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Purpose: The tumor microenvironment (TME) plays a critical role in the pathogenesis of
hepatocellular carcinoma (HCC). However, underlying compositions and functions that drive
the establishment and maintenance of the TME classifications are less-well understood.

Methods: A total of 766 HCC patients from three public cohorts were clustered into four
immune-related subclasses based on 13 TME signatures (11 immune-related cells and 2
immune-related pathways) calculated by MCP-counter. After analyzing the landscapes of
functional annotation, methylation, somatic mutation, and clinical characteristics, we built
a TME-based Support Vector Machine of 365 patients (discovery phase) and 401 patients
(validation phase). We applied this SVM model on another two independent cohorts of
patients who received sorafenib/pembrolizumab treatment.

Results: About 33% of patients displayed an immune desert pattern. The other
subclasses were different in abundance of tumor infiltrating cells. The Immunogenic
subclass (17%) associated with the best prognosis presented a massive T cell
infiltration and an activation of immune checkpoint pathway. The 13 TME signatures
showed a good potential to predict the TME classification (average AUC = 88%).
Molecular characteristics of immunohistochemistry from Zhejiang cohort supported our
SVM classification. The optimum response to pembrolizumab (78%) and sorafenib (81%)
was observed in patients belonging to the Immunogenic subclass.

Conclusions: The HCC patients from distinct immune subclass showed significant
differences in clinical prognosis and response to personalized treatment. Based on
tumor transcriptome data, our workflow can help to predict the clinical outcomes and
to find appropriate treatment strategies for HCC patients.
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INTRODUCTION

Hepatocellular carcinoma (HCC), the predominant type of primary
liver cancer, is the fourth leading cause of cancer mortality
worldwide with about 782,000 deaths annually (1). HCC is
strongly influenced by the tumor microenvironment (TME), as
well as reported to benefit from the immune-checkpoint blockade
treatment. As an inflammation-related tumor, the specific TME of
HCC can influence the immune tolerance and evasion by mixed
mechanisms. Numerous studies have been reported that the TME
plays a critical role in tumor initiation, progression, and outcome (2,
3). The TME is an intricate system, which coexists and interacts
with cancer cells, immune cell subsets, extracellular matrix, various
cytokine, and other unknown components to maintain the
tumorigenesis of HCC (4). The complexity of the TME relies on
the immune infiltration, as tumors could be classified into the tumor
immunity continuum (5). Hegde et al. suggested that human
tumors could be categorized as inflamed, immune desert, or
immune-excluded phenotypes correspond to different
mechanisms of immune response and escape (6). Thorsson et al.
proposed a classification of six immune subclasses (wound healing,
lymphocyte depleted, TGF-b dominant, inflammatory,
immunologically quiet, IFN-g dominant), based on extensive
immunogenomic analysis of 33 cancer types compiled by
TCGA (7).

Meanwhile, estimating the cellular composition of the TME
requires accurate and robust methods. Fluorescence-activated
cell sorting (FACS) operates only a small number of cell type-
specific markers and requires large amounts of fresh tumor
tissues, which limit the applications on tumor biopsies (8).
Single-cell sequencing has a high precision, but currently it is
too expensive for large-scale clinical application (9). In order to
overcome the above shortcomings, we turn to the methods for
high-throughput technologies applied in clinical settings, which
TME are inferred using computational algorithms. High
throughput technologies, such as RNA-Seq and microarray,
provide large-scaled transcriptome data and offer opportunity
for estimation of the abundance of tumor infiltrated immune
cells. Several methods like Microenvironment Cell Population-
counter (MCP-counter), CIBERSORT and TIMER have been
developed to robustly and precisely quantify immune cells using
transcriptome data obtained from bulk tissue specimens (10–12).

After exploring the distinct compositions and functions of the
TME by MCP-counter, a total of 766 HCC patients from three
public cohorts were clustered into four subclasses (namely Immune
desert, Immunogenic, Innate immune and Mesenchymal) based on
13 TME signatures. Furthermore, a Support VectorMachine (SVM)
was constructed to predict the HCC classification (average AUC =
88%). Finally, by applying our SVM model on another two
independent cohorts of patients who received sorafenib/
pembrolizumab treatment, we found that patients classified into
Immunogenic subclass showed the highest response rate to
sorafenib (81%) and pembrolizumab (78%). Thus, we suggested
that HCC patients may benefit from identifying the immune
subclass which infer clinical outcomes and guide personalized
treatment strategies (Supplementary Figure 1).
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MATERIALS AND METHODS

Ethics Statement and Consent
for Publication
The studies involving human participants were reviewed and
approved by Clinical Research Ethics Committee of the First
Affiliated Hospital College of Medicine, Zhejiang University
(2014-334). Operation informed consents and Informed
consent form for scientific research were obtained from all
participants for the publication of any potentially identifiable
images or data included in this article.

