.4. Effects of Resveratrol on Myocardial Tissue IL-1β, TNF-
α, and IL-6 Protein. Compared with the sham group, the
expression levels of IL-1β, TNF-α, and IL-6 protein in the
MIRI group increased (P< 0.05). Compared with the MIRI
group, the levels of IL-1β, TNF-α, and IL-6 protein in the
resveratrol group were decreased (P< 0.05) (Figure 11).

4. Discussion

With the rapid development of medical technology, the
continuous popularization and promotion of PCI, coronary
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(a) (b) (c) (d)

Figure 6: Histopathological changes (HE staining 100X). (a) Sham. (b) MIRI. (c) Res-L. (d) Res-H.
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artery bypass grafting (CABG), and coronary thrombolysis
technologies and drugs have brought great help to patients
with ischemic cardiomyopathy [28]. But in clinical, MIRI is
an unavoidable problem, which is also a problem that needs
to be solved urgently in clinical practice. Reperfusion injury
is the key to determining myocardial viability after ischemic
myocardial blood flow reconstruction. Existing studies have
found that ischemia-reperfusion can exacerbate the irre-
versible cell necrosis of damaged cardiomyocytes [29, 30].
Studies of cellular molecular mechanisms have shown that
there is a causal relationship between MIRI and intracellular

calcium overload, inflammation, and oxidative stress
[13, 31, 32]. Mitochondrial dysfunction is considered to be
the main source of reactive oxygen species in the patho-
genesis of reperfusion injury, and it also promotes inflam-
mation and endothelial damage [33]. At the same time, the
opening of mPTP and subsequent release of cytochrome c
from damaged mitochondria triggers the intrinsic apoptotic
process by activating the caspase-9/3 signaling pathway,
leading to cardiomyocyte apoptosis. Apoptosis combined
with other programmed cell deaths together leads to the
expansion of the infarct size after MIRI injury [34]. In
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addition to the apoptotic pathway, autophagy, a process of
programmed cell death caused by energy metabolism after
ischemia, plays an important role in the occurrence of
reperfusion injury.,e activation or inhibition of autophagy
may have beneficial or harmful effects in the case of MIRI
[35]. In addition, platelet aggregation caused by MIRI leads
to microvascular obstruction, which is characterized by
microcirculation spasm, intraluminal thrombosis, and ob-
vious endothelial cell swelling and dysfunction, which ul-
timately leads to slow blood flow [36]. After reperfusion
injury, inflammation and oxidative stress mainly lead to a
large loss of cardiomyocytes, which leads to the expansion of
the infarct area. Among them, neutrophils are also closely
related to the inflammatory response, and the large accu-
mulation of neutrophils in the reperfusion area will cause a
negative impact on the survival of cardiomyocytes [37]. In
addition, damage to mitochondria and immune cell infil-
tration can lead to a large amount of ROS generation, which
leads to excessive oxidative stress [38].

In this study, we found that resveratrol can regulate
steroid hormone-mediated signaling pathway, cellular re-
sponse to lipopolysaccharide, negative regulation of the
apoptotic process, positive regulation of ERK1 and ERK2
cascade, positive regulation of cell proliferation, aging,
leukocyte migration, peptidyl-tyrosine phosphorylation,
intracellular receptor signaling pathway, insulin resistance,
FoxO signaling pathway, adipocytokine signaling pathway,
insulin signaling pathway, PI3K-Akt signaling pathway,
ErbB signaling pathway, T-cell receptor signaling pathway,
PPAR signaling pathway, Ras signaling pathway, estrogen
signaling pathway, TNF signaling pathway, and so on.
Previous studies also provided many evidences that
resveratrol protects MIRI. For example, in terms of in-
flammation, it shows that resveratrol protects the