Clinical Cohorts and Preprocessing
Three public transcriptome data sets were enrolled in our study,
including the TCGA-LIHC cohort of the Cancer Genome Atlas
(n = 365), the CHCC-HBV cohort of Gao et al. (n = 159) and the
GSE14520 cohort of Roessler et al. (n = 242) (13, 14). Among
above data sets, any case with null value of survival information
had been excluded. As to TCGA-LIHC and CHCC-HBV cohort,
the fragments per kilobase per million (FPKM) data and clinic
information were downloaded from the UCSC Xena
(xenabrowser.net) and The National Omics Data Encycolpedia
(www.biosino.org/node), respectively. The “CEL” files of
GSE14520 were downloaded and normalized by the “frma”
function using frma (R package). Besides, GSE78220 (28
melanoma patients received pembrolizumab) and GSE109211
(67 HCC patients received sorafenib) were also included in our
study (15, 16). All FPKM values were transformed into
transcripts per kilobase million (TPM) values. Raw data files of
GSE109211 were normalized by lumi (R package). cBioPortal
(www.cbioportal.org) was used to download the beta value of
DNA methylation status of checkpoint genes from TCGA-LIHC
cohort. Gene mutation data (MAF files) of TCGA-LIHC cohort
was achieved from TCGA database.

In our previous study, liver tumor tissues from 32 patients
in First Affiliated Hospital, School of Medicine, Zhejiang
University were collected from November 2013 to July 2014
(GSE138485/PRJNA576155) (17). Only a few of the 32 patients
have the available Formalin Fixed Paraffin Embedded (FFPE)
specimens. Detailed information of patients is described in
Supplementary Tables S7, S8.

Quantification of TME Infiltration
The abundances of immune and stromal cells in TME were
quantified by MCP-counter based on cell-type specific
transcriptome signatures (10). According to Sylvie’s study (18),
a total of 13 TME signatures, which contained 11 stromal and
immune cell populations (Lymphoid, B_derived, T_adaptive,
Cytotoxic, Monocyte_derived, Myeloid, NK_or_T, Fibroblast,
HSCactivated, HSCquiescent, and Myofibroblast) and two
functional signatures representing the immune checkpoints
(named Checkpoint) and the immunosuppression pathways
(named Immunosuppression), were included (Supplementary
Table S1). In addition, we used the CIBERSORT to validate the
immune characterization (11).
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Evaluation of the Immune Score and
Stromal Score
The immune score and stromal score of each patient were
calculated by ESTIMATE algorithm based on transcriptomic data
(19). The R code of ESTIMATE was downloaded from the public
source website (https://sourceforge.net/projects/estimateproject).

Unsupervised Clustering Based on 13
TME Signatures
Based on above 13 signatures, consensus clustering method was
used to classify HCC patients into distinct immune subclasses by
ConsensusClusterPlus (R package) (20). Detailed settings were as
followed: repetitions = 500 times; pItem = 0.8; pFeature = 0.8.
The number of the clusters was determined by consensus
cumulative distribution function (CDF) curve and the delta
area (relative change in CDF area). Because the CDF curve and
delta area plot showed that the delta area increased slightly for
k = 5 compared to k = 4, we finally selected k = 4 (four immune
subclasses) as the best solution (Supplementary Figure 2).

Functional Characterization of
Immune Subclass
For pathway analysis of transcriptomic data among immune
subclasses, we performed Gene Set Variation Analysis (GSVA)
analysis with the “GSVA” R package (21). The gene sets of
“c2 .cp .kegg .v7 .1 . symbols” , “c2 .cp .bp.v7 .1 . symbols” ,
“c2.cp.biocarta.v7.1.symbols”, and “c2.cp.pid.v7.1.symbols”
were downloaded from Molecular Signatures Database
(MSigDB). Adjusted ANOVA model q value <0.05 was
considered as statistically significance.

Classifier Model Construction
and Validation
Based on the 13 TME signatures, we developed a classifier model
using Support Vector Machine, as implemented in python
package “scikit-learn” (version 0.21.3). The TCGA-LIHC
cohort was used as discovery phase, as well as the CHCC-HBV
and GSE14520 cohort were validation phases. Detailed
information for model construction is described in
Supplementary Methods. The efficiency of the classifier model
was evaluated by receiver operating characteristic (ROC) curve
and the area under the curve (AUC).

Statistical Analysis
Continuous variables conforming to normal distribution were
compared with Student t test, otherwise the Wilcoxon rank sum
test was used. One-way ANOVA models and Kruskal-Wallis
tests were used for multigroup comparison. The association
between immune subclasses and the clinical parameters were
evaluated by chi-squared test or Fisher-exact test. Overall
survival (OS) curves were calculated according to the Kaplan-
Meier method (R package survival) and differences between
curves were assessed using the log-rank test. Statistical analyses
were performed on R 3.6.2 software and SPSS V26.0
for Windows.
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RESULTS

Identified Four Immune Subclasses Based
on TME of HCC
Three public HCC data sets with clinical information (TCGA,
CHCC-HBV, GSE14520) were enrolled in this study. According
to Sylvie’s study (18), a total of 13 TME signatures represented
the major infiltrated cell composition and several components of
tumor-stroma interaction were included (Supplementary Table
S1). First, we performed spearman correlation analysis on the 11
cell-type signatures to find the interdependent relationship.
Figure 1A and Supplementary Figure 3A showed that these
11 cell-type signatures were clustered into three distinct clusters
(named ACTIVATED_FIBROBLASTS, INNATE_IMMUNITY,
and ADAPTIVE_IMMUNITY). In addition, two functional
pathways were added, namely, a signature of immune
checkpoint related to immune therapy and a signature of genes
involved in immunosuppression. Then consensus clustering was
performed on the three data sets based on above 13 signatures,
and four distinct immune patterns were finally identified, named
C1 to C4 (Figure 1B, Supplementary Figure 3B). Subclass C1
showed an immune desert pattern distinguished by low
abundances of all the TME signatures. Subclass C2 displayed
an immunogenic pattern distinguished by high abundances of
both INNATE_IMMUNITY and ADAPTIVE_IMMUNITY,
activation of immune checkpoint pathway and low abundances
of ACTIVATED_FIBROBLASTS. Subclass C3 showed an innate
immune pattern distinguished by moderate to high abundances
of INNATE_IMMUNITY and immunosuppression pathway,
rather low abundances of ADAPTIVE_IMMUNITY. Subclass
C4 displayed a mesenchymal pattern which was characterized by
high abundances of ACTIVATED_FIBROBLASTS and
immunosuppression pathway. Principal component analysis
(PCA) also showed a significant spatial separation among these
four subclasses in TCGA cohort (Figure 1C).

Next, we investigated the association between clinical outcomes
and immune subclass. In all cohorts, significant differences of
prognosis were existed among four immune subclasses, indicating
that they could be clinically relevant subclasses (TCGA cohort: log-
rank test P = 0.0005; CHCC-HBV cohort: log-rank test P = 0.0052;
GSE14520 cohort: log-rank test P = 0.0073) (Figures 1D, E,
Supplementary Figure 3C). In TCGA cohort, C2 Immunogenic
subclass showed the longest median survival time (MST) (MST =
82.8 months), followed by C1 Immune desert subclass (MST = 71.0
months), thirdly C4 Mesenchymal subclass (MST = 52.0 months),
lastly C3 Innate immune subclass (MST = 21.3 months). Similar
results were found in other two data sets. In summary, subclass C2
showed a survival advantage with respect to the other subclasses.

Immune Functional Characteristics of the
Immune Subclasses
To refine the immune characterization, we performed both
ESTIMATE and CIBERSORT to calculate the Immune/Stromal
scores and the proportion of 22 tumor infiltrating immune cells.
C1 Immune desert subclass showed the lower Immune score and
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Stromal score, while C2 Immunogenic subclass and C4
Mesenchymal subclass showed the highest Immune score and
Stromal score, respectively (Supplementary Figure 4).
CIBERSORT analysis revealed significant difference in 16 out
of 22 tumor-infiltrating immune cells, especially an enrichment
of CD4+ and CD8+ T cells in C2, as well as an enrichment of M2
macrophages in C3 (Supplementary Table S2). The results of
ESTIMATE and CIBERSORT further confirmed the
characteristics of the four subclasses defined by MCP-counter.