myocardium by inactivating NALP3 inflammasomes and
inhibiting the inflammatory cascade mediated by IL-1β and
IL-18 [39]. Evidence from previous studies shows that
resveratrol is an antioxidant that can regulate the multistep
process of redox stress [40]. In vivo and in vitro MIRI
models, resveratrol pretreatment reduces ROS levels, in-
hibits the formation of MDA, and is negatively correlated
with the increase in antioxidant enzyme expression [41, 42].
Meanwhile, inflammation and/or oxidative stress trigger the
apoptotic cascade through internal or external apoptotic
signaling pathways, leading to cardiomyocyte apoptosis and
poor ventricular remodeling and further worsening the
contractile function after MIRI [43]. Existing studies have
also shown that resveratrol significantly reduces apoptosis in
MIRI heart models by eliminating ROS production and
inhibiting inflammation [44]. Resveratrol can also prevent
the opening of mPTP, the release of cytochrome c from the
mitochondria, and subsequent activation of caspase-3
during I/R injury, thereby preventing cell death caused by
mitochondrial dysfunction [20]. In terms of angiogenesis
caused by myocardial ischemia-reperfusion, resveratrol re-
duces MIRI by upregulating vascular endothelial growth
factor B [42]. In terms of endothelial dysfunction caused by
MIRI, resveratrol inhibits I/R-induced iNOS and upregu-
lates the expression of eNOS and nNOS to improve myo-
cardial ischemia-reperfusion injury [45]. When NOS
inhibitors (NG-nitro-L-arginine methyl ester, L-NAME) or
cGMP inhibitors (MB) are used, the cardioprotective effects
of resveratrol are counteracted. ,is indicates that resver-
atrol is essential in promoting angiogenesis and inhibiting
vascular endothelial dysfunction [46]. In terms of oxidative
stress, resveratrol can reduce myocardial oxidative stress by
stimulating Sirtuin1 (SIRT1) or inhibiting GSK3β in diabetic
cardiac ischemia-reperfusion injury models and increasing
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nuclear factor E2-related factor 2 (Nrf2) expression [47]. In
terms of apoptosis, resveratrol protects myocardial cell
apoptosis from ischemia-reperfusion injury by regulating
the phosphorylation level of proteins relative to the PI3K/
Akt/e-NOS pathway [48]. In terms of autophagy, resveratrol
can reduce the ischemia/reperfusion injury of diabetic
myocardium by inducing autophagy [49]. In terms of cal-
cium signal pathway, resveratrol inhibits STIM1-induced
intracellular Ca2+ accumulation, exerts antiapoptotic ac-
tivity, and improves cardiac function recovery after MIRI
[50].

,e mechanism of ischemia-reperfusion injury and
therapeutic drugs has positive significance for the treatment
of patients with heart disease for noncardiac surgery.
Current studies have shown that the main signaling path-
ways of MIRI are Ca2+ signaling pathway, mTOR signaling
pathway, JAK-STAT signaling pathway, MAPK signaling
pathway, NRF2 signaling pathway, JAK-STAT signaling
pathway, SIRT signaling pathway, nitric oxide signaling
pathway, TLR4/NF-kB signaling pathway, etc. [51–55].
Current studies have shown that the rapid increase of TLR4
and NF-kB can occur during transient cardiac ischemia. In
addition, the two did not decrease after reperfusion, but
increased further [56]. It was found in animal models of
acute MIRI that the TLR4/NF-kB signaling pathway is
closely related to cardiomyocyte apoptosis. Reactivation of
the TLR4/NF-kB signaling pathway can directly induce the
occurrence of cardiomyocyte apoptosis, and inhibiting the
expression of TLR4 and NF-xB can inhibit apoptosis [57].
Further studies have shown that the activation of TLR4 and
NF-kB in cardiomyocytes can lead to a significant increase in
downstream inflammatory factors TNF-α and IL-6, which in
turn directly cause damage to myocardium and vascular
endothelial cells. Similarly, resveratrol inhibits the inflam-
matory response after MIRI by inhibiting the expression of
TLR4 and NF-kB, thereby reducing myocardial ischemia-
reperfusion injury [58]. Our research also observes the
changing characteristics of the above indicators. Compared
with the sham operation group, the myocardial ischemia-
reperfusion injury group showed significant increases in
TLR4, NF-KB, IL-1β, TNF-α, and IL-6. Resveratrol can
effectively reduce the expression of the above five indicators.
In addition, resveratrol can also regulate oxidative stress
markers (such as MDA, GSH, and SOD) in myocardial
tissue. ,erefore, resveratrol may inhibit the expression of
TLR4 and NF-kB in the myocardium, thereby inhibiting the
production of inflammatory factors IL-1β, TNF-α, and IL-6
in the myocardium, and ultimately protect myocardial cells.

5. Conclusion

Resveratrol can effectively improve MIRI, and its mecha-
nism of action may be related to reducing the expression of
TLR4/NF-kB in the myocardium, thereby improving in-
flammation. However, this study also has certain limitations,
that is, MIRI is the result of multiple effects, involving
multiple signal pathways. In the future, we will conduct
further in-depth research on other signal pathways.
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