To explore the functional differences among these four
subclasses, we performed GSVA enrichment analysis on TCGA
cohort (Figure 2A, Supplementary Table S3). C1 Immune desert
subclass showed a highly attenuation of stromal and immune
pathways. C2 Immunogenic subclass showed an enrichment of
immune response, such as major histocompatibility complex
(MHC) class I and class II biosynthesis, B cell mediated
immunity and chemotaxis, T cell cytotoxicity, CD8+ T cell
Frontiers in Oncology | www.frontiersin.org 4
activation and differentiation, T cell survival, and immune
checkpoint pathway (CTLA4 and PD-1). C3 Innate immune
subclass was enriched in macrophage activation, M2 macrophage
polarization, TLR3 and LPS signaling. C3 subclass also showed an
enrichment of T cell activation and cytotoxicity pathway, but not of
T cell survival (different with C2 subclass). These results may
account for the lack of adaptive immunity in C3 subclass. C4
subclass was remarkably enriched in activated HSC and stromal
pathways such as ECM assembly, EMT, angiogenesis, TGF beta,
integrin signaling pathway. The expressions of genes belonging to
several immune pathways confirmed the differences among the four
subclasses (Figure 2B). Markers of macrophage chemotaxis were
increased in both C2 and C3, while C3 showed higher expression of
macrophage activation. Moreover, the increases in markers of T cell
survival, T cell chemotaxis and activation were observed in C2.
Markers of all the pathways were low expressed in C1. Specially,
compared to the other subclass, C2 subclass showed the both higher
A

B

D

E

C

FIGURE 1 | Classification based on tumor microenvironment stratifies HCCs into four subclasses. (A) Correlation heatmap of 11 TME cell signatures in two data
sets. Color scale: Spearman correlation coefficient from 0 (blue) to 1 (orange). (B) Consensus clustering analysis of two data sets revealed four HCC subclasses
based on 13 TME signatures. Color scale: Z score from -2 (blue) to +2 (orange). (C) Principal-component analysis based on 13 TME signatures separated different
subclasses in TCGA cohort. Kaplan-Meier curves of overall survival for TCGA cohort (D) and CHCC-HBV cohort (E) based on immune subclasses (log-rank test).
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expressions and methylation levels of checkpoint-related genes
obtained from bulk tumor tissues, which indicated that the
overexpression of checkpoints in C2 subclass was potentially
triggered by hypomethylation of these genes (Figures 2C, D) (22).

Mutational Landscape of the Immune
Subclasses
Somatic alterations have been proven to be correlated with TME
(23). We analyzed somatic mutation data from the whole tumor
of several genes with high frequency of mutation and in specific
pathways, such as P53-pathway, Wnt-pathway, Chromatin
modifiers pathway, and hepatic differentiation from TCGA-
LIHC cohort (Figure 3A, Supplementary Table S4) (24). C1
subclass showed the highest mutation frequency of CTNNB1
(P < 0.0001), while the highest mutation frequency of ARID2
(P = 0.049) was observed in C2 subclass (Figure 3B,
Supplementary Table S4). The highest mutation frequency of
TP53 was observed in C3 subclass (P = 0.015). Then, we
Frontiers in Oncology | www.frontiersin.org 5
compared the tumor mutation burden and predicted
neoantigens among these four subclasses (Figures 3C, D). The
lowest tumor mutation burden and numbers of predicted
neoantigens were detected in C4 subclass. Moreover, in
CHCC-HBV cohort, Gao et al. found that signature for
aristolochic acids (AA signature) was correlated to tumor
mutation burden and response to immunotheropy. In CHCC-
HBV cohort, C4 subclass also showed a lower proportion of AA
signature than other three subclasses, which indicated a lower
benefit from checkpoint blockade therapy (Figure 3E).

Associations Between Immune Subclass
and Clinical Characteristic in TCGA and
CHCC-HBV Cohort
Next, we discovered the associations between clinical
characteristics and immune subclass in TCGA and CHCC-
HBV cohort (Figure 4, Supplementary Table S5, S6). The
patients from C2 subclass had a higher proportion of
A

B

DC

FIGURE 2 | Functional characteristics of four immune subclasses. (A) Heatmap of GSVA scores for indicated functional signatures. Color scale: GSVA score
from −1 (blue) to +1(red). (B) Boxplot plot of the expression levels for selected immune-related pathways. (One-way ANOVA test). Boxplot of the expression (C) and
methylation (D) levels of immune checkpoint-related genes between C2 and non-C2 subclass. (Student’s t test). All P values labels: ns P > 0.05, *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001). Error bars are presented as the standard deviation (SD).
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pathologic stage I/II (TCGA: P = 0.002, CHCC-HBV: P = 0.011).
Patients from C3 subclass showed a higher proportion of HBV
infection (P = 0.048). Most of the clinicopathological
characteristics did not show significant differences, which
suggested that the main factors distinguishing distinct immune
subclass were the TME signatures, rather than the above-
mentioned clinical features.

Furthermore, we compared our classification with several
previous reported classifications based on transcriptomic,
including Lee’s classification (High/Low survival), Boyault’s
classification (G1 to G6), Chiang’s classification (five classes),
Hoshida’s classification (S1 to S3), and Lachenmayer’s
classification (CTNNB1 class/Wnt-TGF-beta class) (25–29). In
TCGA and CHCC-HBV cohort, C1 subclass was co-clustered with
the better-prognosis subclasses (Lee’s High survival, Boyault’s
G5&6, Chiang’s CTNNB1 class, Hoshida’s S3, Lachenmayer’s
CTNNB1-class). C3 subclass was largely co-clustered with poor-
prognosis subclasses (Lee’s Low survival, Boyault’s G3, Chiang’s
Proliferation class, Hoshida’s S1, Lachenmayer’s Wnt-TGF-beta
class). C2 subclass was linked to both better-prognosis subclass
(Lee’s High survival, Hoshida’s S3) and poor-prognosis subclasses
(Boyault’s G1&G2, Chiang’s Proliferation, Wnt-TGF beta class).
C4 subclass was co-clustered with Lee’s Low survival, Boyault’s
G1&G2, Chiang’s Proliferation and Interferon class, Hoshida’s S3,
Lachenmayer’s Wnt-TGF-beta class.
Frontiers in Oncology | www.frontiersin.org 6
Construction and Validation of a Classifier
Based on TME
Characteristics of the clinical traits and biological behaviors among
four immune subclasses supported our classification. To apply this
classification on clinical use, we developed a Support Vector
Machine model to classify HCC patients into above four immune
subclasses. The input was the 13 TME signatures of each case from
the above data sets, and the output was the immune subclass of each
case calculated by this model. The ROC curve represents the
accuracy between the subclass clustered in Figure 1B and
Supplementary Figure 3B and the subclass predicted by this
SVM model. As Figures 5A–C showed, these 13 TME signatures
revealed a great classification performance in both discovery phase
(TCGA cohort: AUC = 0.98) and validation phases (CHCC-HBV
cohort: AUC = 0.91; GSE14520 cohort: AUC = 0.85). Furthermore,
we applied this classifier model on 32 HBV-related HCC patients
(Zhejiang cohort) to divide these patients into four subclasses. We
selected a random sample from each subclass to perform
immunohistochemical staining for verifying the accuracy of our
classifier model (Figure 5D, Supplementary Figure 5). Several
markers of immune and stromal cells were selected, specifically,
CD4 and CD8 for T-lymphocytes, CD20 for B-lymphocytes,
CD68 for macrophages, aSMA for fibroblastic cells and Vimentin
for mesenchymal cells. These markers varied markedly among
four subclasses. The expression of Vimentin and aSMA was low
A

B

D

E

C

FIGURE 3 | Differences in the mutational landscape among distinct immune subclasses. (A) Oncoplot of tumor somatic mutation of genes in P53 pathway, Wnt/
beta-catenin pathway, Chromatin modifiers pathway and hepatic differentiation based on TCGA cohort. (B) Comparisons of the frequently mutated genes among
four immune subclasses based on TCGA cohort. (Fisher’s exact test). Comparison of tumor mutation burden (C) and predicted neoantigens (D) among four immune
subclasses. (Wilcoxon rank sum test). (E) The proportion of patients with AA signature among distinct subclasses in CHCC-HBV cohort. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.
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in the patient classified into subclass C1, moderate in subclass C2
and C3, high in subclass C4. The patient classified into subclass C2
was characterized by the massive infiltration CD4+, CD8+ and
CD20+ lymphocytes. Innate immune cells (macrophages) were
also observed in subclass C2. Subclass C3 displayed a high
infiltration of macrophages. Subclass C4 contained a low density
of macrophages and CD4+ T cells. Thus, based on immuno-
histochemistry, the phenotypic features of HCC tumors were
consistent with the classification of our SVM model. The results
of immunohistochemistry not only partially proved the accuracy of
our model, but also supported the rationality of the classification of
four immune-related subclasses.

Different Sensitivity to Personalized
Treatment Among Four Immune
Subclasses
In HCC patients with Child-Pugh Class A or B, the multi-kinase
inhibitor sorafenib has become the first-line systemic therapy
(30). However, there were still no effective clinical characteristics
Frontiers in Oncology | www.frontiersin.org 7
to predict the response to sorafenib so far. Several recent studies
suggested that sorafenib may exert the anti-tumor effect by
regulating the TME of HCC (31, 32). By our SVM classifier, 67
patients from GSE109211 were divided into four subclasses to
explore the associations between the immune subclass and the
response to sorafenib. We found that 81% cases of C2 subclass
showed a significant response to sorafenib, indicating that
patients from Immunogenic subclass were more likely to
benefit from sorafenib treatment (Figure 6A). As Pinyol and
colleagues divided these 67 patients into Good/Poor Prognosis
subgroups, C2 subclass was also coclustered with the Good
Prognosis subgroup (95%) (Figure 6B).

In recent years, some immunotherapies like PD-1 blockade
have achieved success in HCC (33). Different immune cell
infiltrations and expressions of checkpoint-related genes
suggested that four immune subclasses could have the distinct
response to immunotherapy (34). We tried to apply our model
on another pembrolizumab-treated cohort (GSE78220). The
highest response rate (77.8%) to pembrolizumab was observed
A

B

FIGURE 4 | Clinical characteristics of four immune subclasses. Correlation of the immune subclass with clinical characteristics and previously reported HCC
classification in TCGA cohort (A) and CHCC-HBV cohort (B).
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in patients belonging to C2 subclass with the best outcome
(Figures 6C, D). The results indicated that HCC patients
belonging to immunogenic subclass may benefit from anti-PD-
1 therapy inferentially.
DISCUSSION

Although there is a strong heterogeneity in the tumor immune
microenvironment of each HCC patient, a clinical benefit could
be made from classifying a patient into a specific immune
subclass. After analyzing the landscapes of transcriptome,
methylation, somatic mutation, and clinical characteristics, we
found that these four subclasses may correspond to different
mechanisms of immune escape (Figure 6E). Immune desert
subclass (C1) is characterized by immune ignorance and a lack of
priming T cell, corresponding to immune-desert phenotype. The
activation of the b-catenin caused by CTNNB1 mutation might
account for the low immune infiltration represented in C1 (35).
Frontiers in Oncology | www.frontiersin.org 8
Immunogenic subclass (C2) is characterized by a massive
immune cell (CD4+ T cell, CD8+ T cell, B cell, and
macrophage) infiltration in tumor corresponding to immune-
inflamed phenotype. Negative regulators of the immune
response (PD-L1, CTLA4, etc.) might be involved in
counteraction of anti-tumor immune response (36). A mount
of patients belonging to C2 subclass showed a low pathological
stage (TNM stage). In line with our study, several studies
demonstrated that the tumors in low pathologic stage usually
infiltrated with numerous immune cells. The patients belonging
to C2 subclass showed the highest mutation frequency of ARID2
which was related to the efficacy of checkpoint blockade
immunotherapy in clear cell renal cell carcinoma (37). Innate
immune subclass (C3) is characterized by the activation of M2
macrophages (related to innate immunity). M2 macrophage,
which exerts the anti-inflammatory and immunosuppressive
effects, might promote the immune escape represented in C3
subclass through inhibiting the infiltration of adaptive immune
cells (38). Mesenchymal subclass (C4) shows a large number of
A B

D

C

FIGURE 5 | Construction of support vector machine model and performance validation. ROC curves for classifiers designed to predict the immune subclass for TCGA
(A), CHCC-HBV (B), and GSE14520 (C). (D) Representative immunohistochemical pictures of HCC samples belonging to each subclass (100X) (Zhejiang cohort).
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activated fibroblasts (including HSC and myofibroblast) which
influence EMT and the sensitivity of drug treatment through
synthesizing growth factors, chemokines and adhesion
molecules (39).

Kaplan-Meier analysis based on 766 participants showed that
significant differences in overall survival were discovered to exist
among our four immune subclasses. Immunogenic subclass (C2)
represented the best clinical outcome, while innate immune
subclass (C3) have the worst. This suggested that the different
TME continuously and chronically affects the progression of HCC,
which is ultimately reflected in the different clinical outcome. Based
on the RNA-seq data from bulk tumor tissues, our convenient
classification dividing the patients into four subclasses may infer
the prognosis. What is more, the conversions of the immune
subclasses by external interventions may benefit the long-term
clinical results and outcomes of HCC patients.

Additionally, we established an SVM model based on the 13
TME signatures (11 immune-related cells and 2 immune-related
pathways) and confirmed its predictive value (CHCC-HBV cohort:
AUC = 0.91; GSE14520 cohort: AUC = 0.85). The input (13 TME
Frontiers in Oncology | www.frontiersin.org 9
signatures) of the SVM model were calculated by MCP-counter
based on transcriptomic data, while giving a specific output (which
immune subclass). Thanks to the wide applications of RNA-seq, our
workflow only required frozen/fresh tissue samples (< 100 mg), as
well the model constructed on python was convenient and efficient.
The immunohistochemistry from each subclass proved not only the
rationality of the TME classification but also the accuracy of the
SVM model (Figure 5D). Accordingly, this suggested that for any
HCC patient undergoing liver biopsy or liver resection, our SVM
model can be used to infer the prognosis and guide the follow-
up treatment.

HCC patients may benefit from identifying immune subclass
which may guide personalized treatment strategies (Figure 6F).
In our study, we found that the patients belonging to C2 subclass
might be more suitable for sorafenib and anti-PD-1 therapy.
According to the reported study, the patients belonging to C3
subclass could be treated with colony-stimulating factor-1
inhibitor which improved the efficacy of immunotherapy
through inhibiting the intertumoral accumulation of M2
macrophages (40, 41). For the abundant fibrous stroma
A B D

E

F

C

FIGURE 6 | The role of immune subclass in personalized treatment and schematic summary of each immune subclass. (A) The number of patients with response to
sorafenib. (B) The number of patients belonged to good or poor prognosis subgroup. (C) The number of patients with response to anti-PD-1 therapy. (D) Kaplan-
Meier curves of overall survival for GSE78220 cohort (log-rank test, P = 0.046). (E) The mechanisms of immune escape for each immune subclass. (F) Potential
therapeutic strategies for each immune subclass.
February 2021 | Volume 10 | Article 610513

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Immune Classification for HCC
observed in C4 subclass, anti-fibrosis drugs (like NOX4
inhibitor) suppressed the activation of cancer-associated
fibroblasts and promoted the infiltration of CD8+ T cells,
ultimately improving the efficacy of immunotherapy (42). As
for C1 subclass, the application of cytotoxic and modulating
agents which can convert cold tumors to inflamed tumors was a
potential strategy (43).

Our workflow is limited by the HCC patients obtained
specimens for the first time, as well as the influences of
confounding variables such as HBV/HCV infection, alcoholic
fatty liver, non-alcoholic fatty liver, and cirrhosis were not
considered. We will improve them in the future work.

In conclusion, our study dementated a new landscape for the
composition of HCC tumor microenvironment. We identified
four immune subclasses with distinct mechanisms of immune
escape. The patients from distinct subclasses showed a significant
difference in clinical prognosis and response to personalized
treatment. Based on transcriptome data, our workflow might
help to predict the clinical outcome and to find appropriate
treatment strategies for HCC patients.
DATA AVAILABILITY STATEMENT

The data sets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Clinical Research Ethics Committee of the First
Affiliated Hospital College of Medicine, Zhejiang University
Frontiers in Oncology | www.frontiersin.org 10
(2014-334). The patients/participants provided written informed
consent to participate in this study. Written informed consent was
obtained from the individuals for the publication of any
potentially identifiable images or data included in this article.
AUTHOR CONTRIBUTIONS

Study concept and design: SZ, LZ, and XG. Analysis and
interpretation of data: XG. Technical and material support:
SY, YW, and CP. Drafting of the manuscript: SZ, LZ, and HH.
All authors contributed to the article and approved the
submitted version.
FUNDING

This study was supported by Zhejiang Provincial Public Welfare
Technology Research Program (LGF18C100001). This study was
also supported by Innovative Research Groups of National
Natural Science Foundation of China (no. 81721091), National
S&T Major Project of China (no. 2017ZX100203205) and
Research Unit Project of Chinese Academy of Medical Sciences
(2019-I2M-5-030). This study was also supported by Zhejiang
International Science and Technology Cooperation Project
(no. 2016C04003).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2020.
610513/full#supplementary-material
REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68:394–424.
doi: 10.3322/caac.21492

2. Hou J, Zhang H, Sun B, Karin M. The immunobiology of hepatocellular
carcinoma in humans and mice: Basic concepts and therapeutic implications.
J Hepatol (2020) 72:167–82. doi: 10.1016/j.jhep.2019.08.014

3. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of
hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol (2015) 12:681–700.
doi: 10.1038/nrgastro.2015.173

4. Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, et al. Current
perspectives on the immunosuppressive tumor microenvironment in
hepatocellular carcinoma: challenges and opportunities. Mol Cancer (2019)
18:130. doi: 10.1186/s12943-019-1047-6

5. Hegde PS, Chen DS. Top 10 Challenges in Cancer Immunotherapy. Immunity
(2020) 52:17–35. doi: 10.1016/j.immuni.2019.12.011

6. Hegde PS, Karanikas V, Evers S. TheWhere, the When, and the How of Immune
Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition.Clin
Cancer Res (2016) 22:1865–74. doi: 10.1158/1078-0432.CCR-15-1507

7. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al.
The Immune Landscape of Cancer. Immunity (2018) 48:812–30.e14.
doi: 10.1016/j.immuni
8. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al.
Comprehensive evaluation of transcriptome-based cell-type quantification
methods for immuno-oncology. Bioinformatics (2019) 35:i436–45.
doi: 10.1093/bioinformatics/btz363

9. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and Dynamics
of Single Immune Cells in Hepatocellular Carcinoma. Cell (2019) 179:829–
45.e20. doi: 10.1016/j.cell.2019.10.003

10. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression. Genome Biol (2016) 17:218.
doi: 10.1186/s13059-016-1070-5

11. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods
(2015) 12:453–7. doi: 10.1038/nmeth.3337

12. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A Web Server
for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res
(2017) 77:e108–10. doi: 10.1158/0008-5472.CAN-17-0307

13. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated
Proteogenomic Characterization of HBV-Related Hepatocellular
Carcinoma. Cell (2019) 179:561–77.e22. doi: 10.1016/j.cell.2019.08.052

14. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, et al. A unique
metastasis gene signature enables prediction of tumor relapse in early-stage
hepatocellular carcinoma patients. Cancer Res (2010) 70:10202–12.
doi: 10.1158/0008-5472.CAN-10-2607
February 2021 | Volume 10 | Article 610513

https://www.frontiersin.org/articles/10.3389/fonc.2020.610513/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2020.610513/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/j.jhep.2019.08.014
https://doi.org/10.1038/nrgastro.2015.173
https://doi.org/10.1186/s12943-019-1047-6
https://doi.org/10.1016/j.immuni.2019.12.011
https://doi.org/10.1158/1078-0432.CCR-15-1507
https://doi.org/10.1016/j.immuni
https://doi.org/10.1093/bioinformatics/btz363
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1016/j.cell.2019.08.052
https://doi.org/10.1158/0008-5472.CAN-10-2607
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Immune Classification for HCC
15. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al.
Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in
Metastatic Melanoma. Cell (2016) 165:35–44. doi: 10.1016/j.cell.2016.02.065

16. Pinyol R, Montal R, Bassaganyas L, Sia D, Takayama T, Chau GY, et al.
Molecular predictors of prevention of recurrence in HCC with sorafenib as
adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut
(2019) 68:1065–75. doi: 10.1136/gutjnl-2018-316408

17. Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, et al. Integrated analysis of
microbiome and host transcriptome reveals correlations between gut
microbiota and clinical outcomes in HBV-related hepatocellular carcinoma.
Genome Med (2020) 12:102. doi: 10.1186/s13073-020-00796-5

18. Job S, Rapoud D, Dos Santos A, Gonzalez P, Desterke C, Pascal G, et al.
Identification of Four Immune Subtypes Characterized by Distinct
Composition and Functions of Tumor Microenvironment in Intrahepatic
Cholangiocarcinoma. Hepatology (2020) 72:965–81. doi: 10.1002/hep.31092

19. Yoshihara K, Shahmoradgoli M,Martıńez E, Vegesna R, KimH, Torres-GarciaW,
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